The Effect of Water Mineralization on the Extraction of Active Compounds from Selected Herbs and on the Antioxidant Properties of the Obtained Brews
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Carbonate Ions Titration
- k—titer of HCl solution in relation to HCO3− ions (3.05 mg HCO3−/mL);
- V0—volume of the water sample taken for the determination (mL).
2.3. Determination of Calcium, Magnesium and Sodium Ions Using Atomic Absorption Spectroscopy (AAS) with Flame Atomization
2.4. Preparation of Herbal Infusions
2.5. Phenolic Compounds Analysis
2.6. Flavonoids Analysis
2.7. Free Radical-Scavenging Ability by the Use of a Stable DPPH• Radical
2.8. Ferric Reducing Antioxidant Power (FRAP) Assay
2.9. Statistical Analysis
3. Results
3.1. Content of Polyphenols and Flavonoids
3.2. Antioxidant Activity
3.3. pH Value of Brews
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wojtaszek, T. Woda mineralna jako czynnik ekologicznej profilaktyki zdrowotnej. J. Elementol. 2006, 11, 399–406. [Google Scholar]
- Gątarska, A.; Tońska, E.; Ciborska, J. Natural mineral bottled waters available on the polish market as a source of minerals for the consumers. Part 1. calcium and magnesium. Ann. Natl. Inst. Hyg. 2016, 67, 1–8. [Google Scholar]
- Januszko, O.; Madej, D.; Postaleniec, E.; Brzozowska, A.; Pietruszka, B.; Kałuza, J. Minerals intake from drinking water by young women. Rocz. Panstw. Zakl. Hig. 2012, 63, 43–50. [Google Scholar] [PubMed]
- Markiewicz, R.; Borawska, M.H.; Socha, K. Calcium and magnesium in diets of people from Podlasie region. Bromatol. Toxicol. Chem. 2009, 42, 629–635. [Google Scholar]
- Dz.U. 2011 nr 85 poz. 466 Rozporządzenie Ministra Zdrowia z Dnia 31 marca 2011 r. w Sprawie Naturalnych wód Mineralnych, wód Źródlanych i wód Stołowych. 2011. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20110850466 (accessed on 12 March 2021).
- Vieux, F.; Maillot, M.; Rehm, C.D.; Barrios, P.; Drewnowski, A. Trends in tap and bottled water consumption among children and adults in the United States: Analyses of NHANES 2011–16 data. Nutr. J. 2020, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Pasternakiewicz, A.; Bilek, M.; Stawarczyk, K. Badania zawartości wybranych anionów nieorganicznych w wodach mineralnych i źródlanych-pod kątem bezpieczeństwa zdrowotnego wody Assessment of contents of selected inorganic anions in mineral and spring waters-in terms of health safety of water. Probl. Hig. Epidemiol. 2014, 95, 788–793. [Google Scholar]
- Sentkowska, A.; Dróżdź, P.; Pyrzyńska, K. Napary ziołowe jako źródło związków polifenolowych. In Rośliny w Medycynie, Farmacji i Przemyśle; Wydawnictwo Naukowe TYGIEL sp. z o. o.: Lublin, Poland, 2016; pp. 111–133. [Google Scholar]
- Yang, Y.; Chen, Y.; Chen, F.; Yu, Y.; Bi, C. Tea polyphenol is a potential antifungal agent for the control of obligate biotrophic fungus in plants. J. Phytopathol. 2017, 165, 547–553. [Google Scholar] [CrossRef]
- Wyrostek, J. Właściwości fungistatyczne naparów ziołowych wobec wybranych gatunków z rodzaju Fusarium. Przemysł Chem. 2021, 1, 83–86. [Google Scholar] [CrossRef]
- Gasparrini, M.; Forbes-Hernandez, T.; Afrin, S.; Alvarez-Suarez, J.; Gonzàlez-Paramàs, A.; Santos-Buelga, C.; Bompadre, S.; Quiles, J.; Mezzetti, B.; Giampieri, F. A Pilot Study of the Photoprotective Effects of Strawberry-Based Cosmetic Formulations on Human Dermal Fibroblasts. Int. J. Mol. Sci. 2015, 16, 17870–17884. [Google Scholar] [CrossRef] [Green Version]
