Green Solvent to Substitute Hexane for Bioactive Lipids Extraction from Black Cumin and Basil Seeds
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Seed Oil Extraction
2.3. Colour
2.4. Fatty Acids Analysis
2.5. Tocopherols Content
2.6. Total Polyphenols Content
2.7. Identification of Phenolic Compounds by Liquid Chromatography with Diode Array Detector (LC-DAD)
2.8. Biological Activities
2.8.1. Antioxidant Capacity Evaluation
2.8.2. Anti-Inflammatory Activity Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Oil Extraction Yield
3.2. Colour Profile
3.3. Fatty Acid Composition
3.4. Tocopherols Contents
3.5. Total Phenolic Content
3.6. Phenolic Compounds Identification
3.7. Antioxidant Activity
3.8. Anti-Inflammatory Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Durkin, L.A.; Childs, C.E.; Calder, P.C. Omega-3 polyunsaturated fatty acids and the intestinal epithelium-A Review. Foods 2021, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Quílez, M.; Ferreres, F.; López-Miranda, S.; Salazar, E.; Jordán, M.J. Seed oil from mediterranean aromatic and medicinal plants of the Lamiaceae family as a source of bioactive components with nutritional. Antioxidants 2020, 9, 510. [Google Scholar] [CrossRef] [PubMed]
- Tuberoso, C.I.G.; Kowalczyk, A.; Sarritzu, E.; Cabras, P. Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food. Chem. 2007, 103, 1494–1501. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Res. Int. 2016, 82, 59–70. [Google Scholar] [CrossRef]
- Crinnion, W.J. The CDC fourth national report on human exposure to environmental chemicals: What it tells us about our toxic burden and how it assist environmental medicine physicians. Altern. Med. Rev. 2010, 15, 101–108. [Google Scholar]
- Ravi, H.K.; Vian, M.A.; Tao, Y.; Degrou, A.; Costil, J.; Trespeuch, C.; Chemat, F. Alternative solvents for lipid extraction and their effect on protein quality in black soldier fly (Hermetia illucens) larvae. J. Clean. Prod. 2019, 238, 117861. [Google Scholar] [CrossRef]
- Kerton, F.M. Alternative Solvents for Green Chemistry; Royal Society of Chemistry: Cambridge, UK, 2009. [Google Scholar]
- Sicaire, A.G.; Vian, M.A.; Fine, F.; Carré, P.; Tostain, S.; Chemat, F. Experimental approach versus COSMO-RS assisted solvent screening for predicting the solubility of rapeseed oil. OCL 2015, 22, 1–7. [Google Scholar] [CrossRef] [Green Version]
- De Jesus, S.S.; Ferreira, G.F.; Fregolente, L.V.; Maciel Filho, R. Laboratory extraction of microalgal lipids using sugarcane bagasse derived green solvent. Algal Res. 2018, 35, 292–300. [Google Scholar] [CrossRef]
- Bettaieb Rebey, I.; Bourgou, S.; Detry, P.; Wannes, W.A.; Kenny, T.; Ksouri, R.; Sellami, I.H.; Fauconnier, M.L. Green extraction of fennel and anise edible oils using bio-based solvent and supercritical fluid: Assessment of chemical composition, antioxidant property, and oxidative stability. Food. Bioprocess Technol. 2019, 12, 1798–1807. [Google Scholar] [CrossRef]
