Elucidation of Volatiles, Anthocyanins, Antioxidant and Sensory Properties of cv. Caner Pomegranate (Punica granatum L.) Juices Produced from Three Juice Extraction Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pomegranate Juice Samples
2.2. General Chemical Analysis
2.3. Analysis of Sugars and Organic Acids
2.4. Analysis of Individual Anthocyanins
2.5. Antioxidant Capacity Analyses
2.6. Analysis of the Volatile Composition
2.6.1. Extraction of Volatile Compounds
2.6.2. GC-FID and GC-MS Analysis of Volatile Compounds
2.7. Sensory Analysis of Pomegranate Juice Samples
2.8. Statistical Data Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Pomegranate Juices
3.2. Sugars and Organic Acids of the Pomegranate Juice Samples
3.3. Anthocyanin Compositions of Pomegranate Juice Samples
3.4. Antioxidant Capacity of the Juice Samples
3.5. Volatile Composition of the Pomegranate Juice Samples
3.6. Sensory Analysis
3.7. Principal Component Analysis (PCA) of the Juice Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rinaldi, M.; Caligiani, A.; Borgese, R.; Palla, G.; Barbanti, D.; Massini, R. The effect of fruit processing and enzymatic treatments on pomegranate juice composition, antioxidant activity and polyphenols content. LWT-Food Sci. Technol. 2013, 53, 355–359. [Google Scholar] [CrossRef]
- TUIK. Turkish Statistical Institute, Production of Fruit Crops. Available online: https://data.tuik.gov.tr (accessed on 24 December 2020).
- Kaplan, M.; Hayek, T.; Raz, A.; Coleman, R.; Dornfeld, L.; Vaya, J.; Aviram, M. Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. J. Nutr. 2001, 131, 2082–2089. [Google Scholar] [CrossRef] [PubMed]
- Calín-Sánchez, Á.; Figiel, A.; Hernández, F.; Melgarejo, P.; Lech, K.; Carbonell-Barrachina, Á.A. Chemical composition, antioxidant capacity, and sensory quality of pomegranate (Punica granatum L.) arils and rind as affected by drying method. Food Bioprocess Technol. 2013, 6, 1644–1654. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Lech, K.; Michalska, A.; Wasilewska, M.; Figiel, A.; Wojdyło, A.; Carbonell-Barrachina, Á.A. Influence of osmotic dehydration pre-treatment and combined drying method on physico-chemical and sensory properties of pomegranate arils, cultivar Mollar de Elche. Food Chem. 2017, 232, 306–315. [Google Scholar] [CrossRef]
- Casanova, E.; García-Mina, J.M.; Calvo, M.I. Antioxidant and antifungal activity of Verbena officinalis L. leaves. Plant Foods Hum. Nutr. 2008, 63, 93–97. [Google Scholar] [CrossRef]