- Stańczyk, A. Health properties of selected tea grades. Bromatol. Chem. Toksykol. 2010, 43, 498–504. [Google Scholar]
- Hatti-Kaul, R.; Törnvall, U.; Gustafsson, L.; Börjesson, P. Industrial biotechnology for the production of bio-based chemicals—A cradle-to-grave perspective. Trends Biotechnol. 2007, 25, 119–124. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Zhu, Q.Y.; Tsang, D.; Huang, Y. Degradation of Green Tea Catechins in Tea Drinks. J. Agric. Food Chem. 2001, 49, 477–482. [Google Scholar] [CrossRef]
- Lun Su, Y.; Leung, L.K.; Huang, Y.; Chen, Z.-Y. Stability of tea theaflavins and catechins. Food Chem. 2003, 83, 189–195. [Google Scholar] [CrossRef]
- Sang, S.; Lee, M.-J.; Hou, Z.; Ho, C.-T.; Yang, C.S. Stability of Tea Polyphenol (−)-Epigallocatechin-3-gallate and Formation of Dimers and Epimers under Common Experimental Conditions. J. Agric. Food Chem. 2005, 53, 9478–9484. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhou, W.; Wen, R.H. Kinetic Study of the Thermal Stability of Tea Catechins in Aqueous Systems Using a Microwave Reactor. J. Agric. Food Chem. 2006, 54, 5924–5932. [Google Scholar] [CrossRef]
- Spiro, M.; Price, W.E.; Miller, W.M.; Arami, M. Kinetics and equilibria of tea infusion: Part 8—the effects of salts and of pH on the rate of extraction of theaflavins from black tea leaf. Food Chem. 1987, 25, 117–126. [Google Scholar] [CrossRef]
- Mierczyńska, J.; Cybulska, J.; Sołowiej, B.; Zdunek, A. Effect of Ca2+, Fe2+ and Mg2+ on rheological properties of new food matrix made of modified cell wall polysaccharides from apple. Carbohydr. Polym. 2015, 133, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Mossion, A.; Potin-Gautier, M.; Delerue, S.; Le Hécho, I.; Behra, P. Effect of water composition on aluminium, calcium and organic carbon extraction in tea infusions. Food Chem. 2008, 106, 1467–1475. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Chethan, S.; Malleshi, N. Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chem. 2007, 105, 862–870. [Google Scholar] [CrossRef]
- Zhu, Q.Y.; Zhang, A.; Tsang, D.; Huang, Y.; Chen, Z.-Y. Stability of Green Tea Catechins. J. Agric. Food Chem. 1997, 45, 4624–4628. [Google Scholar] [CrossRef]
- ISO 9963-1:1994 Water Quality—Determination of Alkalinity—Part 1: Determination of Total and Composite Alkalinity). Available online: https://www.iso.org/standard/17868.html (accessed on 12 February 2021).
- Pokojska, U. Przewodnik Metodyczny do Analizy wód; Wydawnictwo Uniwersytetu Mikołaja Kopernika: Toruń, Poland, 1999. [Google Scholar]
- Wyrostek, J.; Kowalski, R.; Pankiewicz, U.; Solarska, E. Estimation of the Content of Selected Active Substances in Primary and Secondary Herbal Brews by UV-VIS and GC-MS Spectroscopic Analyses. J. Anal. Methods Chem. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry to total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Vinic. 1965, 16, 144–158. [Google Scholar]
