Effects of the Filtration on the Biotic Fraction of Extra Virgin Olive Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Monocultivar EVOO
2.2. Filtration
2.2.1. Filtration with Cotton Filter
2.2.2. Filtration with Cellulose Filter Press
2.3. Solid Particle and Water Contents
2.4. Microbiological Analysis of EVOO
2.5. Distribution of Predominant Yeast Species in Untreated and Filtered Olive Oil
2.6. Microbiological Analysis of the Cotton and Cellulose Filters
2.7. Total Phenol Content
2.8. DPPH Antiradical Activity
2.9. Enzymatic Assays in the Yeast
2.10. Statistical Analysis
3. Results and Discussion
3.1. Effect of Filtration on Suspended Solid Materials and Water Content of Olive Oil
3.2. Effects of Filtration on Microbiota of the EVOO
3.3. Bioactive Compounds of EVOO Subjected to Filtration
3.3.1. Phenolic Compounds and DPPH Antiradical Activity of the EVOO Abiotic Fraction
3.3.2. Yeast Enzymatic Production of the EVOO Biotic Fraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciafardini, G.; Zullo, B.A. Virgin olive oil yeasts: A review. Food Microbiol. 2018, 70, 245–253. [Google Scholar] [CrossRef]
- Quiles, J.L. Olive Oil and Health; Ramírez-Tortosa, M.C., Yaqoob, P., Eds.; CABI: Wallingford, UK, 2006. [Google Scholar]
- Coppens, P. EFSA European Commission Regulation EC No. 432/2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Union 2012, L 136, 1–40. [Google Scholar]
- Ros, E.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Fitó, M.; Martínez, J.A.; Corella, D. Mediterranean diet and cardiovascular health: Teachings of the PREDIMED study. Adv. Nutr. 2014, 5, 330S–336S. [Google Scholar] [CrossRef] [Green Version]
- Mari, E.; Guerrini, S.; Granchi, L.; Vincenzini, M. Enumeration and rapid identification of yeasts during extraction process of extra virgin olive oil in Tuscany. World J. Microbiol. Biotechnol. 2016, 32, 93–103. [Google Scholar] [CrossRef]
- Ciafardini, G.; Cioccia, G.; Zullo, B.A. Taggiasca extra virgin olive oil colonization by yeasts during the extraction process. Food Microbiol. 2017, 62, 58–61. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A. Microbiological activity in stored olive oil. Int. J. Food Microbiol. 2002, 75, 111–118. [Google Scholar] [CrossRef]
- Zullo, B.A.; Ciafardini, G. Virgin olive oil quality is affected by the microbiota that comprise the biotic fraction of the oil. Microorganisms 2020, 8, 663. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A.; Cioccia, G.; Iride, A. Lipolytic activity of Williopsis californica and Saccharomyces cerevisiae in extra virgin olive oil. Int. J. Food Microbiol. 2006, 107, 27–32. [Google Scholar] [CrossRef]
- Zullo, B.A.; Cioccia, G.; Ciafardini, G. Effects of some oil-born yeasts on the sensory characteristics of Italian virgin olive oil during its storage. Food Microbiol. 2013, 36, 70–78. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A. Effect of lipolytic activity of Candida adriatica, Candida diddensiae and Yamadazyma terventina on the acidity of extra-virgin olive oil with different polyphenol and water content. Food Microbiol. 2015, 47, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, S.; Mari, E.; Barbato, D.; Granchi, L. Extra virgin olive oil quality as affected by yeast species occurring in the extraction process. Foods 2019, 8, 457. [Google Scholar] [CrossRef] [Green Version]