- Bourgou, S.; Bettaieb Rebey, I.; Dakhlaoui, S.; Msaada, K.; Saidani Tounsi, M.; Ksouri, R.; Fauconnier, M.; Hamrouni-Sellami, I. Green extraction of oil from Carum carvi seeds using bio-based solvent and supercritical fluid: Evaluation of its antioxidant and anti-inflammatory activities. Phytochem. Anal. 2019, 31, 37–45. [Google Scholar] [CrossRef]
- Rapinel, V.; Claux, O.; Abert-Vian, M.; McAlinden, C.; Bartier, M.; Patouillard, N.; Jacques, L.; Chemat, F. 2-Methyloxolane (2-MeOx) as sustainable lipophilic solvent to substitute hexane for green extraction of natural products. Properties, Applications and Perspectives. Molecules 2020, 25, 3417. [Google Scholar] [CrossRef]
- Angers, P.; Morales, M.R.; Simon, J.E. Fatty acid variation in seed oil among Ocimum species. J. Am. Oil Chemists’ Soc. 1996, 73, 393–395. [Google Scholar] [CrossRef]
- Cheikh-Rouhou, S.; Besbes, S.; Hentati, B.; Blecker, C.; Deroanne, C.; Attia, H. Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food. Chem. 2007, 101, 673–681. [Google Scholar] [CrossRef]
- Hamrouni-Sellami, I.; Kchouk, M.E.; Marzou, B. Lipid and aroma composition of black cumin (Nigella sativa L.) seeds from Tunisia. J. Food. Biochem. 2008, 32, 335–352. [Google Scholar] [CrossRef]
- Kiralan, M.; Özkan, G.; Bayrak, A.; Ramadan, M.F. Physicochemical properties and stability of black cumin (Nigella sativa) seed oil as affected by different extraction methods. Ind. Crops Prod. 2014, 57, 52–58. [Google Scholar] [CrossRef]
- Nour, A.H.; Elhussein, S.A.; Osman, N.A.; Nour, A.H. Characterization and chemical composition of the fixed oil of fourteen basil (Ocimum basilicum L.) accessions grown in Sudan. Int. J. Chem. Technol. 2009, 2, 113–119. [Google Scholar] [CrossRef]
- Tasioula-Margari, M.; Okogeri, O. Simultaneous determination of phenolic compounds and tocopherols in virgin olive oil using HPLC and UV detection. Food. Chem. 2001, 74, 377–383. [Google Scholar] [CrossRef]
- Parry, J.; Su, L.; Luther, M.; Zhou, K.; Yurawecz, M.P.; Parry, J.; Su, L.; Luther, M.; Whittaker, P.; Yu, L. Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. J. Agric. Food. Chem. 2005, 53, 66–573. [Google Scholar] [CrossRef]
- Ganesan, P.; Kumar, C.S.; Bhaskar, N. Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds. Bioresour. Technol. 2008, 99, 2717–2723. [Google Scholar] [CrossRef]
- Boulaaba, M.; Kalai, F.Z.; Dakhlaoui, S.; Ezzine, Y.; Selmi, S.; Bourgou, S.; Smaoui, A.; Isoda, H.; Ksouri, R. Antioxidant, antiproliferative and anti-inflammatory effects of Glaucium flavum fractions enriched in phenolic compounds. Med. Chem. Res. 2019, 28, 1995–2001. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, W.M.A.W.; Theodoropoulos, C.; Gonzalez-Miquel, M. Enhanced microalgal lipid extraction using bio-based solvents for sustainable biofuel production. Green. Chem 2017, 19, 5723–5733. [Google Scholar] [CrossRef]
- Yara-Varon, E.; Fabiano-Tixier, A.S.; Balcells, M.; Canela-Garayo, R.; Bily, A.; Chemat, F. Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Adv. R. Soc. Chem. 2016, 6, 27750–27759. [Google Scholar] [CrossRef] [Green Version]
