Volatile and Sensory Characterization of La Mancha Trujillo Melons over Three Consecutive Harvests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Preparation of Melon Juice
2.3. Conventional Analysis of Juice Melon
2.4. Extraction of Volatile Compounds of Juice Melon
2.5. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
2.6. Sensory Descriptive Analysis
2.7. Statistical Analysis
3. Results
3.1. General Ccomposition of Melons
3.2. Volatile Compounds of Melon
3.3. Quantitative Descriptive Sensory Analysis
3.3.1. Olfactory Profile
3.3.2. Gustatory Profile
3.4. PLS Modeling Relationship between Sensory Descriptors (Aroma) and Volatile Compounds of Melons
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Beaulieu, J.C.; Baldwin, E. Flavor and aroma of fresh cut fruits and vegetables. In Fresh Cut Fruits and Vegetables. Science, Technology and Market; Lamikanra, O., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2002; pp. 391–425. [Google Scholar]
- Obando-Ulloa, J.; Fernández-Trujillo, J.P.; Martínez, J.A.; Alarcón, A.L.; Eduardo, I.; Arús, P.; Monforte, A.J. Identification of melon fruit quality quantitative trait loci using near- isogenic lines. J. Am. Soc. Hortic. 2008, 133, 139–151. [Google Scholar] [CrossRef]
- Pardo, J.E.; Alvarruiz, A.; Varón, R.; Gómez, R. Quality evaluation of melon cultivars. Correlation among physical-chemical and sensory parameters. J. Food Qual. 2000, 23, 161–170. [Google Scholar] [CrossRef]
- Villanueva, M.J.; Tenorio, M.D.; Esteban, M.A.; Mendoza, M.C. Compositional changes during ripening of two cultivars of muskmelon fruits. Food Chem. 2004, 87, 179–185. [Google Scholar] [CrossRef]
- Pang, X.; Chen, D.; Hu, X.; Zhang, Y.; Wu, J. Verification of aroma profiles of jiashi muskmelon juice characterized by odor activity value and gas chromatography–olfactometry/detection frequency analysis: Aroma reconstitution experiments and omission tests. J. Agric. Food Chem. 2012, 60, 10426–10432. [Google Scholar] [CrossRef]
- Vallone, S.; Sivertsen, H.; Anthon, G.E.; Barret, D.M.; Mitcham, E.J.; Ebeler, S.E.; Zakharov, S. An integrated approach for flavour quality evaluation in muskmelon (Cucumilis melo L. reticulatus group) during ripening. Food Chem. 2013, 139, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Gonda, I.; Bar, E.; Portnoy, V.; Lev, S.; Burger, J.; Schaffer, A.A.; Tadmor, Y.; Gepstein, S.; Giovannoni, J.J.; Katzir, N.; et al. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J. Exp. Bot. 2010, 61, 1111–1123. [Google Scholar] [CrossRef] [Green Version]
- Kourkoutas, D.; Elmore, J.S.; Mottram, D.S. Comparison of volatile compositions and flavour properties of cantaloupe, Galia and honeydew muskmelons. Food Chem. 2006, 97, 95–102. [Google Scholar] [CrossRef]