- Koidis, A.; Triantafillou, E.; Boskou, D. Endogenous microflora in turbid virgin olive oils and the physicochemical characteristics of these oils. Eur. J. Lipid Sci. Technol. 2008, 110, 164–171. [Google Scholar] [CrossRef]
- Guerrini, L.; Masella, P.; Migliorini, M.; Cherubini, C.; Parenti, A. Addition of a steel pre-filter to improve plate filter-press performance in olive oil filtration. J. Food Eng. 2015, 157, 84–87. [Google Scholar] [CrossRef]
- Breschi, C.; Guerrini, L.; Domizio, P.; Ferraro, G.; Calamai, L.; Canuti, V.; Masella, P.; Parenti, A.; Fratini, E.; Fia, G.; et al. Physical, chemical, and biological characterization of veiled extra virgin olive oil turbidity for degradation risk assessment. Eur. J. Lipid Sci. Technol. 2019, 121, 1900195. [Google Scholar] [CrossRef]
- Zullo, B.A.; Ciafardini, G. Changes in physicochemical and microbiological parameters of short and long-lived veiled (cloudy) virgin olive oil upon storage in the dark. Eur. J. Lipid Sci. Technol. 2018, 120, 1700309. [Google Scholar] [CrossRef]
- Koidis, A.; Boskou, D. The contents of proteins and phospholipids in cloudy (veiled) virgin olive oils. Eur. J. Lipid Sci. Technol. 2006, 108, 323–328. [Google Scholar] [CrossRef]
- Lozano-Sànchez, J.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Fernàndez-Gutièrrez, A. Filtration process of extra virgin olive oil: Effect on minor components, oxidative stability and sensorial and physicochemical characteristics. Trends Food Sci. Technol. 2010, 21, 201–211. [Google Scholar] [CrossRef]
- Brenes, M.; García, A.; García, P.; Garrido, J. Acid hydrolysis of secoiridoid aglycons during storage of olive oil. J. Agr. Food Chem. 2001, 49, 5609–5614. [Google Scholar] [CrossRef] [PubMed]
- Fregapane, G.; Lavelli, V.; León, S.; Kapuralin, J.; Salvador, M.D. Effect of filtration on virgin olive oil stability during storage. Eur. J. Lipid Sci. Technol. 2006, 108, 134–142. [Google Scholar] [CrossRef]
- Pizzolante, G.; Durante, M.; Rizzo, D.; Di Salvo, M.; Tredici, S.M.; Tufariello, M.; De paolis, A.; Talà, A.; Mita, G.; Alifano, P.; et al. Characterization of two Pantoea strains isolated from extra virgin olive oil. AMP Express 2018, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Drewnowska, J.M.; Swiecicka, I. Microbiological insight into cold-pressed oils by cultural and metataxonomic analysis. Food Biosc. 2021, 42, 103350. [Google Scholar]
- European Union Commission. Regulation EEC 2568/91 on the characteristics of olive oil and olive pomace and their analytical methods. Off. J. Euro. Comm. L 1991, 248, 1–83. [Google Scholar]
- European Union Commission. Regulation EEC 1989/2003 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Euro. Comm. L 2003, 295, 57–77. [Google Scholar]
- European Union Commission. Regulation EEC 2095/2016 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Euro. Comm. L 2016, 326, 1–6. [Google Scholar]