- Karadeniz, F.; Burdurlu, H.; Koca, N.; Soyer, Y. Antioxidant activity of selected fruits and vegetables grown in Turkey. Turk. J. Agric. For. 2005, 29, 297–303. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Iwona Zych, A.K. Wybranych Antyoksydantów I Naparów Measurement of Total Antioxidant Capacity of Selected Antioxidants. Chem. Dydakt. Ekol. Metrol. 2010, 15, 1–4. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- Vertuani, S.; Scalambra, E.; Vittorio, T.; Bino, A.; Malisardi, G.; Baldisserotto, A.; Manfredini, S. Evaluation of Antiradical Activity of Different Cocoa and Chocolate Products: Relation with Lipid and Protein Composition. J. Med. Food 2014, 17, 512–516. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.-Q.; Zou, C.; Gao, Y.; Chen, J.-X.; Wang, F.; Chen, G.-S.; Yin, J.-F. Effect of the type of brewing water on the chemical composition, sensory quality and antioxidant capacity of Chinese teas. Food Chem. 2017, 236, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.C.; Chiang, B.H. Cream formation in a semifermented tea. J. Sci. Food Agric. 1999, 79, 1767–1774. [Google Scholar] [CrossRef]
- Jöbstl, E.; Fairclough, J.P.A.; Davies, A.P.; Williamson, M.P. Creaming in black tea. J. Agric. Food Chem. 2005, 53, 7997–8002. [Google Scholar] [CrossRef]
- Yang, X.Q. The components and properties of tea polyphenols; The biological activities of tea polyphenols. In Tea Polyphenol Chemistry; Yang, X.Q., Wang, Y.F., Chen, L.J., Eds.; Shanghai Science and Technology Press: Shanghai, China, 2003; pp. 1–54, 109–194. [Google Scholar]
- Spiro, M.; Jaganyi, D. What causes scum on tea? Nature 1993, 364, 581. [Google Scholar] [CrossRef]
- Chen, C.C.; You, H.H.; Chen, C.C. Effects of water quality, pH and metal ions on the color and polyphenol content of oolong tea infusion. Food Sci. 1997, 24, 331–347. [Google Scholar]
- Samsonowicz, M.; Regulska, E. Evaluation of influence of selected metal cations on antioxidant activity of extracts from savory (Satureja hortensis). Chem. Pap. 2016, 70. [Google Scholar] [CrossRef]
- Zeng, L.; Ma, M.; Li, C.; Luo, L. Stability of tea polyphenols solution with different pH at different temperatures. Int. J. Food Prop. 2017, 20, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Akyuz, S.; Yarat, A. The pH and Neutralisable Acidity of the Most-Consumed Turkish Fruit and Herbal Teas. OHDMBSC 2010, 9, 75–78. [Google Scholar]
- Bors, W.; Michel, C.; Stettmaier, K. Structure-activity relationships governing antioxidant capacities of plant polyphenols. Methods Enzymol. 2001, 335, 166–180. [Google Scholar] [CrossRef] [PubMed]
- Hajdari, A.; Mustafa, B.; Franz, C.; Novak, J. Total flavonoids, total phenolics and antioxidant activity of betonica officinalis l. from Kosovo. Acta Hortic. 2010, 75–80. [Google Scholar] [CrossRef]
- Jan, A.; Widjanarko, S.B.; Kusnadi, J.; Berhimpon, S. Antioxidant potential of flesh, seed and mace of nutmeg (Myristica fragrans Houtt). Artic. Int. J. ChemTech Res. 2014, 6, 2460–2468. [Google Scholar]
- Hinneburg, I.; Damien Dorman, H.J.; Hiltunen, R. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem. 2006, 97, 122–129. [Google Scholar] [CrossRef]
- Chizzola, R.; Michitsch, H.; Franz, C. Antioxidative Properties of Thymus vulgaris Leaves: Comparison of Different Extracts and Essential Oil Chemotypes. J. Agric. Food Chem. 2008, 56, 6897–6904. [Google Scholar] [CrossRef]
- Khanavi, M.; Hajimahmoodi, M.; Cheraghi-Niroom, M.; Kargar, Z.; Ajani, Y.; Hadjiakhoondi, A.; Oveisi, M.R. Comparison of the antioxidant activity and total phenolic contents in some stachys species. Afr. J. Biotechnol. 2009, 8, 1143–1147. [Google Scholar] [CrossRef]