- Antonucci, V.; Coleman, J.; Ferry, J.B.; Johnson, N.; Mathe, M.; Scott, J.P.; Xu, J. Toxicological assessment of 2-methyltetrahydrofuran and cyclopentyl methyl ether in support of their use in pharmaceutical chemical process development. Org. Process Res. Dev. 2011, 15, 939–941. [Google Scholar] [CrossRef]
- Ghaleshahi, A.Z.; Ezzatpanah, H.; Rajabzadeh, G.; Ghavami, M. Comparison and analysis characteristics of flax, perilla and basil seed oils cultivated in Iran. J. Food Sci. Technol. 2020, 57, 1258–1268. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Mörsel, J.T. Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. J. Agric. Food. Chem. 2003, 51, 6961–6969. [Google Scholar] [CrossRef]
- Kawamura, A.; Ooyama, K.; Kojima, K.; Kachi, H.; Abe, T.; Amano, K.; Aoyama, T. Dietary supplementation of gamma-linolenic acid improves skin parameters in subjects with dry skin and mild atopic dermatitis. J. Oleo Sci. 2011, 60, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Grusak, M.A.; Della, P.D. Improving the nutrient composition of plants to enhance human nutrition and health. Annu. Rev. Plant Phys. 1999, 50, 133–161. [Google Scholar] [CrossRef]
- Hassanien, M.M.M.; Abdel-Razek, A.G.; Rudzińska, M.; Siger, A.; Ratusz, K.; Przybylski, R. Phytochemical contents and oxidative stability of oils from non-traditional sources. Eur. J. Lipid Sci. Technol. 2014, 116, 1563–1571. [Google Scholar] [CrossRef]
- Sahu, P.K.; Suryakant, C.; Elise, S.; Inga, M.; Ying, Q.; Ania, G.; Magdalena, R.; Khageshwar, S.; Paweł, G. Fatty acids, tocopherols, tocotrienols, phytosterols, carotenoids, and squalene in seed oils of Hyptis suaveolens, Leonotis nepetifolia, and Ocimum sanctum. Eur. J. Lipid Sci. Technol. 2020, 112, 2000053. [Google Scholar] [CrossRef]
- Gharby, S.; Ravi, H.K.; Guillaume, D.; Vian, M.A.; Chemat, F.; Charrouf, Z. 2-methyloxolane as alternative solvent for lipid extraction and its effect on the cactus (Opuntia ficus-indica L.) seed oil fractions. OCL 2020, 27, 1–7. [Google Scholar] [CrossRef]
- Siger, A.; Nogala-Kalucka, M.; Lampart-Szczapa, E. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food. Lipids 2008, 15, 137–149. [Google Scholar] [CrossRef]
- Ramadan, M.F. Healthy blends of high linoleic sunflower oil with selected cold pressed oils: Functionality, stability and antioxidative characteristics. Ind. Crops Prod. 2013, 43, 65–72. [Google Scholar] [CrossRef]
- Bourgou, S.; Pichette, A.; Marzouk, B.; Legault, J. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. S. Afr. J. Bot. 2010, 76, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Nutrizioj, M.; Pataro, G.; Carullo, D.; Carpentieri, S.; Mazza, L.; Ferrari, G.; Chemat, F.; Banovic, M.; Jambrak, A.R. High voltage electrical discharges as an alternative extraction process of phenolic and volatile vompounds from wild Thyme (Thymus serpyllum L.): In silico and experimental approaches for solubility assessment. Molecules 2020, 25, 4131. [Google Scholar] [CrossRef]