- Shaygannia, E.; Bahmani, M.; Zamanzad, B.; Rafieian-Kopaei, M. A review study on Punica granatum L. J. Evid. Based Complement. Altern. Med. 2016, 21, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano-Lamadrid, M.; Calín-Sánchez, Á.; Clemente-Villalba, J.; Hernández, F.; Carbonell-Barrachina, Á.A.; Sendra, E.; Wojdyło, A. Quality parameters and consumer acceptance of jelly candies based on pomegranate juice “Mollar de Elche”. Foods 2020, 9, 516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bomben, J.L.; Bruin, S.; Thijssen, H.A.; Merson, R.L. Aroma recovery and retention in concentration and drying of foods. In Advances in Food Research, 20th ed.; Chichester, C.O., Mrak, E.M., Stewart, G.F., Eds.; Academic Press: New York, NY, USA, 1973; Volume 20, pp. 1–111. [Google Scholar]
- Cadwallader, K.R.; Tamamoto, L.C.; Sajuti, S.C. Aroma components of fresh and stored pomegranate (Punica granatum L.) juice. In Flavors in Noncarbonated Beverages; Da Costa, N., Cannon, R., Eds.; American Chemical Society: Washington, DC, USA, 2010; pp. 93–101. [Google Scholar]
- Beaulieu, J.C.; Lloyd, S.W.; Preece, J.E.; Moersfelder, J.W.; Stein-Chisholm, R.E.; Obando-Ulloa, J.M. Physicochemical properties and aroma volatile profiles in a diverse collection of California-grown pomegranate (Punica granatum L.) germplasm. Food Chem. 2015, 181, 354–364. [Google Scholar] [CrossRef]
- Mousavinejad, G.; Emam-Djomeh, Z.; Rezaei, K.; Khodaparast, M.H.H. Identification and quantification of phenolic compounds and their effects on antioxidant activity in pomegranate juices of eight Iranian cultivars. Food Chem. 2009, 115, 1274–1278. [Google Scholar] [CrossRef]
- Nuncio-Jáuregui, N.; Cano-Lamadrid, M.; Hernández, F.; Carbonell-Barrachina, Á.A.; Calín-Sánchez, Á. Comparison of fresh and commercial pomegranate juices from Mollar de Elche cultivar grown under conventional or organic farming practices. Beverages 2015, 1, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Gil, M.I.; Garcia-Viguera, C.; Artes, F.; Tomas-Barberan, F.A. Changes in pomegranate juice pigmentation during ripening. J. Sci. Food Agric. 1995, 68, 77–81. [Google Scholar] [CrossRef]
- Kostka, T.; Ostberg-Potthoff, J.J.; Briviba, K.; Matsugo, S.; Winterhalter, P.; Esatbeyoglu, T. Pomegranate (Punica granatum L.) extract and its anthocyanin and copigment fractions-free radical scavenging activity and influence on cellular oxidative stress. Foods 2020, 9, 1617. [Google Scholar] [CrossRef] [PubMed]
- Melgarejo, P.; Martínez, J.J.; Hernández, F.; Martínez, R.; Legua, P.; Oncina, R.; Martinez-Murcia, A. Cultivar identification using 18S–28S rDNA intergenic spacer-RFLP in pomegranate (Punica granatum L.). Sci. Hortic. 2009, 120, 500–503. [Google Scholar] [CrossRef]
- Lee, H.S.; Coates, G.A. Quantitative study of free sugars and myo-inositol in citrus juices by HPLC and a literature compilation. J. Liq. Chromatogr. Relat. Technol. 2000, 14, 2123–2141. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S. Evaluation of chemical constituents and antioxidant activity of sweet cherry (Prunus avium L.) cultivars. Int. J. Food Sci. Technol. 2011, 46, 2530–2537. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S.; Sevindik, O. Screening of phenolic content and antioxidant capacity of Okitsu mandarin (Citrus unshui Marc.) fruits extracted with various solvents. J. Raw Mater. Process. Foods 2020, 1, 7–12. [Google Scholar]
