Topic Editors

Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio Coppito, 67100 L’Aquila, Italy

Future Food Analysis and Detection

Abstract submission deadline
closed (31 December 2021)
Manuscript submission deadline
closed (31 March 2022)
Viewed by
195633

Topic Information

Dear Colleagues,

“Man is What He Eats”: Food represents one of the fundamental needs for human beings, and therefore, food analysis is a field of utmost importance. At the same time, given its inherent complexity, this subject encompasses multiple aspects, e.g., safety of use, health requirements, compliance to laws, organoleptic characteristics, and consumer’s acceptance, often intertwined. For instance, a study could aim at developing an analytical platform for the protection of consumers, or rather be more centered on deeply understanding the characteristics of specific foodstuffs and the effects after their consumption.

In this context, spectroscopy is a suitable tool for food analysis, as it is versatile (different spectral regions provide different and often complementary information on the same set of samples), it is relatively rapid and, in general, cheap if compared to other instrumental techniques, it is almost always nondestructive or, at least, microdestructive, and in many cases, it can even be non-invasive and require minimum sample manipulation or pretreatment, thus representing a green alternative to other state-of-the-art methods. Moreover, if coupled with imaging/microscopic techniques, it can provide information not only about the average quantity/concentration but also about the distribution of constituents within the matrix.

Based on these considerations, this Topic aims at collecting studies describing interesting/relevant problems in food analysis and, ideally, suggesting strategies for solving/handling them. The submitted papers can encompass different aspects and scopes: authenticating and/or characterizing aliments, detecting frauds, and ensuring law/sanitary compliance. Additionally, since chemometrics plays a fundamental role in the application of spectroscopic techniques to food-related issues, papers dealing with new data processing approaches suitable for overcoming specific issues in the spectroscopic analysis of food samples are also more than welcome.

Prof. Dr. Federico Marini
Dr. Alessandra Biancolillo
Topic Editors

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.5 5.3 2011 17.8 Days CHF 2400
Foods
foods
4.7 7.4 2012 14.3 Days CHF 2900
AppliedChem
appliedchem
- - 2021 18.5 Days CHF 1000
Methods and Protocols
mps
2.3 3.6 2018 24.9 Days CHF 1800

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (63 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
8 pages, 1276 KiB  
Article
Comparison of the Effectiveness of Four Commercial DNA Extraction Kits on Fresh and Frozen Human Milk Samples
by Cassidy Butler, Amy Matsumoto, Casey Rutherford and Hope K. Lima
Methods Protoc. 2022, 5(4), 63; https://doi.org/10.3390/mps5040063 - 19 Jul 2022
Cited by 5 | Viewed by 2897
Abstract
For-profit donor human milk organizations have DNA-based proprietary methodology for testing incoming milk for adulteration with other species’ milk. However, there is currently no standardized methodology for extracting DNA from human milk. Microbiome research has shown that DNA purity and quantity can vary [...] Read more.
For-profit donor human milk organizations have DNA-based proprietary methodology for testing incoming milk for adulteration with other species’ milk. However, there is currently no standardized methodology for extracting DNA from human milk. Microbiome research has shown that DNA purity and quantity can vary depending on the extraction methodology and storage conditions. This study assessed the purity and quantity of DNA extracted from four commercially available DNA extraction kits—including one kit that was developed for human milk. This study was for method validation only. One donor provided a 90 mL human milk sample. The sample was aliquoted into 70 × 1 mL microcentrifuge tubes. Aliquots were randomized into one of three categories: fresh extraction, extraction after freezing, and extraction after purification and storage at room temperature. DNA was analyzed for purity and quantity using a NanoDrop Spectrophotometer. Results confirmed differences in DNA purity and quantity between extraction kits. The Plasma/Serum Circulating DNA Purification Mini Kit (Norgen Biotek, ON, Canada) provided significantly more DNA, and consistent purity as measured by 260/280 and 260/230 ratios. DNA quantity and purity were similar between fresh and frozen human milk samples. These results suggest that DNA purity and quantity is highest and most consistent when extracted from human milk using the Plasma/Serum Circulating DNA Purification Mini Kit amongst the kits tested in this study. Standardized methodology for extracting DNA from human milk is necessary for improvement of research in the field of human milk. To do this, future studies are recommended for optimization of DNA extraction from human milk using larger sample sizes and multiple donor parents. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

16 pages, 1004 KiB  
Review
Modern Analytical Methods for the Analysis of Pesticides in Grapes: A Review
by Yerkanat Syrgabek and Mereke Alimzhanova
Foods 2022, 11(11), 1623; https://doi.org/10.3390/foods11111623 - 31 May 2022
Cited by 14 | Viewed by 3724
Abstract
Currently, research on the determination of pesticides in food products is very popular. Information obtained from research conducted so far mainly concerns the development of a methodology to determine the content of pesticides in food products. However, they do not describe the content [...] Read more.
Currently, research on the determination of pesticides in food products is very popular. Information obtained from research conducted so far mainly concerns the development of a methodology to determine the content of pesticides in food products. However, they do not describe the content of the pesticide used in viticulture in the resulting product. Over the past decade, this study has examined analytical methodologies for assessing pesticide residues in grapes. Scopus, Web of Science, Science Direct, PubMed, and Springer databases were searched for relevant publications. The phrases “pesticides” and “grapes” and their combinations were used to search for articles. The titles and annotations of the extracted articles have been read and studied to ensure that they meet the review criteria. The selected articles were used to compile a systematic review based on scientific research and reliable sources. The need to study the detection of pesticide residues in grapes using advanced analytical methods is confirmed by our systematic review. This review also highlights modern methods of sample preparation, such as QuEChERS, SPME, PLE, dLLME, and ADLL-ME, as well as the most used methods of separation and identification of pesticides in grapes. An overview of the countries where residual grape pesticide amounts are most studied is presented, along with the data on commonly used pesticides to control pests and diseases in grape cultivation. Finally, future possibilities and trends in the analysis of pesticide residues in grapes are discussed by various analytical methods. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

11 pages, 4954 KiB  
Article
Novel Fluorescent Nanocellulose Hydrogel Based on Nanocellulose and Carbon Dots for Detection and Removal of Heavy Metal Ions in Water
by Jiachuan Yang, Zhixin Luo and Min Wang
Foods 2022, 11(11), 1619; https://doi.org/10.3390/foods11111619 - 30 May 2022
Cited by 14 | Viewed by 2573
Abstract
Water is an important raw material in the food production process. Maintaining the quality and safety of water is very important in the food field. In this study, a simple novel fluorescent nanocellulose hydrogel (FNH) was prepared for the detection and removal of [...] Read more.
Water is an important raw material in the food production process. Maintaining the quality and safety of water is very important in the food field. In this study, a simple novel fluorescent nanocellulose hydrogel (FNH) was prepared for the detection and removal of heavy metals (Fe3+ and Pb2+) in aqueous solutions based on carbon dots (CDs). The CDs were grafted onto the carboxylated nanocellulose (CNC) by the EDC/NHS coupling method, and then the nanocellulose (NC), CNC, and FNH were characterized by FTIR analysis. The effect of adsorption environment on FNH adsorption capacity was also investigated. After carboxylation and grafting of CDs, the adsorption capacity of nanocellulose to Fe3+ and Pb2+ was greatly improved, and it was also allowed to make fast visual responses to Fe3+ as an optical sensor to determine the concentration of Fe3+ through the visual signal. Static adsorption experiment demonstrated that the removal rate of Fe3+ and Pb2+ by FNH exceeded 69.4% and 98.2%, and the adsorption capacity amount reached 98.3 mg/g and 442.0 mg/g. At the same time, due to the fluorescence quenching effect of Fe3+, FNH could also be used for the detection of Fe3+ concentration in aqueous solution, and the limit of detection (LOD) could reach 62.5 mg/L. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