- Allwood, J.W.; Cheung, W.; Xu, Y.; Mumm, R.; De Vos, R.C.H.; Deborde, C.; Biais, B.; Maucourt, M.; Berger, Y.; Schaffer, A.A.; et al. Goodacre Royston. Metabolomics in melon: A new opportunity for aroma analysis. Phytochemistry 2014, 99, 61–72. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Quirantes-Pine, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Comparative characterization of phenolic and other polar compounds in Spanish melon cultivars by using high-performance liquid chromatography coupled to electrospray ionization quadrupole–time of flight mass spec trometry. Food Res. Int. 2013, 54, 1519–1527. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.C.; Grimm, C.C. Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction. J. Agric. Food Chem. 2001, 49, 1345–1352. [Google Scholar] [CrossRef]
- Fallik, E.; Alkali-Tuvia, S.; Horev, B.; Copel, A.; Rodov, V.; Aharoni, Y.; Ulrich, D.; Schulz, H. Characterisation of ‘Galia’ melon aroma by GC and mass spectrometric sensor measurements after prolonged storage. Postharvest Biol. Technol. 2001, 22, 85–91. [Google Scholar] [CrossRef]
- El-Sharkawy, I.; Manríquez, D.; Flores, F.B.; Regad, F.; Bouzayen, M.; Latche, A.; Pech, J.C. Functional characterization of a melon alcohol acyltransferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity. Plant Mol. Biol. 2005, 59, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Perry, P.L.; Wang, Y.; Lin, J. Analysis of honeydew melon (Cucumis melo var. inodorus) flavour and GC-MS/MS identification of (E,Z)-2,6-nonadienyl acetate. Flavour Fragr. J. 2009, 24, 341–347. [Google Scholar] [CrossRef]
- Moshonas, M.G.; Shaw, P.E.; Baldwin, E.A.; Yuen, W. Volatile and non- volatile components in Hami melon (Cucumis melo L.). LWT Food Sci. Tecnol. 1993, 26, 577–589. [Google Scholar] [CrossRef]
- Aubert, C.; Pitrat, M. Volatile compounds in the skin and pulp of Queen Anne’s pocket melon. J. Agric. Food Chem. 2006, 54, 8177–8182. [Google Scholar] [CrossRef] [PubMed]
- Saftner, R.; Abbott, J.A.; Lester, G.; Vinyard, B. Sensory and analytical comparison of orange-fleshed honeydew to cantaloupe and green-fleshed honeydew for fresh-cut chunks. Postharvest Biol. Technol. 2006, 42, 150–160. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the AOAC, 15th ed.; Methods 932.06, 925.09, 985.29, 923.03; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Sánchez-Palomo, E.; Pérez-Coello, M.S.; Díaz-Maroto, M.C.; González-Viñas, M.A.; Cabezudo, M.D. Contribution of free and glycosidically-bound volatile compounds to the aroma of muscat “a petit grains” wines and effect of skin contact. Food Chem. 2006, 95, 279–289. [Google Scholar] [CrossRef]
- UNE 87024–1. Análisis Sensorial. Guía General Para la Selección, Entrenamiento y Control de Jueces. Parte 1: Catadores. 1995. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0007690 (accessed on 1 May 2021).