- Hidalgo, M.; Sánchez-Moreno, C.; de Pascual-Teresa, S. Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chem. 2010, 121, 691–696. [Google Scholar] [CrossRef]
- Sindi, H.A.; Marshall, L.J.; Morgan, M.R.A. Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa. Food Chem. 2014, 164, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Element | Certified Reference Material Analysis | Validation Parameters | ||||
---|---|---|---|---|---|---|
The Result Declared by the Manufacturer | The Result Obtained in Own Research | Limit of Detection | Limit of Quantification | Precision (%) | Uncertainty (%) | |
Ca (mg/L) | 109 | 108 | 0.05 | 0.11 | 0.4 | 18 |
Mg (mg/L) | 4.62 | 4.57 | 0.06 | 0.12 | 0.7 | 22 |
Na (mg/L) | 24.7 | 24.4 | 0.05 | 0.10 | 0.6 | 21 |
Peppermint | Camomile | Black Tea | ||||
---|---|---|---|---|---|---|
Trolox mM | Difference % | Trolox mM | Difference % | Trolox mM | Difference % | |
Deionised water | 10.78 ± 0.16 a 1 | 0.00 | 2.30 ± 0.10 a | 0.00 | 15.67 ± 1.51 a | 0.00 |
Baby Zdrój | 10.02 ± 0.69 bcd | −7.04 | 2.15 ± 0.07 a | −6.83 | 12.82 ± 1.84 b | −18.16 |
Żywiec | 10.19 ± 0.22 abc | −5.52 | 1.66 ± 0.06 b | −28.16 | 12.92 ± 0.80 b | −17.57 |
Tap water | 10.62 ± 0.28 ab | −1.46 | 1.51 ± 0.04 bcd | −34.45 | 10.31 ± 0.51 c | −34.21 |
Cisowianka | 9.32 ± 0.25 de | −13.58 | 1.58 ± 0.08 bc | −31.58 | 10.25 ± 0.72 c | −34.59 |
Java | 9.90 ± 0.13 cd | −8.18 | 1.50 ± 0.03 bcd | −35.01 | 8.49 ± 0.26 d | −45.83 |
Wielka pieniawa | 9.98 ± 0.64 bcd | −7.41 | 1.61 ± 0.11 b | −30.11 | 6.78 ± 0.77 d | −56.71 |
Muszynianka | 9.39 ± 0.25 de | −12.95 | 1.36 ± 0.20 d | −40.99 | 1.20 ± 0.76 f | −92.35 |
Staropolanka | 9.38 ± 0.53 de | −13.00 | 1.39 ± 0.21 cd | −39.87 | 3.91 ± 0.75 e | −75.04 |
Wysowianka | 8.71 ± 0.08 e | −19.26 | 0.87 ± 0.19 e | −62.44 | 1.02 ± 0.95 f | −93.49 |
Green Tea | Sage | Lavender | ||||
---|---|---|---|---|---|---|
Tested Water | Trolox mM | Difference % | Trolox mM | Difference % | Trolox mM | Difference % |
Deionised water | 15.56 ± 0.49 a 1 | 0.00 | 11.29 ± 0.16 a | 0.00 | 7.96 ± 0.08 a | 0.00 |
Baby Zdrój | 14.03 ± 0.31 b | −9.82 | 9.09 ± 0.20 c | −19.49 | 7.08 ± 0.49 b | −11.00 |
Żywiec | 13.06 ± 0.77 c | −16.05 | 10.25 ± 0.30 b | −9.16 | 7.37 ± 0.35 ab | −7.46 |
Tap water | 12.33 ± 0.56 c | −20.75 | 9.74 ± 0.34 bc | −13.72 | 7.27 ± 0.24 b | −8.65 |
Cisowianka | 13.82 ± 0.38 ab | −11.15 | 9.69 ± 0.49 bc | −14.17 | 5.96 ± 0.50 c | −25.09 |
Java | 10.04 ± 0.52 d | −35.49 | 10.30 ± 0.21 b | −8.75 | 6.43 ± 0.61 c | −19.26 |
Wielka pieniawa | 9.92 ± 0.74 d | −36.21 | 7.64 ± 0.69 d | −32.27 | 4.85 ± 0.20 d | −39.06 |
Muszynianka | 7.98 ± 0.68 e | −48.70 | 8.19 ± 0.31 d | −27.44 | 4.53 ± 0.44 d | −43.06 |
Staropolanka | 7.38 ± 0.20 e | −52.53 | 7.77 ± 0.08 d | −31.19 | 4.98 ± 0.20 d | −37.46 |
Wysowianka | 4.62 ± 0.23 f | −70.32 | 7.82 ± 0.55 d | −30.68 | 4.32 ± 0.16 d | −45.76 |
Peppermint | Camomile | Black Tea | ||||
---|---|---|---|---|---|---|
Fe2+ mM | Difference % | Fe2+ mM | Difference % | Fe2+ mM | Difference % | |
Deionised water | 44.51 ± 2.24 cd 1 | 0.00 | 19.21 ± 0.36 a | 0.00 | 63.67 ± 1.52 de | 0.00 |
Baby Zdrój | 44.62 ± 2.62 cd | 0.25 | 18.56 ± 0.52 a | −3.38 | 61.30 ± 1.20 e | −3.72 |
Żywiec | 38.06 ± 3.98 fg | −14.49 | 15.86 ± 1.84 bc | −17.44 | 67.05 ± 0.14 bc | 5.31 |