10 pages, 921 KiB  
Communication
Speciation of Arsenic(III) and Arsenic(V) in Plant-Based Drinks
by Lena Ruzik and Małgorzata Jakubowska
Foods 2022, 11(10), 1441; https://doi.org/10.3390/foods11101441 - 16 May 2022
Cited by 10 | Viewed by 2239
Abstract
Recently, food products based only on plants have become increasingly popular and are often found on store shelves. It is a specific market response to the growing demand for, and interest in, plant foods. Cow’s milk has also gained its counterpart in the [...] Read more.
Recently, food products based only on plants have become increasingly popular and are often found on store shelves. It is a specific market response to the growing demand for, and interest in, plant foods. Cow’s milk has also gained its counterpart in the form of plant-based beverages, based on cereals, nuts or legumes. The emergence of an increasingly wide range of plant-based food products has also led to increased research on safe plant food consumption. This study was conducted to quantify total arsenic content and its species (arsenic(III) and (V)) in samples of plant-based beverages purchased at Polish markets. Speciation analysis of arsenic was performed by high-performance liquid chromatography combined with inductively coupled plasma mass spectrometry. The presented study was conducted on six selected plant-based beverages, including almond, millet, soybean, rice, coconut and oat. An analysis using size exclusion chromatography was performed. In order to initially visualize the content of the observed elements and the particle size of the compounds in which they occur, at first the samples were subjected to the size-exclusion chromatography. Speciation analysis of arsenic was carried out using anion-exchange liquid chromatography, combined with inductively coupled plasma mass spectrometry. The presented method was validated with certified reference material (CRM rice flour). Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

17 pages, 2996 KiB  
Article
Effect of the Degree of Hydrolysis on Nutritional, Functional, and Morphological Characteristics of Protein Hydrolysate Produced from Bighead Carp (Hypophthalmichthys nobilis) Using Ficin Enzyme
by Kamal Alahmad, Wenshui Xia, Qixing Jiang and Yanshun Xu
Foods 2022, 11(9), 1320; https://doi.org/10.3390/foods11091320 - 30 Apr 2022
Cited by 28 | Viewed by 3483
Abstract
The production of fish protein hydrolysates from bighead carp (Hypophthalmichthys nobilis) using ficin enzymes was achieved in optimal conditions of 3% enzyme/substrate ratio, 40 °C temperature, and pH 6. Three different hydrolysis times, 1, 3, and 6 h, were investigated, and their degree [...] Read more.
The production of fish protein hydrolysates from bighead carp (Hypophthalmichthys nobilis) using ficin enzymes was achieved in optimal conditions of 3% enzyme/substrate ratio, 40 °C temperature, and pH 6. Three different hydrolysis times, 1, 3, and 6 h, were investigated, and their degree of hydrolysis (DH) values were 13.36%, 17.09%, and 20.15%, respectively. The hydrolysate yield values increased with DH increase, and the highest yield was obtained at DH 20.15%. The crude protein content increased from 80.58% to 85.27%, and amino acid compositions increased from 78.33% to 83.07%. The peptides formed during hydrolysis indicated low molecular weight that might improve functional characteristics of fish protein hydrolysates, including protein solubility, which ranged from 84.88% to 95.48% for all hydrolysates. The thermal degradation of hydrolysates occurred from 160 to 168 °C with intensive endothermic peaks. Results revealed that oil holding capacity was higher at DH 13.36%; water holding capacity was higher when DH increased. Hence, fish protein hydrolysates (FPH) from bighead carp have improved functional properties, and can be utilized as supplements and excellent protein sources in various uses in food applications. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

15 pages, 5317 KiB  
Article
Microfluidics-Based Time-Resolved Fluorescence Immunoassay for the On-Site Detection of Aflatoxins B1 Zearalenone and Deoxynivalenol in Cereals
by Xu Wang, Disha Lu, Qingfeng Huang and Jinyi Yang
Foods 2022, 11(9), 1319; https://doi.org/10.3390/foods11091319 - 30 Apr 2022
Cited by 14 | Viewed by 2430
Abstract
The primary pollutants in cereal products are aflatoxins B1 (AFB1), zearalenone (ZEN), and deoxynivalenol (DON). In this study, anti-AFB1 MAb (4C9), anti-ZEN MAb (2A3), and anti-DON MAb (1F10) were developed and used in time-resolved fluorescence immunoassay microfluidics to determine AFB1, ZEN, and DON [...] Read more.
The primary pollutants in cereal products are aflatoxins B1 (AFB1), zearalenone (ZEN), and deoxynivalenol (DON). In this study, anti-AFB1 MAb (4C9), anti-ZEN MAb (2A3), and anti-DON MAb (1F10) were developed and used in time-resolved fluorescence immunoassay microfluidics to determine AFB1, ZEN, and DON in agricultural products. The linear range for AFB1, ZEN, and DON were 0.05~2.2 μg/kg, 1.45~375.75 μg/kg, and 11.1~124.2 μg/kg, respectively. In maize, the recoveries of AFB1/ZEN/DON were 92~101%, 102~105%, and 103~108%, respectively. High-performance liquid chromatography and the proposed approach had a good correlation. Time-resolved fluorescence immunoassay microfluidics is a highly efficient and sensitive field detection method for fungal toxins in agricultural products. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

21 pages, 1760 KiB  
Review
Quality Assessment of Fruits and Vegetables Based on Spatially Resolved Spectroscopy: A Review
by Wan Si, Jie Xiong, Yuping Huang, Xuesong Jiang and Dong Hu
Foods 2022, 11(9), 1198; https://doi.org/10.3390/foods11091198 - 20 Apr 2022
Cited by 14 | Viewed by 4208
Abstract
Damage occurs easily and is difficult to find inside fruits and vegetables during transportation or storage, which not only brings losses to fruit and vegetable distributors, but also reduces the satisfaction of consumers. Spatially resolved spectroscopy (SRS) is able to detect the quality [...] Read more.
Damage occurs easily and is difficult to find inside fruits and vegetables during transportation or storage, which not only brings losses to fruit and vegetable distributors, but also reduces the satisfaction of consumers. Spatially resolved spectroscopy (SRS) is able to detect the quality attributes of fruits and vegetables at different depths, which is of great significance to the quality classification and defect detection of horticultural products. This paper is aimed at reviewing the applications of spatially resolved spectroscopy for measuring the quality attributes of fruits and vegetables in detail. The principle of light transfer in biological tissues, diffusion approximation theory and methodologies are introduced, and different configuration designs for spatially resolved spectroscopy are compared and analyzed. Besides, spatially resolved spectroscopy applications based on two aspects for assessing the quality of fruits and vegetables are summarized. Finally, the problems encountered in previous studies are discussed, and future development trends are presented. It can be concluded that spatially resolved spectroscopy demonstrates great application potential in the field of fruit and vegetable quality attribute evaluation. However, due to the limitation of equipment configurations and data processing speed, the application of spatially resolved spectroscopy in real-time online detection is still a challenge. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