- Zullo, B.A.; Ciafardini, G. Differential microbial composition of monovarietal and blended extra virgin olive oils determines oil quality during storage. Microorganisms 2020, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Maniatis, T.; Fritsh, E.F.; Sambrook, J. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1982. [Google Scholar]
- Kurtzman, C.P.; Robnett, C.J. Identification of clinical important ascomycetous yeast based on nucleotide divergence in the 5’ end of the large-subunit (26S) ribosomal DNA gene. J. Clin. Microbial. 1997, 5, 1216–1223. [Google Scholar] [CrossRef] [Green Version]
- Montedoro, G.F.; Servili, M.; Baldioli, M.; Selvaggini, R.; Miniati, E.; Macchioni, A. Simple and hydrolyzable compounds in virgin olive oil: Spectroscopic characterization of the secoiridoid derivatives. J. Agric. Food Chem. 1993, 41, 2228–2234. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A. In vitro potential antioxidant activity of indigenous yeasts isolated from virgin olive oil. J. Appl. Microbiol. 2020, 128, 853–861. [Google Scholar] [CrossRef]
- Arévalo, M.; Úbeda, J.F.; Briones, A.I. Glucosidase activity in wine yeasts: Application in enology. Enzym. Microb. Technol. 2007, 40, 420–425. [Google Scholar]
- Ciafardini, G.; Zullo, B.A. Use of selected yeast starter cultures in industrial-scale processing of brined Taggiasca black table olives. Food Microbiol. 2019, 84, 103250. [Google Scholar] [CrossRef]
- Guerrini, L.; Breschi, C.; Zanoni, B.; Calamai, L.; Angeloni, G.; Masella, P.; Parenti, A. Filtration schedulino: Quality changes in freshly produced virgin olive oil. Foods 2020, 9, 1067. [Google Scholar] [CrossRef]
- Mossel, D.A.A.; Corry, J.E.L.; Strujik, C.B.; Baird, R.M. Essential of the Microbiology of Foods: A Textbook for Advanced Studies; John Wiley & Sons Ltd.: New York, NY, USA, 1995. [Google Scholar]
- Visioli, F.; Poli, A.; Galli, C. Antioxidant and other biological activities of phenols from olives and olive oil. Med. Res. Rev. 2002, 22, 65–75. [Google Scholar] [CrossRef]
- Casamenti, F.; Stefani, M. Olive polyphenols: New promising agents to combat aging associate neurodegeneration. Expert. Rev. Neurother. 2017, 17, 345–358. [Google Scholar] [CrossRef]
- Santona, M.; Sanna, M.L.; Multineddu, C.; Fancello, F.; de la Fuente, S.A.; Dettori, S.; Zara, S. Microbial biodiversity of Sardinian oleic ecosystems. Food Microbiol. 2018, 70, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Zullo, B.A.; Ciafardini, G. Evaluation of physiological properties of yeast strains isolated from olive oil and their in vitro probiotic trait. Food Microbiol. 2019, 78, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razek, A.G.; El-Shami, S.M.; El-Mallah, M.H.; Hassamien, M.M.M. Blending of virgin olive oil with less stable edible oils to strengthen their antioxidative potencies. Aust. J. Basic Appl. Sci. 2011, 5, 312–318. [Google Scholar]
- Reboredo-Rodríguez, P.; Varela-López, A.; Forbes-Hernández, T.Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; Zhang, J.; Manna, P.P.; Bompadre, S.; Quiles, J.L.; et al. Phenolic compounds isolated from olive oil as nutraceutical tools for the prevention and management of cancer and cardiovascular diseases. Int. J. Mol. Sci. 2018, 19, 2305. [Google Scholar] [CrossRef] [Green Version]