- Ozturk, B.; Winterburn, J.; Gonzalez-Miquel, M. Orange peel waste valorisation through limonene extraction using bio-based solvents. Biochem. Eng. J. 2019, 151, 107298. [Google Scholar] [CrossRef]
- Filly, A.; Fabiano-Tixier, A.S.; Fernandez, X.; Chemat, F. Alternative solvents for extraction of food aromas: Experimental and COSMO-RS study. LWT 2015, 61, 33–40. [Google Scholar] [CrossRef]
- Combes, J.; Rivera, E.C.; Clément, T.; Fojcik, C.; Athès, V.; Moussa, M.; Allais, F. Solvent selection strategy for an ISPR (In Situ/In Stream Product Recovery) process: The case of microbial production of p-coumaric acid coupled with a liquid-liquid extraction. Sep. Purif. Technol. 2020, 259, 118170. [Google Scholar] [CrossRef]
- Wang, L.; Cai, C.; Liu, J.; Tan, Z. Selective separation of the homologues of baicalin and baicalein from Scutellaria baicalensis Georgi using a recyclable ionic liquid-based liquid-liquid extraction system. Process Biochem. 2021, 103, 1–8. [Google Scholar] [CrossRef]
- Sroka, Z.; Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 2003, 41, 753–758. [Google Scholar] [CrossRef]
- Chaabani, E.; Vian, M.A.; Dakhlaoui, S.; Bourgou, S.; Chemat, F.; Ksouri, R. Pistacia lentiscus L. edible oil: Green extraction with bio-based solvents, metabolite profiling and in vitro anti-inflammatory activity. OCL 2019, 26, 1–10. [Google Scholar] [CrossRef]
- Kim, E.O.; Min, K.J.; Kwon, T.K.; Um, B.H.; Moreau, R.A.; Choi, S.W. Anti-inflammatory activity of hydroxycinnamic acid derivatives isolated from corn bran in lipopolysaccharide-stimulated Raw 264.7 macrophages. Food Chem. Toxicol. 2012, 50, 1309–1316. [Google Scholar] [CrossRef]
Black Cumin | Basil | |||
---|---|---|---|---|
Hexane | MeTHF | Hexane | MeTHF | |
L* | 90.6 ± 0.1 a | 27.0 ± 0.3 b | 59.9 ± 1.0 A | 32.8 ± 0.6 B |
a* | −0.13 ± 0.0 b | 3.9 ± 0.1 a | −0.5 ± 0.1 B | 3.4 ± 0.6 A |
b* | 86.6 ± 1.2 a | 5.76 ± 0.5 b | 37.0 ± 1.0 B | 42.3 ± 0.5 A |
Fatty Acids (%) | Black Cumin | Basil | ||
---|---|---|---|---|
Hexane | MeTHF | Hexane | MeTHF | |
C16:0 | 12.5 ± 0.3 a | 13.7 ± 0.2 a | 8.3 ± 0.2 A | 8.4 ± 0.1 A |
C18:0 | 3.8 ± 0.9 a | 2.0 ± 0.2 b | 3.4 ± 1.2 A | 3.4 ± 0.4 A |
C18:1 n-9 | 18.9 ± 0.5 a | 19.4 ± 0.2 a | 8.2 ± 0.3 A | 8.6 ± 0.2 A |
C18:2 n-6 | 61.1 ± 0.3 a | 60.8 ± 0.1 a | 22.8 ± 0.7 A | 23.4 ± 0.2 A |
C18:3 n-3 | 0.3 ± 0.1 a | 0.3 ± 0.0 a | 56.0 ± 2.2 A | 54.9 ± 1.2 A |
C20:0 | 0.2 ± 0.0 a | 0.1 ± 0.1 b | 1.4 ± 1.2 A | 1.3 ± 1.1 A |
C20:1 | 0.4 ± 0.1 a | 0.1 ± 0.1 b | - | - |
C22:0 | 2.9 ± 0.1 b | 3.6 ± 0.1 a | - | - |
PUFA | 61.4 ± 0.4 a | 61.1 ± 0.1 a | 78.7 ± 2.2 A | 78.3 ± 1.4 A |
MUFA | 19.3 ± 0.6 a | 19.6 ± 0.3 a | 8.2 ± 0.3 A | 8.6 ± 0.6 A |
SFA | 19.3 ± 1.3 a | 19.3 ± 0.4 a | 13.0 ± 2.6 A | 13.1 ± 1.6 A |
PUFA/SFA | 3.2 | 3.2 | 6.1 | 6.1 |
Black Cumin | Basil | |||
---|---|---|---|---|
Hexane | MeTHF | Hexane | MeTHF | |
α-Tocopherol | 113.8 ± 7.0 b | 131.0 ± 7.4 a | 33.7 ± 0.3 B | 43.7 ± 7.0 A |
γ-Tocopherol | 134.8 ± 6.3 b | 164.2 ± 6.3 a | 237.7 ± 3.3 A | 231.5 ± 8.4 A |