- UNE-EN ISO 8589: 2010. Análisis Sensorial. Guía General Para el Diseño de Sala de Cata. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0045203 (accessed on 1 May 2021).
- Cozzolino, D.; Cynkar, W.U.; Shah, N.; Damberg, R.G.; Smith, P.A. A brief introduction to multivariate methods in grape and wine analysis. Int. J. Wine Res. 2009, 1, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Verzera, A.; Dima, G.; Tripodi, G.; Ziino, M.; Lanza, C.M.; Mazzaglia, A. Fast quantitative determination of aroma volatile constituents in melon fruits by headspace solid–phase microextraction and gas chromatography mass spectrometry. Food Anal. Meth. 2011, 4, 141–149. [Google Scholar] [CrossRef]
- Grosch, W.; Schwarz, J.M. Linoleic and linolenic acid as precursors of the cucumber flavor. Lipids 1971, 5, 351–352. [Google Scholar] [CrossRef]
- Buttery, R.G.; Seifert, R.M.; Ling, L.C.; Soderstrom, E.L.; Ogawa, J.M.; Turnbaugh, J.G. Additional aroma compounds of honeydew melon. J. Agric. Food. Chem. 1982, 30, 1208–1211. [Google Scholar] [CrossRef]
- Schieberle, P.; Ofner, S.; Grosch, W. Evaluation of potent odorants in cucumbers (Cucumis sativus) and muskmelons (Cucumis melo) by aroma extract dilution analysis. J. Food Sci. 1990, 55, 193–195. [Google Scholar] [CrossRef]
- Shalit, M.; Katzir, N.; Tadmor, Y.; Larkov, O.; Burger, Y.; Shalekhet, F.; Lastochkin, E.; Ravid, U.; Amar, O.; Edelstein, M.; et al. Acetyl-CoA: Alcohol Acetyltransferase Activity and Aroma Formation in Ripening Melon Fruits. J. Agric. Food Chem. 2001, 49, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Wyllie, S.; Leach, D.N. Sulfur-containing compounds in the aroma volatiles of melons (Cucumis melo). J. Agric. Food Chem. 1992, 40, 253–256. [Google Scholar] [CrossRef]
Harvest | |||
---|---|---|---|
2011 | 2012 | 2013 | |
pH | 4.23 a (0.03) | 5.63 b (0.24) | 5.80 b (0.44) |
Titrable acidity (mg citric acid/L) | 1280 a (1.72) | 860 b (0.81) | 825 b (0.91) |
Total soluble solids (°Brix) | 11.4 a (0.18) | 15.0 b (0.45) | 15.7 b (0.24) |
Harvest | |||||
---|---|---|---|---|---|
RI | Source | Compounds | 2011 | 2012 | 2013 |
Aldehydes | |||||
1086 | Sigma-Aldrich | Hexanal | 2.44 c (0.99) | 1.85 b (5.58) | 1.21 a (5.42) |
1227 | Sigma-Aldrich | (E)-2-hexenal | 2.54 a (1.57) | 2.43 a (1.31) | 1.84 b (11.7) |
1150 | Sigma-Aldrich | (E)-2-heptenal | 2.25 a (0.60) | 2.37 a (4.12) | 2.44 a (7.67) |
1390 | Sigma-Aldrich | Nonanal | 7.49 a (1.99) | 8.63 a (11.7) | 8.37 a (7.77) |
1552 | Sigma-Aldrich | (Z)-6-nonenal | 2.58 a (0.51) | 2.33 a (4.78) | 2.52 a (6.20) |
1015 | Tentatively Identified | (E,E)-2,4-heptanedial | 0.63 a (0.37) | 0.70 a (0.41) | 0.54 a (0.38) |