15 pages, 3274 KiB  
Article
An Immuno-Separated Assay for Ochratoxin Detection Coupled with a Nano-Affinity Cleaning-Up for LC-Confirmation
by Jie-Biao Guo, Jin-Sheng Cheng, Tai-Long Wei, Fan-Min Wu, Gui-Hong Tang and Qing-Hua He
Foods 2022, 11(8), 1155; https://doi.org/10.3390/foods11081155 - 15 Apr 2022
Cited by 1 | Viewed by 1944
Abstract
An immuno-separated assay for ochratoxin A detection coupled with a nano-affinity cleaning up for LC-confirmation was developed. Firstly, ochratoxin A was modified to quantum dot beads for immuno-fluorescent reporters. Secondly, Fe3O4 magnetic nanoparticles were conjugated with protein G for immuno-magnetic [...] Read more.
An immuno-separated assay for ochratoxin A detection coupled with a nano-affinity cleaning up for LC-confirmation was developed. Firstly, ochratoxin A was modified to quantum dot beads for immuno-fluorescent reporters. Secondly, Fe3O4 magnetic nanoparticles were conjugated with protein G for immuno-magnetic adsorbents. The immuno-separation of fluorescent reporters by magnetic adsorbents could be completed by ochratoxin A, so the fluorescent reporters released from the immune complex indicate a linear correlation with the concentration of ochratoxin A. Furthermore, the immuno-separated ochratoxin A can be eluted from magnetic adsorbent for LC-conformation. The optimized assay showed results as follows: the quantitative range of the immuno-separated assay was 0.03–100 ng mL−1 of ochratoxin A. The recoveries for spiked samples ranged from 78.2% to 91.4%, with the relative standard deviation (RSD) being 11.9%~15.3%. Statistical analysis indicated no significant difference between the HPLC-FLD results based on commercial affinity column and by nano-affinity cleaning up. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

14 pages, 4349 KiB  
Article
Rapid Detection of Avocado Oil Adulteration Using Low-Field Nuclear Magnetic Resonance
by Haoquan Jin, Yuxuan Wang, Bowen Lv, Kexin Zhang, Zhe Zhu, Di Zhao and Chunbao Li
Foods 2022, 11(8), 1134; https://doi.org/10.3390/foods11081134 - 14 Apr 2022
Cited by 5 | Viewed by 2128
Abstract
Avocado oil (AO) has been found to be adulterated by low-price oil in the market, calling for an efficient method to detect the authenticity of AO. In this work, a rapid and nondestructive method was developed to detect adulterated AO based on low-field [...] Read more.
Avocado oil (AO) has been found to be adulterated by low-price oil in the market, calling for an efficient method to detect the authenticity of AO. In this work, a rapid and nondestructive method was developed to detect adulterated AO based on low-field nuclear magnetic resonance (LF-NMR, 43 MHz) detection and chemometrics analysis. PCA analysis revealed that the relaxation components area (S23) and relative contribution (P22 and P23) were crucial LF-NMR parameters to distinguish AO from AO adulterated by soybean oil (SO), corn oil (CO) or rapeseed oil (RO). A Soft Independent Modelling of Class Analogy (SIMCA) model was established to identify the types of adulterated oils with a high calibration (0.98) and validation accuracy (0.93). Compared with partial least squares regression (PLSR) models, the support vector regression (SVR) model showed better prediction performance to calculate the adulteration levels when AO was adulterated by SO, CO and RO, with high square correlation coefficient of calibration (R2C > 0.98) and low root mean square error of calibration (RMSEC < 0.04) as well as root mean square error of prediction (RMSEP < 0.09) values. Compared with SO- and CO-adulterated AO, RO-adulterated AO was more difficult to detect due to the greatest similarity in fatty acids’ composition being between AO and RO, which is characterized by the high level of monounsaturated fatty acids and viscosity. This study could provide an effective method for detecting the authenticity of AO. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

17 pages, 3737 KiB  
Article
Green Extraction-Assisted Pseudo-Targeted Profile of Alkaloids in Lotus Seed Epicarp Based on UPLC-QTOF MS with IDA
by Xiaoji Cao, Xupin Lin, Congcong Wu, Minghua Zhang and Mingwei Wang
Foods 2022, 11(7), 1056; https://doi.org/10.3390/foods11071056 - 6 Apr 2022
Cited by 5 | Viewed by 2305
Abstract
Lotus seed epicarp, a byproduct of lotus, is commonly discarded directly or burned in the cropland, resulting in waste of resources and environmental pollution. In this work, a green ultrasonic-assisted extraction method with ethyl lactate as the extraction solvent was established to extract [...] Read more.
Lotus seed epicarp, a byproduct of lotus, is commonly discarded directly or burned in the cropland, resulting in waste of resources and environmental pollution. In this work, a green ultrasonic-assisted extraction method with ethyl lactate as the extraction solvent was established to extract alkaloids from lotus seed epicarp. The extraction conditions were optimized by response surface methodology. Under the optimal extraction conditions, the extraction of alkaloids from 1 g lotus seed epicarp was accomplished with only 10 mL of extraction solvent within 15 min. Combined with ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry with information-dependent acquisition mode, a total of 42 alkaloids were annotated in the lotus seed epicarp extracts. Among them, 39 alkaloids were reported in lotus seed epicarp for the first time. According to quantitative analysis, the distributions and trends of alkaloids in the lotus seed epicarp were found to be similar to those of lotus leaves. The five growth stages of lotus seed epicarp could be successfully distinguished based on the ten representative alkaloids. This study demonstrates that ultrasonic-assisted extraction with ethyl lactate as extractant solvent was efficient in the extraction of alkaloids from lotus seed epicarp, which is a potential renewable resource of bioactive ingredients. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

12 pages, 1609 KiB  
Article
Changes in Selected Properties of Cold-Pressed Oils Induced by Natural Plant Additives
by Marta Krajewska and Magdalena Kachel
Appl. Sci. 2022, 12(7), 3646; https://doi.org/10.3390/app12073646 - 5 Apr 2022
Cited by 2 | Viewed by 1870
Abstract
Cold-pressed oils are becoming increasingly popular. The stability of these oils is the main concern, as changes occur in their organoleptic characteristics during storage, which could affect their suitability for consumption. Various natural plant components with antioxidant properties are added to cold-pressed oils [...] Read more.
Cold-pressed oils are becoming increasingly popular. The stability of these oils is the main concern, as changes occur in their organoleptic characteristics during storage, which could affect their suitability for consumption. Various natural plant components with antioxidant properties are added to cold-pressed oils to preserve their freshness for as long as possible. The present study assessed the effect of addition of garlic and chili pepper on the chemical properties of cold-pressed oil extracted from seeds of flax, hemp, and black cumin. First, the moisture level and the fat and protein content in the seeds were determined, and the oil was then extracted. The oil extraction yield was calculated, and the oil was analyzed to determine its fatty acid composition, acid value, peroxide value, and oxidative stability. Three samples were prepared for further analyses: a control sample with pure oil and two samples supplemented with 1 g/100 g of garlic or chili pepper. Changes in the oil samples stored for 2, 4, and 6 weeks were assessed based on the values of some parameters. The additives were found to exert antioxidant properties, as they caused effective inhibition of oxidative changes occurring during storage of the oils. The additives also extended the induction time. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