- Selli, S.; Kelebek, H. Aromatic profile and odour-activity value of blood orange juices obtained from Moro and Sanguinello (Citrus sinensis L. Osbeck). Ind. Crops Prod. 2011, 33, 727–733. [Google Scholar] [CrossRef]
- Keser, D.; Gamze, G.; Kelebek, H.; Keskin, M.; Soysal, Y.; Sekerli, Y.E.; Arslan, A.; Selli, S. Characterization of aroma and phenolic composition of carrot (Daucus carota ‘Nantes’) powders obtained from intermittent microwave drying using GC-MS and LC-MS/MS. Food Bioprod. Process. 2020, 119, 350–359. [Google Scholar] [CrossRef]
- Sevindik, O.; Guclu, G.; Bombai, G.; Rombolá, A.D.; Kelebek, H.; Selli, S. Volatile compounds of cvs Magliocco Canino and Dimrit grape seed oils. J. Raw Mater. Process. Foods 2020, 1, 47–54. [Google Scholar]
- Zaouay, F.; Mena, P.; Garcia-Viguera, C.; Mars, M. Antioxidant activity and physico-chemical properties of Tunisian grown pomegranate (Punica granatum L.) cultivars. Ind. Crops Prod. 2012, 40, 81–89. [Google Scholar] [CrossRef]
- Ozgen, M.; Durgaç, C.; Serçe, S.; Kaya, C. Chemical and antioxidant properties of pomegranate cultivars grown in the Mediterranean region of Turkey. Food Chem. 2008, 111, 703–706. [Google Scholar] [CrossRef]
- Rajasekar, D.; Akoh, C.C.; Martino, K.G.; MacLean, D.D. Physico-chemical characteristics of juice extracted by blender and mechanical press from pomegranate cultivars grown in Georgia. Food Chem. 2012, 133, 1383–1393. [Google Scholar] [CrossRef]
- Vardin, H.; Fenercioǧlu, H. Study on the development of pomegranate juice processing technology: Clarification of pomegranate juice. Food Nahrung. 2003, 47, 300–303. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Araújo, L.; Chambers, I.V.; EAdhikari, K.; Carbonell-Barrachina, A.A. Physico-chemical and sensory properties of pomegranate juices with pomegranate albedo and carpellar membranes homogenate. LWT-Food Sci. Technol. 2011, 44, 2119–2125. [Google Scholar] [CrossRef]
- Melgarejo, P.; Calín-Sánchez, Á.; Vázquez-Araújo, L.; Hernández, F.; Martínez, J.J.; Legua, P.; Carbonell-Barrachina, Á.A. Volatile composition of pomegranates from 9 Spanish cultivars using headspace solid phase microextraction. J. Food Sci. 2011, 76, 114–120. [Google Scholar] [CrossRef]
- Guler, Z.; Gul, E. Volatile organic compounds in the aril juices and seeds from selected five pomegranate (Punica granatum L.) cultivars. Int. J. Food Prop. 2017, 20, 281–293. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Martínez, J.J.; Vázquez-Araújo, L.; Burló, F.; Melgarejo, P.; Carbonell-Barrachina, Á.A. Volatile composition and sensory quality of Spanish pomegranates (Punica granatum L.). J. Sci. Food Agric. 2011, 91, 586–592. [Google Scholar] [CrossRef]