1345 | Tentatively Identified | (Z)-2-nonenal | 2.37 b (1.37) | 2.24 b (0.39) | 1.43 a (0.41) |
1537 | Sigma-Aldrich | (E)-2-nonenal | 2.36 a (1.67) | 3.11 b (2.21) | 2.89 b (1.42) |
1588 | Sigma-Aldrich | (E,Z)-2,6-nonadienal | 114.31 a (0.72) | 108.23 a (7.52) | 110.43 a (4.95) |
Alcohols | |||||
1168 | Sigma-Aldrich | 3-penten-1-ol | 18.51 a (10.72) | 20.42 a (3.42) | 19.71 a (1.00) |
1180 | Sigma-Aldrich | 2-methyl-1-butanol | 1.65 a (1.35) | 1.31 a (0.54) | 1.20 a (0.32) |
1328 | Sigma-Aldrich | 4-methyl-1-pentanol | 10.56 a (3.38) | 12.12 a (1.39) | 11.13 a(1. 12) |
1341 | Sigma-Aldrich | 3-methyl-1-pentanol | 2.61 a (1.02) | 3.74 a (2.46) | 3.11 a (2.32) |
1282 | Merck | 1-hexanol | 3.85 a (2.21) | 2.42 b (1.37) | 3.15 c (0.04) |
1296 | Sigma-Aldrich | (Z)-3-hexen-1-ol | 3.40 a (1.86) | 3.40 a (2.86) | 3.08 a (1.81) |
1348 | Sigma-Aldrich | 1-heptanol | 5.81 a (1.16) | 5.74 a (2.75) | 5.62 a (1.03) |
1452 | Sigma-Aldrich | 1-octanol | 1.05 a (0.82) | 1.11 a (0.82) | 1.08 a (0.94) |
1405 | Merck | 2-ethyl-1-hexanol | 10.17 a (8.12) | 9.54 a (0.70) | 9.85 a (3.85) |
1554 | Merck | 1-nonanol | 16.22 a (2.12) | 14.93 b (0.49) | 14.35 b (1.13) |
1680 | Sigma Aldrich | (Z)-3-nonen-1-ol | 97.51 a (3.38) | 104.65 b (5.42) | 104.54 b (5.42) |
1710 | Sigma Aldrich | (Z)-6-nonen-1-ol | 6.45 a (7.73) | 5.42 b (2.97) | 5.82 b (1.77) |
1782 | Sigma Aldrich | (E)-6-nonen-1-ol | 18.80 a (7.24) | 16.91 b (7.75) | 17.62 b (2.40) |
1742 | Tentatively Identified | (Z,Z)-3,6-nonadien-1-ol | 235.78 a (10.3) | 210.56 b (8.47) | 210.63 b (5.93) |
Acids | |||||
1426 | Sigma Aldrich | Acetic acid | 0.82 a (0.02) | 0.97 b (0.23) | 0.84 a (0.05) |
1546 | Sigma Aldrich | Propanoic acid | 1.74 a (0.32) | 1.68 a (0.28) | 1.62 a (0.14) |
1583 | Sigma Aldrich | Isobutanoic acid | 3.25 a (1.10) | 2.56 a (2.17) | 2.56 a (1.17) |
1816 | Sigma Aldrich | Hexanoic acid | 8.19 a (1.14) | 7.88 a (1.24) | 7.23 a (3.22) |
1929 | Sigma Aldrich | Heptanoic acid | 3.68 a (0.95) | 2.52 b (0.51) | 3.43 a (0.40) |
2024 | Sigma Aldrich | Octanoic acid | 13.32 a (4.38) | 12.75 b (1.44) | 12.32 c (0.44) |
2202 | Sigma Aldrich | Nonanoic acid | 37.12 a (11.02) | 33.81 b (8.94) | 27.6 c (3.21) |
2289 | Sigma Aldrich | Decanoic acid | 8.02 a (0.14) | 7.83 a (1.56) | 7.41 a (0.42) |
2439 | Sigma Aldrich | Dodecanoic acid | 13.81 a (1.36) | 13.12 a (2.46) | 13.18 a (1.21) |
2724 | Sigma Aldrich | Tetradecanoic acid | 47.32 a (4.18) | 42.31 b (12.2) | 44.27 c (5.63) |
2786 | Sigma Aldrich | Pentadecanoic acid | 29.91 a (8.54) | 26.75 a (7.17) | 26.17 a (0.87) |
Benzenic compounds | |||||
1530 | Sigma Aldrich | Benzaldehyde | 5.18 a (8.82) | 5.30 a (5.74) | 5.19 a (7.22) |
1871 | Merck | Benzyl alcohol | 26.31 a (8.93) | 25.02 a (2.25) | 33.21 b (6.16) |