11 pages, 7156 KiB  
Article
Simultaneous Determination of Tetrodotoxin in the Fresh and Heat-Processed Aquatic Products by High-Performance Liquid Chromatography–Tandem Mass Spectrometry
by Hongli Ye, Yinfeng Xi, Liangliang Tian, Dongmei Huang, Xuanyun Huang, Xiaosheng Shen, Youqiong Cai and Yuan Wangs
Foods 2022, 11(7), 925; https://doi.org/10.3390/foods11070925 - 23 Mar 2022
Cited by 4 | Viewed by 1950
Abstract
Tetrodotoxin (TTX) was simultaneously detected in the fresh and heat-processed aquatic products by high-performance liquid chromatography–tandem mass spectrometry method. The detection conditions were investigated, including the chromatography column and mobile phase. Based on the optimized parameters, a sensitive determination method of TTX was [...] Read more.
Tetrodotoxin (TTX) was simultaneously detected in the fresh and heat-processed aquatic products by high-performance liquid chromatography–tandem mass spectrometry method. The detection conditions were investigated, including the chromatography column and mobile phase. Based on the optimized parameters, a sensitive determination method of TTX was established. The proposed method featured the merits of a good linear relationship between signal and TTX concentration (R2 = 0.9998), a wide detection matrix-based range of 0.2–100 ng/g, and a low detection limit of 0.2 ng/g, etc. The spiked assays evidenced its accuracy and reliability with recoveries of 90.5–107.2%. Finally, the developed method was simultaneously successfully applied in the determination of TTX in various fresh and heat-processed aquatic products. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

13 pages, 2182 KiB  
Article
Simultaneous Determination of Pyridate, Quizalofop-ethyl, and Cyhalofop-butyl Residues in Agricultural Products Using Liquid Chromatography-Tandem Mass Spectrometry
by Jae-Han Shim, Md. Musfiqur Rahman, Ahmed A. Zaky, Shin-Jee Lee, Ara Jo, Seung-Hee Yun, Jong-Bang Eun, Jong-Hwan Kim, Jong-Woo Park, Emel Oz, Charalampos Proestos, Fatih Oz and A. M. Abd El-Aty
Foods 2022, 11(7), 899; https://doi.org/10.3390/foods11070899 - 22 Mar 2022
Cited by 5 | Viewed by 2688
Abstract
An analytical method was developed to simultaneously determine pyridate, quizalofop-ethyl, and cyhalofop-butyl in brown rice, soybean, potato, pepper, and mandarin using LC-MS/MS. Purification was optimized using various sorbents: primary–secondary amine, octadecyl (C18) silica gel, graphitized carbon black, zirconium dioxide-modified silica particles, zirconium dioxide-modified [...] Read more.
An analytical method was developed to simultaneously determine pyridate, quizalofop-ethyl, and cyhalofop-butyl in brown rice, soybean, potato, pepper, and mandarin using LC-MS/MS. Purification was optimized using various sorbents: primary–secondary amine, octadecyl (C18) silica gel, graphitized carbon black, zirconium dioxide-modified silica particles, zirconium dioxide-modified silica particles (Z-SEP), and multi-walled carbon nanotubes (MWCNTs). Three versions of QuECHERS methods were then tested using the optimal purification agent. Finally, samples were extracted using acetonitrile and QuEChERS EN salts and purified using the Z-SEP sorbent. A six-point matrix-matched external calibration curve was constructed for the analytes. Good linearity was achieved with a determination coefficient ≥0.999. The limits of detection and quantification were 0.0075 mg/kg and 0.01 mg/kg, respectively. The method was validated after fortifying the target standards to the blank matrices at three concentration levels with five replicates for each concentration. The average recovery was within an acceptable range (70–120%), with a relative standard deviation <20%. The applicability of the developed method was evaluated with real-world market samples, all of which tested negative for these three herbicide residues. Therefore, this method can be used for the routine analysis of pyridate, quizalofop-ethyl, and cyhalofop-butyl in agricultural products. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

16 pages, 2287 KiB  
Article
Recovery of Pasteurization-Resistant Vibrio parahaemolyticus from Seafoods Using a Modified, Two-Step Enrichment
by Guadalupe Meza, Hussain Majrshi and Hung King Tiong
Foods 2022, 11(5), 764; https://doi.org/10.3390/foods11050764 - 7 Mar 2022
Cited by 5 | Viewed by 4342
Abstract
Persistent Vibrio-parahaemolyticus-associated vibriosis cases, attributed, in part, to the inefficient techniques for detecting viable-but-non-culturable (VBNC) Vibrio pathogens and the ingestion of undercooked seafood, is the leading cause of bacterial seafood-borne outbreaks, hospitalizations, and deaths in the United States. The effect of extreme [...] Read more.
Persistent Vibrio-parahaemolyticus-associated vibriosis cases, attributed, in part, to the inefficient techniques for detecting viable-but-non-culturable (VBNC) Vibrio pathogens and the ingestion of undercooked seafood, is the leading cause of bacterial seafood-borne outbreaks, hospitalizations, and deaths in the United States. The effect of extreme heat processing on Vibrio biology and its potential food safety implication has been underexplored. In the present work, environmental samples from the wet market, lagoon, and estuarine environments were analyzed for V. parahaemolyticus recovery using a modified, temperature-dependent, two-step enrichment method followed by culture-based isolation, phenotype, and genotype characterizations. The work recovered novel strains (30% of 12 isolates) of V. parahaemolyticus from prolonged-heat-processing conditions (80 °C, 20 min), as confirmed by 16S rDNA bacterial identification. Select strains, VHT1 and VHT2, were determined to be hemolysis- and urease-positive pathogens. PCR analyses of chromosomal DNA implicated the tdh-independent, tlh-associated hemolysis in these strains. Both strains exhibited significant, diverse antibiotic profiles (p < 0.05). Turbidimetric and viable count assays revealed the pasteurization-resistant V. parahaemolyticus VHT1/VHT2 (62 °C, 8 h). These findings disclose the efficiency of Vibrio extremist recovery by the modified, two-step enrichment technique and improve knowledge of Vibrio biology essential to food safety reformation. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