- Melgarejo, P.; Salazar, D.M.; Artes, F. Organic acids and sugars composition of harvested pomegranate fruits. Eur. Food Res. Technol. 2000, 211, 185–190. [Google Scholar] [CrossRef]
- Bar-Ya'akov, I.; Tian, L.; Amir, R.; Holland, D. Primary metabolites, anthocyanins, and hydrolyzable tannins in the pomegranate fruit. Front Plant Sci 2019, 10, 620. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wasila, H.; Liu, L.; Yuan, T.; Gao, Z.; Zhao, B.; Ahmad, I. Physicochemical characteristics, polyphenol compositions and antioxidant potential of pomegranate juices from 10 Chinese cultivars and the environmental factors analysis. Food Chem. 2015, 175, 575–584. [Google Scholar] [CrossRef]
- Kelebek, H.; Canbas, A. Organic acid, sugar and phenolic compounds and antioxidant capacity of Hicaz pomegranate juice. Gıda. Food 2010, 35, 439–444. (In Turkish) [Google Scholar]
- Fawole, O.A.; Opara, U.L. Physicomechanical, phytochemical, volatile compounds and free radical scavenging properties of eight pomegranate cultivars and classification by principal component and cluster analyses. Br. Food J. 2014, 116, 544–567. [Google Scholar] [CrossRef]
- Schwartz, E.; Tzulker, R.; Glazer, I.; Bar-Ya’akov, I.; Wiesman, Z.; Tripler, E.; Amir, R. Environmental conditions affect the color, taste, and antioxidant capacity of 11 pomegranate accessions’ fruits. J. Agric. Food Chem. 2009, 57, 9197–9209. [Google Scholar] [CrossRef] [PubMed]
- Galego, L.R.; Jockusch, S.; Da Silva, J.P. Polyphenol and volatile profiles of pomegranate (Punica granatum L.) fruit extracts and liquors. Int. J. Food Sci. Technol. 2013, 48, 693–700. [Google Scholar] [CrossRef]
- Almeida, M.M.B.; de Sousa, P.H.M.; Arriaga, Â.M.C.; do Prado, G.M.; de Carvalho Magalhães, C.E.; Maia, G.A.; de Lemos, T.L.G. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 2011, 44, 2155–2159. [Google Scholar] [CrossRef] [Green Version]
- Mena, P.; García-Viguera, C.; Navarro-Rico, J.; Moreno, D.A.; Bartual, J.; Saura, D.; Martí, N. Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. J. Sci. Food Agric. 2011, 91, 1893–1906. [Google Scholar] [CrossRef]
- Mphahlele, R.R.; Fawole, O.A.; Mokwena, L.M.; Opara, U.L. Effect of extraction method on chemical, volatile composition and antioxidant properties of pomegranate juice. S. Afr. J. Bot. 2016, 103, 135–144. [Google Scholar] [CrossRef]
- Orak, H.H.; Yagar, H.; Isbilir, S.S. Comparison of antioxidant activities of juice, peel, and seed of pomegranate (Punica granatum L.) and inter-relationships with total phenolic, tannin, anthocyanin, and flavonoid contents. Food Sci. Biotechnol. 2012, 21, 373–387. [Google Scholar] [CrossRef]