1892 | Sigma Aldrich | 2-phenylethanol | 8.28 a (3.79) | 8.09 a (1.19) | 8.59 a (1.54) |
1899 | Tentatively Identified | 1,2-benzothiazole | 1.27 a (0.98) | 1.25 a (0.23) | 1.15 a (1.04) |
1933 | Tentatively Identified | Phenol | 8.25 a (4.91) | 7.94 a (0.52) | 8.06 a (1.70) |
1971 | Sigma Aldrich | 4-methyl-guaiacol | 8.00 a (0.26) | 7.21 a,b (1.62) | 8.81 b (5.64) |
2193 | Sigma Aldrich | Eugenol | 9.07 a (1.82) | 9.51 a (8.30) | 9.45 a (7.41) |
2219 | Sigma Aldrich | 4-vinylguaiacol | 0.72 a (4.41) | 0.55 a (9.02) | 0.67 a (5.24) |
2378 | Sigma Aldrich | Benzoic acid | 2.62 a (0.82) | 2.13 a (0.44) | 1.77 b (0.78) |
2302 | Sigma Aldrich | Isoeugenol | 6.27 a (1.28) | 6.90 a (1.41) | 6.59 a (1.30) |
2511 | Sigma Aldrich | Vanillin | 14.12 a (1.82) | 24.12 b (3.69) | 18.25 c (11.52) |
2936 | Tentatively Identified | Vanillyl alcohol | 11.42 a (1.05) | 11.27 a (1.40) | 11.22 a (2.56) |
Terpenic compounds | |||||
1755 | Sigma Aldrich | Nerol | 1.29 a (0.55) | 1.22 a (1.32) | 1.31 a (1.04) |
1831 | Sigma Aldrich | Geraniol | 0.59 a (0.09) | 0.61 a (0.18) | 0.60 a (0.29) |
Esters | |||||
1145 | Merck | Isoamyl acetate | 1.86 a (0.06) | 2.96 b (0.78) | 2.56 b (1.06) |
1432 | Merck | Ethyl octanoate | Tr | Tr | Tr |
1499 | Tentatively Identified | 3-hydroxy ethyl-butyrate | 0.54 a (0.28) | 0.61 a (0.19) | 0.56 a (0.13) |
Ketones | |||||
1114 | Tentatively Identified | (E)-3-penten-2-one | 7.70 a (3.88) | 7.43 a (2.13) | 8.41 a (1.51) |
1277 | Tentatively Identified | 3-octanone | 0.30 a (0.68) | 0.28 a (0.77) | 0.21 a (0.13) |
15030 | Tentatively Identified | 1-(1-cyclohexen-1-yl)-ethanone | 1.44 a (1.00) | 1.28 a (0.20) | 1.22 a (1.10) |
2011 | Tentatively Identified | 5-pentyl-dihydro-2(3H)-furanone | 5.38 a (1.11) | 5.25 a (0.80) | 5.50 a (1.26) |
Volatile Compounds. | Components | ||
---|---|---|---|
1 | 2 | 3 | |
Eugenol | −0.98 | −0.02 | −0.109 |
4-Methylguaiacol | −0.97 | −0.09 | −0.138 |
Decanoic acid | 0.97 | 0.09 | 0.139 |
4-Vinylguaiacol | −0.96 | 0.2 | −0.098 |
3-Octanone | 0.96 | 0.17 | 0.146 |
(E,Z)-2.6-Nonadienal | 0.93 | 0.31 | 0.1 |
1-Octanol | −0.92 | −0.23 | −0.056 |
Isoeugenol | −0.92 | −0.24 | −0.056 |
(Z)-3-hexen-1-ol | 0.91 | −0.37 | 0.15 |
1.2-Benzothiazole | 0.86 | −0.41 | 0.057 |
1-Nonanol | 0.85 | 0.17 | 0.211 |
(Z)-3-Nonen-1-ol | −0.85 | −0.40 | −0.164 |
(Z)-3-Hexen-1-ol | −0.84 | −0.36 | −0.163 |
(Z)-6-Nonen-1-ol | 0.80 | 0.57 | 0.166 |
Nonanal | −0.80 | −0.55 | −0.123 |
Vanillyl alcohol | −0.76 | 0.25 | 0.031 |
1-Hexanol | −0.78 | 0.45 | 0.051 |
(Z)-6-Nonenal | 0.03 | 0.98 | −0.043 |
2-Ethyl-1-hexanol | −0.07 | 0.97 | 0.011 |
Geraniol | 0.12 | −0.97 | −0.009 |
Nerol | 0.13 | −0.98 | 0.032 |
Phenol | 0.01 | 0.96 | 0.039 |
Benzaldehyde | −0.06 | −0.94 | 0.076 |
Ethyl 3-hydroxy-butyrate | −0.21 | −0.95 | 0.048 |
Vanillin | −0.21 | −0.80 | −0.134 |