22 pages, 400 KiB  
Review
Uses of FT-MIR Spectroscopy and Multivariate Analysis in Quality Control of Coffee, Cocoa, and Commercially Important Spices
by Lucero Azusena Castillejos-Mijangos, Aracely Acosta-Caudillo, Tzayhrí Gallardo-Velázquez, Guillermo Osorio-Revilla and Cristian Jiménez-Martínez
Foods 2022, 11(4), 579; https://doi.org/10.3390/foods11040579 - 17 Feb 2022
Cited by 10 | Viewed by 4033
Abstract
Nowadays, coffee, cocoa, and spices have broad applications in the food and pharmaceutical industries due to their organoleptic and nutraceutical properties, which have turned them into products of great commercial demand. Consequently, these products are susceptible to fraud and adulteration, especially those sold [...] Read more.
Nowadays, coffee, cocoa, and spices have broad applications in the food and pharmaceutical industries due to their organoleptic and nutraceutical properties, which have turned them into products of great commercial demand. Consequently, these products are susceptible to fraud and adulteration, especially those sold at high prices, such as saffron, vanilla, and turmeric. This situation represents a major problem for industries and consumers’ health. Implementing analytical techniques, i.e., Fourier transform mid-infrared (FT-MIR) spectroscopy coupled with multivariate analysis, can ensure the authenticity and quality of these products since these provide unique information on food matrices. The present review addresses FT-MIR spectroscopy and multivariate analysis application on coffee, cocoa, and spices authentication and quality control, revealing their potential use and elucidating areas of opportunity for future research. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

18 pages, 4301 KiB  
Article
Effects of High-Pressure, Hydrothermal, and Enzyme-Assisted Treatment on the Taste and Flavor Profile of Water-Soluble Ginger (Zingiber officinale) Extract
by Dong-Geon Nam, Mina Kim, Jeong-Sook Choe and Ae-jin Choi
Foods 2022, 11(4), 508; https://doi.org/10.3390/foods11040508 - 10 Feb 2022
Cited by 19 | Viewed by 3321
Abstract
Ginger, a plant widely consumed worldwide, is used as a spice or to enhance the flavor of foods. In this study, the taste characteristics (gingerol, shogaol, and amino acid) of extracts treated with various solubilizing methods were objectively compared. In addition, an E-nose [...] Read more.
Ginger, a plant widely consumed worldwide, is used as a spice or to enhance the flavor of foods. In this study, the taste characteristics (gingerol, shogaol, and amino acid) of extracts treated with various solubilizing methods were objectively compared. In addition, an E-nose confirmed the flavor pattern combined with principal component analysis (PCA) between each extract gas chromatogram-tandem mass spectrometry was performed to compare and analyze volatile compounds between extraction methods. As a result, high-pressure enzyme-assisted extraction (HPE) and hydrothermal enzyme-assisted extraction (HWE) treatment effectively improved the extraction yield of ginger and the contents of gingerol and shogaol and removed the bitter taste. In addition, radar charts of both E-nose and PCA provided the distribution of flavor substances in HPE and HWE products of ginger. After enzyme-assisted treatment, a strong fruity and piquant flavor was noted. In conclusion, it is suggested that ginger extract of enzyme-assisted treatment has increased flavor compounds and can be an excellent food material. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

13 pages, 297 KiB  
Article
Risk Assessment and Determination of Heavy Metals in Home Meal Replacement Products by Using Inductively Coupled Plasma Mass Spectrometry and Direct Mercury Analyzer
by Hee-Jeong Hwang, Gyo-Ha Hwang, So-Min Ahn, Yong-Yeon Kim and Han-Seung Shin
Foods 2022, 11(4), 504; https://doi.org/10.3390/foods11040504 - 10 Feb 2022
Cited by 9 | Viewed by 2613
Abstract
This study quantified six heavy metals (Pb, Cd, As, Sn, Hg, and Me-Hg) in home meal replacement products. Satisfactory linearity (R2 > 0.99), recovery (80.65–118.02%), limits of detection (0.02–2.81 μg/kg), limits of quantification (0.05–8.51 μg/kg), accuracy (80.49–119.87%), precision (0.26–14.93%), standard uncertainty [...] Read more.
This study quantified six heavy metals (Pb, Cd, As, Sn, Hg, and Me-Hg) in home meal replacement products. Satisfactory linearity (R2 > 0.99), recovery (80.65–118.02%), limits of detection (0.02–2.81 μg/kg), limits of quantification (0.05–8.51 μg/kg), accuracy (80.49–119.87%), precision (0.26–14.93%), standard uncertainty (0.082–0.321%) and relative standard uncertainty (0.084–0.320%) of the six heavy metals were obtained. The average concentration of the six heavy metals was 8.87 μg/kg. Heavy metal concentrations were converted to food intake data of 0.009 μg/kg to recalculate the 95th percentile food intake data (g/day) of individual heavy metals. These were then divided by age group to evaluate the average exposure to heavy metals and determine the 95th percentile of exposure from daily intake and for the whole population, of home meal replacement products. The chronic daily intake amount of six heavy metals was 1.60 × 10−2 μg/kg/day. Based on total chronic daily intake values, the risk and margin of exposure of each of the heavy metals was 9.13 × 107, demonstrating that intake associated with home meal replacement products is negligible. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
15 pages, 2198 KiB  
Article
Sensomics-Assisted Aroma Decoding of Pea Protein Isolates (Pisum sativum L.)
by Florian Utz, Andrea Spaccasassi, Johanna Kreissl, Timo D. Stark, Caren Tanger, Ulrich Kulozik, Thomas Hofmann and Corinna Dawid
Foods 2022, 11(3), 412; https://doi.org/10.3390/foods11030412 - 30 Jan 2022
Cited by 16 | Viewed by 4936
Abstract
The aroma of pea protein (Pisum sativum L.) was decrypted for knowledge-based flavor optimization of new food products containing pea protein. Sensomics helped to determine several volatiles via ultra-high performance liquid chromatography tandem mass spectrometry and 3-nitrophenylhydrazine derivatization. Among the investigated volatiles, [...] Read more.
The aroma of pea protein (Pisum sativum L.) was decrypted for knowledge-based flavor optimization of new food products containing pea protein. Sensomics helped to determine several volatiles via ultra-high performance liquid chromatography tandem mass spectrometry and 3-nitrophenylhydrazine derivatization. Among the investigated volatiles, representatives of aldehydes, ketones, and acids were reported in literature as especially important in pea and pea-related matrices. After validation of the method and quantitation of the corresponding analytes, sensory reconstitution as well as omission studies of a selected pea protein were performed and revealed nine odor-active compounds as key food odorants (3-methylbutanal, hexanal, acetaldehyde, (E,E)-2,4-nonadienal, (E)-2-octenal, benzaldehyde, heptanal, 2-methylbutanal, and nonanoic acid). Interestingly, eight out of nine compounds belonged to the chemical class of aldehydes. Statistical heatmap and cluster analysis of all odor activity values of different pea proteins confirmed the obtained sensory results and generalize these nine key food odorants in other pea proteins. The knowledge of key components gained shows potential for simplifying industrial flavor optimization of pea protein-based food. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