- Tripathi, J.; Chatterjee, S.; Gamre, S.; Chattopadhyay, S.; Variyar, P.S.; Sharma, A. Analysis of free and bound aroma compounds of pomegranate (Punica granatum L.). LWT-Food Sci. Technol. 2014, 59, 461–466. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Stein-Chisholm, R.E. HS-GC–MS volatile compounds recovered in freshly pressed ‘Wonderful’ cultivar and commercial pomegranate juices. Food Chem. 2016, 190, 643–656. [Google Scholar] [CrossRef]
- Issa-Issa, H.; Cano-Lamadrid, M.; Calín-Sánchez, Á.; Wojdyło, A.; Carbonell-Barrachina, Á.A. Volatile Composition and Sensory Attributes of Smoothies Based on Pomegranate Juice and Mediterranean Fruit Purées (Fig, Jujube and Quince). Foods 2020, 9, 926. [Google Scholar] [CrossRef] [PubMed]
- Hamouda, H.A.; Ibrahim, G.E.; Hafez, O.M. Nutritional status, fruit quality and volatile compounds in eight Egyptian pomegranate cultivars. Curr. J. Appl. Sci. Technol. 2014, 4, 3263–3280. [Google Scholar] [CrossRef]
- Yi, Z.; Feng, T.; Zhuang, H.; Ye, R.; Li, M.; Liu, T. Comparison of different extraction methods in the analysis of volatile compounds in pomegranate juice. Food Anal. Methods 2016, 9, 2364–2373. [Google Scholar] [CrossRef]
- Vázquez-Araújo, L.; Chambers, E., IV; Adhikari, K.; Carbonell-Barrachina, Á.A. Sensory and physicochemical characterization of juices made with pomegranate and blueberries, blackberries, or raspberries. J. Food Sci. 2010, 75, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Yanfang, Z.; Wenyi, T. Flavor and taste compounds analysis in Chinese solid fermented soy sauce. Afr. J. Biotechn. 2009, 8, 673–681. [Google Scholar]
- Prat, L.; Espinoza, M.I.; Agosin, E.; Silva, H. Identification of volatile compounds associated with the aroma of white strawberries (Fragaria chiloensis). J. Sci. Food Agric. 2014, 94, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Caleb, O.J.; Opara, U.L.; Mahajan, P.V.; Manley, M.; Mokwena, L.; Tredoux, A.G. Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of minimally-processed pomegranate arils (cvs.‘Acco’and ‘Herskawitz’). Postharvest Biol. Technol. 2013, 79, 54–61. [Google Scholar] [CrossRef]
- Andreu-Sevilla, A.J.; Mena, P.; Martí, N.; Viguera, C.G.; Carbonell-Barrachina, Á.A. Volatile composition and descriptive sensory analysis of pomegranate juice and wine. Food Res. Int. 2013, 54, 246–254. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Obando-Ulloa, J.M. Not-from-concentrate pilot plant ‘Wonderful’ cultivar pomegranate juice changes: Volatiles. Food Chem. 2017, 229, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Hamilton-Kemp, T.R.; Archbold, D.D.; Loughrin, J.H.; Collins, R.W.; Byers, M.E. Metabolism of natural volatile compounds by strawberry fruit. J. Agric. Food Chem. 1996, 44, 2802–2805. [Google Scholar] [CrossRef]
Sample Name * | AJ | HPJ | MAJ |
---|---|---|---|
pH | 3.1 ± 0 a | 3.0 ± 0.1 a | 3.1 ± 0.1 a |
TA (g citric acid L−1) | 16.7 ± 0.2 a | 16.9 ± 0.1 a | 13.7 ± 0.1 b |
TSS (°Brix) | 15.0 ± 0 b | 16.0 ± 0 a | 14.0 ± 0 c |