(E)-6-Nonen-1-ol | 0.60 | 0.76 | 0.091 |
Hexanoic acid | −0.48 | 0.73 | 0.034 |
(Z,Z)-3.6-Nonadien-1-ol | 0.56 | 0.77 | 0.162 |
(E)-2-Hexenal | 0.18 | 0.13 | 0.947 |
Benzyl alcohol | 0.00 | 0.20 | −0.922 |
Benzoic acid | 0.29 | 0.06 | 0.922 |
(Z)-2-Nonenal | 0.13 | 0.14 | 0.885 |
Hexanal | 0.19 | 0.03 | 0.841 |
Odour Descriptors | Vintage | ||
---|---|---|---|
2011 | 2012 | 2013 | |
Odour intensity | 6.03 a (0.69) | 7.58 b (0.41) | 6.70 a (1.08) |
Sweet | 5.33 a (0.69) | 6.69 b (0.88) | 4.88 a (0.55) |
Cucumber | 2.26 a (0.51) | 0.00 b (0.00) | 2.18 a (0.61) |
Ripe fruit | 1.35 a (0.13) | 2.38 b (0.85) | 0.00 c (0.00) |
Green | 3.05 a (0.88) | 1.86 b (0.85) | 3.23 a (0.10) |
Fresh fruit | 5.20 a (0.69) | 5.23 a (0.17) | 4.99 a (0.53) |
Honey | 0.00 b (0.00) | 2.36 a (0.73) | 1.84 a (0.78) |
Jam/marmalade | 0.00 a (0.00) | 2.66 b (0.65) | 1.08 c (0.55) |
Flavour-by-Mouth | Vintage | ||
---|---|---|---|
2011 | 2012 | 2013 | |
Taste intensity | 6.43 a (0.86) | 7.66 b (1.02) | 6.73 a (1.01) |
Sweet | 6.14 a (0.83) | 6.84 a (0.93) | 4.81 b (0.36) |
Green | 1.76 a (0.87) | 0.61 b (0.92) | 2.41 a (1.02) |
Cucumber | 1.16 a (0.97) | 0.00 a (0.00) | 0.93 a (0.62) |
Ripe Fruit | 1.73 a (0.68) | 1.03 a (0.26) | 0.00 b (0.00) |
Spicy | 0.94 a (0.33) | 0.41 a (0.58) | 0.00 a (0.00) |
Honey | 2.81 a (0.69) | 3.18 a (0.30) | 2.08 a (0.43) |
Jam/marmalade | 0.00 a (0.00) | 3.12 b (1.00) | 1.34 c (0.94) |
Fresh fruit | 4.76 a (0.14) | 4.56 a (0.20) | 4.39 a (0.65) |
Acidity | 5.00 a (0.00) | 4.33 b (0.35) | 5.00 a (0.00) |
After-Taste intensity | 6.64 a (0.46) | 7.30 a (0.13) | 6.33 a (0.74) |
After-Taste quality | 6.82 a (0.56) | 7.54 a (0.76) | 6.50 a (0.33) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valverde, M.A.F.; Sánchez-Palomo, E.; Alises, M.O.; Romero, C.C.; González-Viñas, M.A. Volatile and Sensory Characterization of La Mancha Trujillo Melons over Three Consecutive Harvests. Foods 2021, 10, 1683. https://doi.org/10.3390/foods10081683
Valverde MAF, Sánchez-Palomo E, Alises MO, Romero CC, González-Viñas MA. Volatile and Sensory Characterization of La Mancha Trujillo Melons over Three Consecutive Harvests. Foods. 2021; 10(8):1683. https://doi.org/10.3390/foods10081683
Chicago/Turabian StyleValverde, M. A. Ferrer, E. Sánchez-Palomo, M. Osorio Alises, C. Chaya Romero, and M. A. González-Viñas. 2021. "Volatile and Sensory Characterization of La Mancha Trujillo Melons over Three Consecutive Harvests" Foods 10, no. 8: 1683. https://doi.org/10.3390/foods10081683
APA StyleValverde, M. A. F., Sánchez-Palomo, E., Alises, M. O., Romero, C. C., & González-Viñas, M. A. (2021). Volatile and Sensory Characterization of La Mancha Trujillo Melons over Three Consecutive Harvests. Foods, 10(8), 1683. https://doi.org/10.3390/foods10081683