Tap water | 40.24 ± 1.15 ef | −9.59 | 19.6 ± 0.17 a | 8.43 | 70.62 ± 1.28 a | 10.92 |
Cisowianka | 42.58 ± 0.96 de | −4.34 | 16.32 ± 0.34 b | −15.04 | 69.06 ± 1.56 ab | 8.47 |
Java | 34.77 ± 1.41 g | −21.88 | 16.10 ±0.93 b | −16.19 | 69.55± 1.06 ab | 9.24 |
Wielka pieniawa | 50.29 ± 2.84 b | 12.99 | 16.07 ± 0.71 b | −16.35 | 69.79 ± 3.79 ab | 9.61 |
Muszynianka | 54.79 ± 2.90 a | 23.10 | 15.63 ± 0.51 bc | −18.64 | 70.17 ± 0.55 a | 10.21 |
Staropolanka | 47.24 ± 1.87 bc | 6.13 | 16.68 ± 0.61 b | −13.17 | 67.72 ± 0.84 abc | 6.36 |
Wysowianka | 40.95 ± 01.90 ef | −8.00 | 14.37 ± 0.71 c | −25.20 | 65.92 ± 1.98 cd | 3.53 |
Green Tea | Sage | Lavender | ||||
---|---|---|---|---|---|---|
Tested Water | Fe2+ mM | Difference % | Fe2+ mM | Difference % | Fe2+ mM | Difference % |
Deionised water | 64.78 ± 0.29 a 1 | 0.00 | 67.67 ± 0.75 bc | 0.00 | 46.45 ± 0.23 a | 0.00 |
Baby Zdrój | 51.01 ± 0.71 d | −21.26 | 65.71 ± 0.37 cd | −2.90 | 35.00± 2.34 c | −24.65 |
Żywiec | 57.26 ± 1.71 bc | −11.61 | 65.31 ± 3.15 cd | −3.49 | 34.17 ± 1.42 c | −26.44 |
Tap water | 58.07 ± 2.17 b | −10.36 | 70.31 ± 2.09 b | 3.90 | 33.54 ± 1.47 c | −27.79 |
Cisowianka | 56.29 ± 0.52 bc | −13.11 | 62.50 ± 1.31 d | −7.64 | 40.84 ± 1.58 b | −12.08 |
Java | 51.79 ± 2.50 d | −20.05 | 66.22 ± 4.40 c | −2.14 | 33.72 ± 0.96 c | −27.41 |
Wielka pieniawa | 55.01 ± 2.15 c | −15.08 | 57.15 ± 0.42 e | −15.55 | 35.68 ± 2.87 c | −23.19 |
Muszynianka | 56.62 ± 0.36 bc | −12.60 | 68.01 ± 3.12 bc | 0.50 | 41.74 ± 0.76 b | −10.14 |
Staropolanka | 55.01 ± 0.80 c | −15.08 | 76.32 ± 0.69 a | 12.78 | 42.43 ± 0.45 b | −8.65 |
Wysowianka | 48.17 ± 1.34 e | −25.64 | 46.61 ± 0.22 f | −31.12 | 40.54 ± 1.09 b | −12.72 |
Peppermint | Camomile | Black Tea | Green Tea | Sage | Lavender | |
---|---|---|---|---|---|---|
Deionised water | 6.55 | 5.52 | 5.03 | 5.48 | 6.24 | 5.47 |
Baby Zdrój | 6.8 | 5.55 | 5.49 | 5.55 | 6.7 | 5.67 |
Żywiec | 6.8 | 6.05 | 5.52 | 6.67 | 6.72 | 5.94 |
Tap water | 6.96 | 6.43 | 6.12 | 6.45 | 6.98 | 6.01 |
Cisowianka | 7.06 | 6.65 | 6.52 | 6.61 | 7.04 | 6.56 |
Java | 7.25 | 6.78 | 6.61 | 6.94 | 7.15 | 7.01 |
Wielka pieniawa | 7.12 | 6.84 | 6.6 | 6.82 | 7.12 | 6.98 |
Muszynianka | 7.44 | 7.12 | 6.69 | 6.95 | 7.12 | 7.01 |
Staropolanka | 7.25 | 7.07 | 6.7 | 6.91 | 7.26 | 7.05 |
Wysowianka | 7.46 | 7.27 | 6.93 | 7.06 | 7.36 | 7.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyrostek, J.; Kowalski, R. The Effect of Water Mineralization on the Extraction of Active Compounds from Selected Herbs and on the Antioxidant Properties of the Obtained Brews. Foods 2021, 10, 1227. https://doi.org/10.3390/foods10061227
Wyrostek J, Kowalski R. The Effect of Water Mineralization on the Extraction of Active Compounds from Selected Herbs and on the Antioxidant Properties of the Obtained Brews. Foods. 2021; 10(6):1227. https://doi.org/10.3390/foods10061227
Chicago/Turabian StyleWyrostek, Jakub, and Radosław Kowalski. 2021. "The Effect of Water Mineralization on the Extraction of Active Compounds from Selected Herbs and on the Antioxidant Properties of the Obtained Brews" Foods 10, no. 6: 1227. https://doi.org/10.3390/foods10061227
APA StyleWyrostek, J., & Kowalski, R. (2021). The Effect of Water Mineralization on the Extraction of Active Compounds from Selected Herbs and on the Antioxidant Properties of the Obtained Brews. Foods, 10(6), 1227. https://doi.org/10.3390/foods10061227