- Larussa, T.; Imeneo, M.; Luzza, F. Olive tree biophenols in infiammatory bowel disease: When bitter is better. Int. J. Mol. Sci. 2019, 20, 1390. [Google Scholar] [CrossRef] [Green Version]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- Bouaziz, M.; Chamkha, M.; Sayadi, A. Comparative study on phenolic content and antioxidant activity during maturation of the olive cultivar Chemlali from Tunisia. J. Agric. Food Chem. 2004, 52, 5476–5481. [Google Scholar] [CrossRef]
- Zullo, B.A.; Ciafardini, G. The olive oil oxygen radical absorbance capacity (DPPH assay) as a quality indicator. Eur. J. Lipid Sci. Technol. 2008, 110, 428–434. [Google Scholar] [CrossRef]
- Negro, C.; Aprile, A.; Luvisi, A.; Nicoli, F.; Nutricati, E.; Vergine, M.; Miceli, A.; Blando, F.; Sabella, E.; De Bellis, L. Phenolic profile and antioxidant activity of Italian monovarietal extra virgin olive oils. Antioxidants 2019, 8, 161. [Google Scholar] [CrossRef] [Green Version]
- Medina, I.; Lois, S.; Alcántara, D.; Lucas, R.; Morales, J.C. Effect of lipophilization of hydroxytyrosol on its antioxidant activity in fish oils and fish oil-in-water emulsions. J. Agric. Food Chem. 2009, 57, 9773–9779. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Original Extra Virgin Olive Oil | Filtration with Cotton | Filtration with Cellulose | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Solid Particles Content (%) | Water Content (%) | Solid Particles Content (%) | Δ (%) 1 | Water Content (%) | Δ (%) 2 | Solid Particles Content (%) | Δ (%) | Water Content (%) | Δ (%) | |
Coratina | 0.27 ± 0.04 a | 0.38 ± 0.03 a | 0.10 ± 0.02 b | 63 | 0.16 ± 0.01 b | 58 | 0.03 ± 0.00 c | 89 | 0.06 ± 0.00 c | 84 |
Nera di Colletorto | 0.23 ± 0.03 a | 0.20 ± 0.01 a | 0.19 ± 0.01 a | 17 | 0.18 ± 0.04 a | 10 | 0.12 ± 0.04 b | 48 | 0.06 ± 0.00 b | 70 |
Cultivar | Free Fatty Acid (% Oleic Acid) | Peroxide Value (meq O2 kg−1) | K232 | K270 | ΔK | Merceological Class |
---|---|---|---|---|---|---|
Coratina | 0.22 ± 0.02 1 | 5.82 ± 0.30 | 1.785 ± 0.056 | 0.127 ± 0.016 | −0.004 | EVOO |
Nera di Colletorto | 0.27 ± 0.01 | 6.13 ± 0.67 | 1.915 ± 0.020 | 0.132 ± 0.041 | −0.003 | EVOO |
Limit for the EVOO merceological class | ≤0.80 | ≤20 | ≤2.50 | ≤0.22 | ≤0.010 |
Cultivar | Yeasts (Log CFU mL−1) 1 | Δ (%) 2 | Bacteria (Log CFU mL−1) | Δ (%) | Moulds (Log CFU mL−1) | Δ (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Original EVOO | Filtration with | Original EVOO | Filtration with | Original EVOO | Filtration with | ||||||||||
Cotton | Cellulose | Cotton | Cellulose | Cotton | Cellulose | Cotton | Cellulose | Cotton | Cellulose | Cotton | Cellulose | ||||
Coratina | 2.45 ± 0.09 a | 1.55 ± 0.26 a,b | 1.41 ± 0.22 b | 37 | 42 | 1.04 ± 0.34 | 0 | 0 | 100 | 100 | 1.72 ± 0.08 a | 0.97 ± 0.24 b | 0 | 44 | 100 |
Nera di Colletorto | 2.20 ± 0.21 a | 1.96 ± 0.15 a | 1.89 ± 0.20 b | 11 | 16 | 3.66 ± 0.20 a | 2.63 ± 0.11 b | 1.67 ± 0.19 c | 28 | 54 | 2.83 ± 0.21 a | 1.08 ± 0.33 b | 0 | 62 | 100 |
Cultivar | Filtration with Cotton | Filtration with Cellulose | ||||
---|---|---|---|---|---|---|
Yeasts (Log CFU/g Filter) | Bacteria (Log CFU/g Filter) | Moulds (Log CFU/g Filter) | Yeasts (Log CFU/g Filter) | Bacteria (Log CFU/g Filter) | Moulds (Log CFU/g Filter) | |