β-Tocopherol | 44.1 ± 4.7 b | 73.5 ± 7.2 a | 20.4 ± 3.2 B | 42.2 ± 7.1 A |
δ-Tocopherol | 15.1 ± 3.2 b | 32.6 ± 4.7 a | nd | nd |
Total tocopherols | 307.7 ± 7.1 b | 400.7 ± 6.4 a | 292 ± 0.36 A | 317 ± 8.1 A |
Black Cumin | Basil | |||
---|---|---|---|---|
Hexane | MeTHF | Hexane | MeTHF | |
TPC (mg GAE/g of oil) | 9.3 ± 0.3 b | 11.6 ± 0.1 a | 4.4 ± 0.2 B | 5.3 ± 0.1 A |
DPPH radical activity (IC50 mg/mL) | 1.7 ± 0.2 a | 1.3 ± 0.3 a | 3.4 ± 0.6 A | 1.2 ± 0.3 B |
Total antioxidant capacity (mg GAE/g of oil) | 12.9 ± 1.0 b | 64.2 ± 2.1 a | 16.6 ± 1.3 B | 67.4 ± 2.5 A |
β-carotene bleaching activity (IC50 mg/mL) | 3.9 ± 0.4 a | 1.1 ± 0.3 b | 3.0 ± 0.1 A | 1.8 ± 0.3 B |
RT (min) | Black Cumin | Basil | |||
---|---|---|---|---|---|
Hexane | MeTHF | Hexane | MeTHF | ||
Gallic acid | 8.2 | nd | 4.9 ± 0.3 | nd | 7.3 ± 0.1 |
Chlorogenic acid | 15.7 | nd | 3.9 ± 0.1 | nd | 7.2 ± 1.2 |
Caffeic acid | 17.2 | nd | nd | 0.7 ± 0.1 B | 1.6 ± 0.1 A |
Syringic acid | 17.8 | nd | 0.9 ± 0.1 | nd | 0.8 ± 0.1 |
Sinapic acid | 19.6 | 16.3 ± 0.5 | nd | nd | nd |
Ferulic acid | 20.2 | nd | nd | nd | 1.4 ± 0.1 |
trans-hydroxycinnamic acid | 20.9 | 5.0 ± 0.1 b | 28.6 ± 1.1 a | nd | nd |
Rosmarinic acid | 21.1 | nd | nd | 0.2 ± 0.1 B | 21.1 ± 0.2 A |
Ellagic acid | 22.8 | nd | nd | 3.5 ± 1.5 B | 6.3 ± 0.1 A |
Luteolin | 23.7 | nd | nd | 9.4 ± 0.1 A | 9.4 ± 0.1 A |
Quercetin | 24.2 | 5.7 ± 0.3 b | 6.7 ± 0.4 a | nd | nd |
Thymoquinone | 24.8 | 0.1 ± 0.0 b | 0.35 ± 0.1 a | nd | nd |
Circimaritin | 25.1 | nd | nd | 1.0 ± 0.1 B | 5.8 ± 0.2 A |
Isorhamnetin | 25.6 | 6.6 ± 0.1 a | 6.3 ± 0.2 a | nd | nd |
Thymol | 26.1 | nd | nd | 33.1 ± 0.3 B | 127.6 ± 0.8 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourgou, S.; Bettaieb Rebey, I.; Ben Kaab, S.; Hammami, M.; Dakhlaoui, S.; Sawsen, S.; Msaada, K.; Isoda, H.; Ksouri, R.; Fauconnier, M.-L. Green Solvent to Substitute Hexane for Bioactive Lipids Extraction from Black Cumin and Basil Seeds. Foods 2021, 10, 1493. https://doi.org/10.3390/foods10071493
Bourgou S, Bettaieb Rebey I, Ben Kaab S, Hammami M, Dakhlaoui S, Sawsen S, Msaada K, Isoda H, Ksouri R, Fauconnier M-L. Green Solvent to Substitute Hexane for Bioactive Lipids Extraction from Black Cumin and Basil Seeds. Foods. 2021; 10(7):1493. https://doi.org/10.3390/foods10071493
Chicago/Turabian StyleBourgou, Soumaya, Iness Bettaieb Rebey, Sofiene Ben Kaab, Majdi Hammami, Sarra Dakhlaoui, Selmi Sawsen, Kamel Msaada, Hiroko Isoda, Riadh Ksouri, and Marie-Laure Fauconnier. 2021. "Green Solvent to Substitute Hexane for Bioactive Lipids Extraction from Black Cumin and Basil Seeds" Foods 10, no. 7: 1493. https://doi.org/10.3390/foods10071493
APA StyleBourgou, S., Bettaieb Rebey, I., Ben Kaab, S., Hammami, M., Dakhlaoui, S., Sawsen, S., Msaada, K., Isoda, H., Ksouri, R., & Fauconnier, M.-L. (2021). Green Solvent to Substitute Hexane for Bioactive Lipids Extraction from Black Cumin and Basil Seeds. Foods, 10(7), 1493. https://doi.org/10.3390/foods10071493