Colour | |||
L* | 15.7± 0.1 c | 22.0± 0.1 b | 23.9± 0 a |
a* | 45.0± 0.1 b | 52.9± 0.1 a | 52.7± 0.1 a |
b* | 26.9± 0. 1 c | 37.6± 0.1 b | 40.6± 0.1 a |
Samples | Glucose | Fructose | Citric Acid | Malic Acid | Ascorbic ACID |
---|---|---|---|---|---|
AJ * | 52.2 ± 0.4 b | 64.4 ± 2.3 b | 12.3 ± 0.3 b | 12.1 ± 0.1 a | 1.3 ± 0.1 a |
HPJ | 56.0 ± 1.1 a | 69.5 ± 3.3 a | 14.1 ± 0.3 a | 12.2 ± 0.4 a | 1.6 ± 0.2 a |
MAJ | 51.0 ± 1.4 b | 61.2 ± 2.7 c | 10.2 ± 0.1 c | 10.5 ± 0.4 a | 1.3 ± 0.4 a |
Anthocyanin Composition (mg L−1) | AJ * | HPJ | MAJ |
---|---|---|---|
Dp3,5 ** | 182 ± 6.9 a | 175 ± 6.9 b | 93.9 ± 3.9 c |
Cya3,5 | 353 ± 1.9 a | 314 ± 3.5 b | 275 ± 1.3 c |
Dp3 | 9.8 ± 0.7 b | 13.3 ± 0.6 a | 4.9 ± 0.3 c |
Pg3,5 | 14.5 ± 0.7 a | 13.2 ± 0.4 b | 10.4 ± 0.3 c |
Cya3 | 24.6 ± 0.6 b | 30.8 ± 1.2 a | 16.7 ± 0.2 c |
Pg3 | 9.3 ± 0.5 a | 8.2 ± 0.4 b | 6.9 ± 0.1 c |
Total | 593 ± 1.9 | 555 ± 2.2 | 408 ± 1.0 |
Antioxidant capacity (mmol Trolox L−1) | |||
DPPH− | 10.1 ± 0.2 b | 14.7 ± 0.3 a | 5.8 ± 0.4 c |
ABTS+ | 11.3 ± 0.5 a | 16.6 ± 0.4 b | 6.1 ± 0.3 c |
Compounds | LRI * | AJ ** | HPJ | MAJ | Identification *** |
---|---|---|---|---|---|
Alcohols | |||||
Isobutanol | 1094 | 5.5 ± 0.2 c | 16.7 ± 0.1 a | 13.0 ± 0.4 b | LRI, MS, Ten |
1-Butanol | 1113 | ND | ND | 6.4 ± 0.1 | LRI, MS, Std |
1-Penten-3-ol | 1157 | 5.9 ± 0.1 b | 4.4 ± 0.1 c | 9.8 ± 0.5 a | LRI, MS, Std |
Isoamyl alcohol | 1221 | 10.2 ± 0.1 c | 38.0 ± 0.3 a | 32.8 ± 0.6 b | LRI, MS, Std |
1-Pentanol | 1249 | 3.2 ± 0.2 a | 2.5 ± 0.1 a | 2.9 ± 0.1 a | LRI, MS, Std |
4-Heptanol | 1272 | 4.5 ± 0.2 a | 1.4 ± 0.1 b | 1.9 ± 0.1 b | LRI, MS, Std |
2-Hexanol | 1298 | 14.0 ± 0.3 a | 13.0 ± 0.2 b | 12.1 ± 0.1 c | LRI, MS, Std |
(Z)-2-Penten-1-ol | 1320 | 6.6 ± 0.6 b | 3.6 ± 0.1 c | 9.6 ± 0.1 a | LRI, MS, Std |
1-Hexanol | 1350 | 185 ± 3.2 b | 53.5 ± 1.1 c | 508 ± 6.4 a | LRI, MS, Std |
(E)-3-Hexen-1-ol | 1371 | 9.1 ± 0.28 b | 7.3 ± 0.2 c | 15.0 ± 0.3 a | LRI, MS, Std |
(Z)-3-Hexen-1-ol | 1378 | 147 ± 1.3 b | 123 ± 1.2 c | 352 ± 3.6 a | LRI, MS, Std |
3-Octanol | 1393 | ND | 3.1 ± 0.1 | ND | LRI, MS, Std |
3-(Methylthio)-1-propanol | 1710 | ND | 22.8 ± 0.7 | 12.0 ± 0.1 | LRI, MS, Ten |
2-Phenylethanol | 1925 | 10.1 ± 0.1 c | 23.9 ± 0.4 b | 31.6 ± 0.5 a | LRI, MS, Std |
Subtotal | 401 ± 3.2 | 313 ± 2.2 | 1007 ± 6.8 | ||
Ketones | |||||
Methylacetoin | 1246 | 3.1 ± 0.1 a | 2.3 ± 0.1 b | 1.9 ± 0.1 c | LRI, MS, Std |
Acetoin | 1292 | 24.9 ± 1.3 s | 93.9 ± 2.1 a | 42.3 ± 0.6 b | LRI, MS, Std |
2-Nonanone | 1380 | ND | 1.43 ± 0.12 | ND | LRI, MS, Std |
2,6-Di(t-butyl)-4-hydroxy-4-methyl-2,5-cyclohexadien-1-one | 2117 | 126 ± 1.2 c | 204 ± 3.2 b | 405 ± 2.3 a | LRI, MS, Ten |
Subtotal | 154 ± 2.1 | 302 ± 4.6 | 449 ± 5.1 | ||
Acids | |||||
Pentanoic acid | 1734 | ND | 14.2 ± 0.2 | 7.0 ± 0.1 | LRI, MS, Std |
Hexanoic acid | 1834 | 13.8 ± 0.2 | 8.0 ± 0.1 | ND | LRI, MS, Std |