14 pages, 1344 KiB  
Article
Multiclass Comparative Analysis of Veterinary Drugs, Mycotoxins, and Pesticides in Bovine Milk by Ultrahigh-Performance Liquid Chromatography–Hybrid Quadrupole–Linear Ion Trap Mass Spectrometry
by Qi Jia, Jing Qiu, Lin Zhang, Guangqin Liao, Yanbo Jia and Yongzhong Qian
Foods 2022, 11(3), 331; https://doi.org/10.3390/foods11030331 - 25 Jan 2022
Cited by 14 | Viewed by 2956
Abstract
A multiclass and multiresidue method for simultaneously screening and confirming veterinary drugs, mycotoxins, and pesticides in bovine milk was developed and validated with ultrahigh-performance liquid chromatography–hybrid quadrupole–linear ion trap mass spectrometry (UHPLC-Qtrap-MS). A total of 209 targeted contaminants were effectively extracted using an [...] Read more.
A multiclass and multiresidue method for simultaneously screening and confirming veterinary drugs, mycotoxins, and pesticides in bovine milk was developed and validated with ultrahigh-performance liquid chromatography–hybrid quadrupole–linear ion trap mass spectrometry (UHPLC-Qtrap-MS). A total of 209 targeted contaminants were effectively extracted using an optimized QuEChERS method. Quantitative and qualitative confirmation were achieved simultaneously by multiple reaction monitoring–information-dependent acquisition–enhanced product ion (MRM-IDA-EPI) scan mode. The validation results exhibited a good sensitivity with the LOQs of 0.05–5 μg/kg, which was satisfactory for their MRLs in China or EU. The recoveries of in-house spiked samples were in the range of 51.20–129.76% with relative standard deviations (RSD) between replicates (n = 3) 0.82% and 19.76%. The test results of 140 milk samples from supermarkets and dairy farms in China showed that cloxacillin, aflatoxin M1, acetamiprid, and fipronil sulfone were found with lower concentrations. Combined with the residue results from the literature, penicillin G and cloxacillin (beta-lactams), enrofloxacin and ciprofloxacin (fluoroquinolones), and sulfamerazine (sulfonamides) were more frequently detected in different countries and need to receive more attention regarding their monitoring and control. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

16 pages, 1155 KiB  
Article
In-Country Method Validation of a Paper-Based, Smartphone-Assisted Iron Sensor for Corn Flour Fortification Programs
by Anna W. Waller, Marcela Gaytán-Martínez and Juan E. Andrade Laborde
Foods 2022, 11(3), 276; https://doi.org/10.3390/foods11030276 - 20 Jan 2022
Cited by 3 | Viewed by 2054
Abstract
Food fortification in low-income settings is limited due to the lack of simple quality control sensing tools. In this study, we field validated a paper-based, smartphone-assisted colorimetric assay (Nu3Px) for the determination of iron in fortified flours against the gold standard method, atomic [...] Read more.
Food fortification in low-income settings is limited due to the lack of simple quality control sensing tools. In this study, we field validated a paper-based, smartphone-assisted colorimetric assay (Nu3Px) for the determination of iron in fortified flours against the gold standard method, atomic emission spectrometry (AES). Samples from commercial brands (n = 6) were collected from supermarkets, convenience stores, and directly from companies in Mexico and characterized using both Nu3Px and AES. Nu3Px’s final error parameters were quantified (n = 45) via method validation final experiments (replication and comparison of methods experiment). Qualitative pilot testing was conducted, assessing Nu3Px’s accept/reject batch decision making (accept ≥ 40 μg Fe/g flour; reject < 40 μg Fe/g flour) against Mexico’s fortification policy. A modified user-centered design process was followed to develop and evaluate an alternative sampling procedure using affordable tools. Variation of iron content in Mexican corn flours ranged from 23% to 39%. Nu3Px’s random error was 12%, and its bias was 1.79 ± 9.99 μg Fe/g flour. Nu3Px had a true mean difference from AES equal to 0 and similar variances. AES and Nu3Px made similar classifications based on Mexico’s policy. Using simple, affordable tools for sampling resulted in similar output to the traditional sampling preparation (r = 0.952, p = 0.01). The affordable sample preparation kit has similar precision to using analytical tools. The sample preparation kit coupled with the smartphone app and paper-based assay measure iron within the performance parameters required for the application to corn flour fortification programs, such as in the case of Mexico. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

10 pages, 1362 KiB  
Article
Environmental Impact of Meals: How Big Is the Carbon Footprint in the School Canteens?
by Mirco Volanti, Francesco Arfelli, Esmeralda Neri, Aurora Saliani, Fabrizio Passarini, Ivano Vassura and Gianluca Cristallo
Foods 2022, 11(2), 193; https://doi.org/10.3390/foods11020193 - 12 Jan 2022
Cited by 12 | Viewed by 5073
Abstract
The inhabitants of the world are expected to grow by two billion in the next two decades; as population increases, food demand rises too, leading to more intensive resource exploitation and greater negative externalities related to food production. In this paper the environmental [...] Read more.
The inhabitants of the world are expected to grow by two billion in the next two decades; as population increases, food demand rises too, leading to more intensive resource exploitation and greater negative externalities related to food production. In this paper the environmental impact of meals provided in school canteens are analysed through the Life Cycle Assessment methodology, in order to evaluate the GHGs emissions released by food production. Meals, and not just individual foods, have been considered so as to include in the analysis the nutritional aspects on which meals are based. Results shows that meat, fish and dairy products are the most impacting in terms of greenhouse gas emissions, with values that shift from 31.7 and 24.1 kg CO2 eq for butter and veal, to 2.37 kg CO2 eq for the octopus, while vegetables, legumes, fruit and cereals are less carbon intensive (average of 3.71 kg CO2 eq for the considered vegetables). When the environmental impact is related to the food energy, the best option are first courses because they combine a low carbon footprint with a high energy content. The results of the work can be used both by the consumer, who can base the meal choice on environmental impact information, and by food services, who can adjust menus to achieve a more sustainable production. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

12 pages, 3210 KiB  
Article
Rapid Identification of Adulteration in Edible Vegetable Oils Based on Low-Field Nuclear Magnetic Resonance Relaxation Fingerprints
by Zhi-Ming Huang, Jia-Xiang Xin, Shan-Shan Sun, Yi Li, Da-Xiu Wei, Jing Zhu, Xue-Lu Wang, Jiachen Wang and Ye-Feng Yao
Foods 2021, 10(12), 3068; https://doi.org/10.3390/foods10123068 - 9 Dec 2021
Cited by 11 | Viewed by 3680
Abstract
Most current approaches applied for the essential identification of adulteration in edible vegetable oils are of limited practical benefit because they require long analysis times, professional training, and costly instrumentation. The present work addresses this issue by developing a novel simple, accurate, and [...] Read more.
Most current approaches applied for the essential identification of adulteration in edible vegetable oils are of limited practical benefit because they require long analysis times, professional training, and costly instrumentation. The present work addresses this issue by developing a novel simple, accurate, and rapid identification approach based on the magnetic resonance relaxation fingerprints obtained from low-field nuclear magnetic resonance spectroscopy measurements of edible vegetable oils. The relaxation fingerprints obtained for six types of edible vegetable oil, including flaxseed oil, olive oil, soybean oil, corn oil, peanut oil, and sunflower oil, are demonstrated to have sufficiently unique characteristics to enable the identification of the individual types of oil in a sample. By using principal component analysis, three characteristic regions in the fingerprints were screened out to create a novel three-dimensional characteristic coordination system for oil discrimination and adulteration identification. Univariate analysis and partial least squares regression were used to successfully quantify the oil adulteration in adulterated binary oil samples, indicating the great potential of the present approach on both identification and quantification of edible oil adulteration. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