Coratina | 0.90 ± 0.04 1,b | 1.09 ± 0.13 ns | 1.04 ± 0.20 b | 1.17 ± 0.03 a | 1.06 ± 0.17 ns | 1.72 ± 0.16 a |
Nera di Colletorto | 0.80 ± 0.09 b | 1.03 ± 0.21 ns | 1.75 ± 0.11 b | 1.10 ± 0.01 a | 0.96 ± 0.08 ns | 2.83 ± 0.20 a |
Cultivar | Chromogenic Yeast Group | Original Freshly Produced Extra Virgin Olive Oil | Freshly Produced Extra Virgin Olive Oil filtered | |||||
---|---|---|---|---|---|---|---|---|
Yeast Species | Prevalence (%) | Chromogenic Yeast Group Ranking | Filtration with Cotton | Filtration with Cellulose | ||||
Prevalence (%) | Chromogenic Yeast Group Ranking | Prevalence (%) | Chromogenic Yeast Group Ranking | |||||
Coratina | 1 | C. adriatica | 48 | 1 | 16 | 5 | 58 | 1 |
2 | N. molendinolei | 32 | 2 | 0 | 1 | 18 | 4 | |
3 | K. capsulata | 9 | 3 | 8 | 3 | 0 | 2 | |
4 | B. californica | 6 | 4 | 0 | 2 | 24 | 5 | |
5 | Y. terventina | 5 | 5 | 76 | 4 | 0 | 3 | |
Nera di Colletorto | 1 | C. adriatica | 35 | 1 | 44 | 5 | 78 | 1 |
2 | N. molendinolei | 6 | 5 | 0 | 1 | 0 | 4 | |
3 | K. capsulata | 3 | 4 | 0 | 4 | 8 | 3 | |
4 | B. californica | 23 | 2 | 6 | 2 | 14 | 2 | |
5 | Y. terventina | 33 | 3 | 50 | 3 | 0 | 5 |
Cultivar | Total Polar Phenols Content (mg CAE kg−1 oil) 2 | Δ (%) 1 | DPPH Antiradical Activity (Antioxidant Activity, %) | Δ (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | Cotton | Cellulose | Cotton | Cellulose | Control | Cotton | Cellulose | Cotton | Cellulose | |
Coratina | 679.98 ± 4.36 3,a | 589.82 ± 8.38 b | 391.94 ± 7.97 c | 13 | 42 | 97 ± 0.6 a | 80 ± 0.3 a,b | 60 ± 0.2 b | 18 | 46 |
Nera di Colletorto | 330.88 ± 5.09 a | 308.48 ± 5.34 a,b | 216.02 ± 1.16 b | 7 | 35 | 52 ± 0.4 a | 43 ± 0.3 a | 33 ± 0.7 b | 17 | 42 |
Cultivar | Original Freshly Produced EVOO | EVOO Filtered with Cotton | EVOO Filtered with Cellulose | ||||||
---|---|---|---|---|---|---|---|---|---|
β-glucosidase (%) 1 | Esterase (%) | Bile Salt Hydrolysis (%) | β-glucosidase (%) | Esterase (%) | Bile Salt Hydrolysis (%) | β-glucosidase (%) | Esterase (%) | Bile Salt Hydrolysis (%) | |
Coratina | 88 ± 0.32 2,a | 54 ± 0.12 a | 32 ± 0.11 a | 90 ± 0.76 a | 16 ± 0.09 b | 30 ± 0.22 a | 68 ± 0.32 b | 50 ± 0.25 a | 36 ± 0.38 a |
Nera di Colletorto | 82 ± 0.44 a | 48 ± 0.19 c | 34 ± 0.18 c | 85 ± 0.63 a | 58 ± 0.46 b | 42 ± 0.40 b | 80 ± 0.72 a | 72 ± 0.56 a | 56 ± 0.41 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zullo, B.A.; Venditti, G.; Ciafardini, G. Effects of the Filtration on the Biotic Fraction of Extra Virgin Olive Oil. Foods 2021, 10, 1677. https://doi.org/10.3390/foods10081677
Zullo BA, Venditti G, Ciafardini G. Effects of the Filtration on the Biotic Fraction of Extra Virgin Olive Oil. Foods. 2021; 10(8):1677. https://doi.org/10.3390/foods10081677
Chicago/Turabian StyleZullo, Biagi Angelo, Giulia Venditti, and Gino Ciafardini. 2021. "Effects of the Filtration on the Biotic Fraction of Extra Virgin Olive Oil" Foods 10, no. 8: 1677. https://doi.org/10.3390/foods10081677
APA StyleZullo, B. A., Venditti, G., & Ciafardini, G. (2021). Effects of the Filtration on the Biotic Fraction of Extra Virgin Olive Oil. Foods, 10(8), 1677. https://doi.org/10.3390/foods10081677