2-Ethylhexanoic acid | 1968 | ND | 26.0 ± 1.1 | 60.0 ± 1.4 | LRI, MS, Std |
Octanoic Acid | 2032 | ND | 4.1 ± 0.1 | 2.7 ± 0.01 | LRI, MS, Std |
Subtotal | 13.8 ± 0.2 | 52.3 ± 1.4 | 69.7 ± 1.8 | ||
Phenols | |||||
3,4-Dimethylphenol | 2189 | ND | 4.0 ± 0.1 | 5.3 ± 0.1 | LRI, MS, Std |
3-Ethylphenol | 2195 | ND | 12.4 ± 0.2 | 10.9 ± 0.1 | LRI, MS, Std |
Subtotal | ND | 16.4 ± 0.2 | 16.2 ± 0.4 | ||
Terpenes | |||||
Linalool | 1530 | ND | ND | 2.1 ± 0.1 | LRI, MS, Std |
α-Terpineol | 1688 | 18.8 ± 0.2 b | 15.8 ± 0.1 c | 23.7 ± 0.3 a | LRI, MS, Std |
p-Cymen-8-ol | 1864 | TR | 1.4 ± 0.1 | 1.8 ± 0.1 | LRI, MS, Std |
Subtotal | 18.8 ± 0.2 | 17.2 ± 0.2 | 27.6 ± 0.1 | ||
Benzene derivatives | |||||
Benzothiazole | 1958 | 26.5 ± 0.1 c | 30.8 ± 0.4 b | 73.2 ± 2.2 a | LRI, MS, Std |
2-(Methylthio)benzothiazole | 2422 | ND | 9.1 ± 0.1 | 4.7 ± 0.1 | LRI, MS, Std |
Subtotal | 26.5 ± 0.6 | 39.9 ± 0.3 | 77.9 ± 1.1 | ||
Esters | |||||
(Z)-3-Hexenyl acetate | 1305 | ND | 1.9 ± 0.1 | ND | LRI, MS, Std |
Isopulegol acetate | 1608 | 6.6 ± 0.3 a | 2.2 ± 0.1 c | 3.7 ± 0.1 b | LRI, MS, Std |
Subtotal | 6.6 ± 0.3 | 4.1 ± 0.12 | 3.7 ± 0.1 | ||
Aldehydes | |||||
n-Nonanal | 1384 | 8.5 ± 0.2 | ND | ND | LRI, MS, Std |
Subtotal | 8.5 ± 0.2 | ND | ND | ||
Norisoprenoids | |||||
β-Ionone | 1947 | TR | TR | 28.9 ± 0.1 | LRI, MS, Std |
Subtotal | TR | TR | 28.9 ± 0.1 | ||
Lactones | |||||
γ-Butyrolactone | 1609 | 81.5 ± 1.1 b | 6.9 ± 0.1 c | 192 ± 0.2 a | LRI, MS, Std |
Subtotal | 81.5 ± 1.1 | 6.9 ± 0.1 | 192 ± 0.2 | ||
Total | 710.7 ± 7.9 | 751.8 ± 6.3 | 1872.0 ± 5.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budiene, J.; Guclu, G.; Oussou, K.F.; Kelebek, H.; Selli, S. Elucidation of Volatiles, Anthocyanins, Antioxidant and Sensory Properties of cv. Caner Pomegranate (Punica granatum L.) Juices Produced from Three Juice Extraction Methods. Foods 2021, 10, 1497. https://doi.org/10.3390/foods10071497
Budiene J, Guclu G, Oussou KF, Kelebek H, Selli S. Elucidation of Volatiles, Anthocyanins, Antioxidant and Sensory Properties of cv. Caner Pomegranate (Punica granatum L.) Juices Produced from Three Juice Extraction Methods. Foods. 2021; 10(7):1497. https://doi.org/10.3390/foods10071497
Chicago/Turabian StyleBudiene, Jurga, Gamze Guclu, Kouame Fulbert Oussou, Hasim Kelebek, and Serkan Selli. 2021. "Elucidation of Volatiles, Anthocyanins, Antioxidant and Sensory Properties of cv. Caner Pomegranate (Punica granatum L.) Juices Produced from Three Juice Extraction Methods" Foods 10, no. 7: 1497. https://doi.org/10.3390/foods10071497
APA StyleBudiene, J., Guclu, G., Oussou, K. F., Kelebek, H., & Selli, S. (2021). Elucidation of Volatiles, Anthocyanins, Antioxidant and Sensory Properties of cv. Caner Pomegranate (Punica granatum L.) Juices Produced from Three Juice Extraction Methods. Foods, 10(7), 1497. https://doi.org/10.3390/foods10071497