16 pages, 5031 KiB  
Article
A Study on the Clustering of Extra Virgin Olive Oils Extracted from Cultivars Growing in Four Ionian Islands (Greece) by Multivariate Analysis of Their Phenolic Profile, Antioxidant Activity and Genetic Markers
by Iliana Kalaboki, Dionysios Koulougliotis, Dimitra Kleisiari, Eleni Melliou, Prokopios Magiatis, Adamantia Kampioti, Effimia Eriotou and Aspasia Destouni
Foods 2021, 10(12), 3009; https://doi.org/10.3390/foods10123009 - 4 Dec 2021
Cited by 4 | Viewed by 2157
Abstract
Background: The phenolic fraction of extra virgin olive oil (EVOO) has disease preventive and health-promoting properties which are supported by numerous studies. As such, EVOO is defined as a functional food. The aim of the present study was to characterize the phenolic profile [...] Read more.
Background: The phenolic fraction of extra virgin olive oil (EVOO) has disease preventive and health-promoting properties which are supported by numerous studies. As such, EVOO is defined as a functional food. The aim of the present study was to characterize the phenolic profile of olive oil from cultivars farmed in the Ionian Islands (Zakynthos, Kefalonia, Lefkada, and Kerkyra) and to investigate the association of phenols to antioxidant activity, which is central to its functionality. Furthermore, the study investigates whether multivariate analyses on the concentration of individual biophenolic compounds and genetic population diversity could classify the olive oil samples based on their geographic origin. Methods: Phenols were determined in 103 samples from different Ionian Island tree populations by 1H nuclear magnetic resonance (NMR), and sample antioxidant activity was measured by their capacity to reduce the free radical 2,2-diphenyl-1-picrylhydrazyl) (DPPH). Genetic diversity was measured by estimating Nei’s population genetic distance using 15 reproducible bands from random amplified polymorphic DNA (RAPD) genotyping. Results: Principal component analysis (PCA) of the secoiridoid concentrations clustered samples according to cultivar. Clustering based on genetic distances is not concordant with phenolic clustering. A cultivar effect was also demonstrated in the association between the concentration of individual phenols with DPPH reducing activity. Conclusions: Taken together, the study shows that the olive oil phenolic content defines “cultivar-specific phenolic profiles” and that environmental factors other than agronomic conditions contribute more to phenotype variance than genetics. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

13 pages, 3823 KiB  
Article
Fingerprint Approaches Coupled with Chemometrics to Discriminate Geographic Origin of Imported Salmon in China’s Consumer Market
by Xianshu Fu, Xuezhen Hong, Jinyan Liao, Qingge Ji, Chaofeng Li, Mingzhou Zhang, Zihong Ye and Xiaoping Yu
Foods 2021, 10(12), 2986; https://doi.org/10.3390/foods10122986 - 3 Dec 2021
Cited by 5 | Viewed by 1946
Abstract
Of the salmon sold in China’s consumer market, 92% was labelled as Norwegian salmon, but was in fact was mainly imported from Chile. The aim of this study was to establish an effective method for discriminating the geographic origin of imported salmon using [...] Read more.
Of the salmon sold in China’s consumer market, 92% was labelled as Norwegian salmon, but was in fact was mainly imported from Chile. The aim of this study was to establish an effective method for discriminating the geographic origin of imported salmon using two fingerprint approaches, Near-infrared (NIR) spectroscopy and mineral element fingerprint (MEF). In total, 80 salmon (40 from Norway and 40 from Chile) were tested, and data generated by NIR and MEF were analysed via various chemometrics. Four spectral preprocessing methods, including vector normalization (VN), Savitzky Golay (SG) smoothing, first derivative (FD) and second derivative (SD), were employed on the raw NIR data, and a partial least squares (PLS) model based on the FD + SG9 pretreatment could successfully differentiate Norwegian salmons from Chilean salmons, with a R2 value of 98.5%. Analysis of variance (ANOVA) and multiple comparative analysis were employed on the contents of 16 mineral elements including Pb, Fe, Cu, Zn, Al, Sr, Ni, As, Cr, V, Se, Mn, K, Ca, Na and Mg. The results showed that Fe, Zn, Al, Ni, As, Cr, V, Se, Ca and Na could be used as characteristic elements to discriminate the geographical origin of the imported salmon, and the discrimination rate of the linear discriminant analysis (LDA) model, trained on the above 10 elements, could reach up to 98.8%. The results demonstrate that both NIR and MEF could be effective tools for the rapid discrimination of geographic origin of imported salmon in China’s consumer market. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

15 pages, 3300 KiB  
Article
Changes of Volatile Flavor Compounds in Large Yellow Croaker (Larimichthys crocea) during Storage, as Evaluated by Headspace Gas Chromatography–Ion Mobility Spectrometry and Principal Component Analysis
by Tengfei Zhao, Soottawat Benjakul, Chiara Sanmartin, Xiaoguo Ying, Lukai Ma, Gengsheng Xiao, Jin Yu, Guoqin Liu and Shanggui Deng
Foods 2021, 10(12), 2917; https://doi.org/10.3390/foods10122917 - 25 Nov 2021
Cited by 19 | Viewed by 3098
Abstract
The large yellow croaker is one of the most economically important fish in Zhoushan, Zhejiang Province, and is well known for its high protein and fat contents, fresh and tender meat, and soft taste. However, the mechanisms involved in its flavor changes during [...] Read more.
The large yellow croaker is one of the most economically important fish in Zhoushan, Zhejiang Province, and is well known for its high protein and fat contents, fresh and tender meat, and soft taste. However, the mechanisms involved in its flavor changes during storage have yet to be revealed, although lipid oxidation has been considered to be one important process in determining such changes. Thus, to explore the changes in the flavor of large yellow croaker fish meat during different storage periods, the main physical and chemical characteristics of the fish meat, including the acid value, peroxide value, p-anisidine value, conjugated diene value, and identities of the various flavor substances, were investigated and analyzed by multivariable methods, including headspace gas chromatography–ion mobility spectrometry (GC-IMS) and principal component analysis (PCA). It was found that after 60 d storage, the types and contents of the aldehyde and ketone aroma components increased significantly, while after 120 d, the contents of ketones (2-butanone), alcohols (1-propanethiol), and aldehydes (n-nonanal) decreased significantly. More specifically, aldehyde components dominated over ketones and lipids, while the n-nonanal content showed a downward trend during storage, and the 3-methylbutanol (trimer), 3-methylbutanol (dimer, D), 3-pentanone (D), and 3-pentanone (monomer) contents increased, whereas these compounds were identified as the key components affecting the fish meat flavor. Furthermore, after 120 d storage, the number of different flavor components reached its highest value, thereby confirming that the storage time influences the flavor of large yellow croaker fish. In this context, it should be noted that many of these compounds form through the Maillard reaction to accelerate the deterioration of fish meat. It was also found that after storage for 120 d, the physical indices of large yellow croaker meat showed significant changes, and its physicochemical properties varied. These results therefore demonstrate that a combination of GC-IMS and PCA can be used to identify the differences in flavor components present in fish meat during storage. Our study provides useful knowledge for understanding the different flavors associated with fish meat products during and following storage. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

16 pages, 2724 KiB  
Article
Mapping Aspergillus niger Metabolite Biomarkers for In Situ and Early Evaluation of Table Grapes Contamination
by Joao Raul Belinato, Carina Pedrosa Costa, Adelaide Almeida, Silvia M. Rocha and Fabio Augusto
Foods 2021, 10(11), 2870; https://doi.org/10.3390/foods10112870 - 19 Nov 2021
Cited by 1 | Viewed by 2870
Abstract
The Aspergillus niger exometabolome was recently investigated using advanced gas chromatography in tandem with multivariate analysis, which allowed a metabolite biomarker pattern to be proposed. Microbial metabolomics patterns have gained enormous relevance, mainly due to the amount of information made available, which may [...] Read more.
The Aspergillus niger exometabolome was recently investigated using advanced gas chromatography in tandem with multivariate analysis, which allowed a metabolite biomarker pattern to be proposed. Microbial metabolomics patterns have gained enormous relevance, mainly due to the amount of information made available, which may be useful in countless processes. One of the great challenges in microbial metabolomics is related to applications in more complex systems of metabolomics information obtained from studies carried out in culture media, as complications may occur due to the dynamic nature of biological systems. Thus, the main objective of this research was to evaluate the applicability of the A. niger metabololite biomarkers pattern for in situ and early evaluation of table grapes contamination, used as study model. A. niger is a ubiquitous fungus responsible for food contamination, being reported as one of the main agents of the black mold disease, a serious post-harvest pathology of table grapes. This work included analysis from 1 day of growth time of pure A. niger cultures, A. niger cultures obtained from previously contaminated grapes, and finally, an in situ solid-phase microextraction (SPME) approach directly on previously contaminated table grapes. Supervised multivariate analysis was performed which revealed that after 1 day of inoculation it was possible to detect A. niger biomarkers, which can be extremely useful in making this type of method possible for the rapid detection of food contamination. The results obtained confirm the potential applicability of the pattern of A. niger biomarkers for early detection of the fungi (after 1 day of contamination), and may be further explored for access food susceptibility to fungi contamination, based on direct analysis of the food item. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

17 pages, 1970 KiB  
Article
Influence of Drying Techniques on the Physicochemical, Nutritional, and Morphological Properties of Bighead Carp (Hypophthalmichthys nobilis) Fillets
by Kamal Alahmad, Wenshui Xia, Qixing Jiang and Yanshun Xu
Foods 2021, 10(11), 2837; https://doi.org/10.3390/foods10112837 - 17 Nov 2021
Cited by 5 | Viewed by 2481
Abstract
Different experiment analyses were performed to evaluate the influence of two drying techniques (oven drying and microwave drying) on the fillets of bighead carp fish (Hypophthalmichthys nobilis). The processed and fresh samples were subjected to the chemical analysis of (amino acids, [...] Read more.
Different experiment analyses were performed to evaluate the influence of two drying techniques (oven drying and microwave drying) on the fillets of bighead carp fish (Hypophthalmichthys nobilis). The processed and fresh samples were subjected to the chemical analysis of (amino acids, minerals, volatile compounds, fatty acids, and vitamins) as well as scanning electron microscopy, thermal analysis, and color measurement, in order to identify nutritional components that can be additives or supplementary in food industries. The drying techniques increased the protein content significantly. Amino acids were identified, and the level of essential amino acid (EAA) was higher under the microwave treatment compared with the oven drying process. The Ca+2 and K+1 were presented in high values, followed by Na+1 and Mg+2. In addition, the drying techniques showed and released more volatile compounds in the processed samples compared with the unprocessed samples. Under the drying process, polyunsaturated fatty acids were increased in the processed fillets, whereas the level of saturated and monounsaturated fatty acids reduced. Thermal degradation occurred from 100 to 150 °C. However, the processed samples were subjected to an intensive endothermic response, but remained stable until 100 °C. Therefore, the microwave technique showed some enhancements in the nutritional value and has the potential to be applied as an effective preservation method of bighead carp fish. Furthermore, dried fillets could be an alternative source of bighead carp fish for the food industry. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

12 pages, 1205 KiB  
Article
Geographic Origin Discrimination of Millet Using Vis-NIR Spectroscopy Combined with Machine Learning Techniques
by Muhammad Hilal Kabir, Mahamed Lamine Guindo, Rongqin Chen and Fei Liu
Foods 2021, 10(11), 2767; https://doi.org/10.3390/foods10112767 - 11 Nov 2021
Cited by 20 | Viewed by 3097
Abstract
Millet is a primary food for people living in the dry and semi-dry regions and is dispersed within most parts of Europe, Africa, and Asian countries. As part of the European Union (EU) efforts to establish food originality, there is a global need [...] Read more.
Millet is a primary food for people living in the dry and semi-dry regions and is dispersed within most parts of Europe, Africa, and Asian countries. As part of the European Union (EU) efforts to establish food originality, there is a global need to create Protected Geographical Indication (PGI) and Protected Designation of Origin (PDO) of crops and agricultural products to ensure the integrity of the food supply. In the present work, Visible and Near-Infrared Spectroscopy (Vis-NIR) combined with machine learning techniques was used to discriminate 16 millet varieties (n = 480) originating from various regions of China. Five different machine learning algorithms, namely, K-nearest neighbor (K-NN), Linear discriminant analysis (LDA), Logistic regression (LR), Random Forest (RF), and Support vector machine (SVM), were used to train the NIR spectra of these millet samples and to assess their discrimination performance. Visible cluster trends were obtained from the Principal Component Analysis (PCA) of the spectral data. Cross-validation was used to optimize the performance of the models. Overall, the F-Score values were as follows: SVM with 99.5%, accompanied by RF with 99.5%, LDA with 99.5%, K-NN with 99.1%, and LR with 98.8%. Both the linear and non-linear algorithms yielded positive results, but the non-linear models appear slightly better. The study revealed that applying Vis-NIR spectroscopy assisted by machine learning technique can be an essential tool for tracing the origins of millet, contributing to a safe authentication method in a quick, relatively cheap, and non-destructive way. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

15 pages, 1205 KiB  
Article
Dissipation Dynamics, Terminal Residues and Dietary Risk Assessment of Two Isomers of Dimethacarb in Rice by HPLC-MS/MS
by Shouying Tang, Xiurou Meng, Yongkang Wang, Xueqin Shi, Tianyou Feng, Deyu Hu and Yuping Zhang
Foods 2021, 10(11), 2615; https://doi.org/10.3390/foods10112615 - 28 Oct 2021
Viewed by 1717
Abstract
Dimethacarb is a carbamate insecticide developed in China that contains 3,5-dimethylphenyl methylcarbamate (XMC) and 3,4-dimethylphenyl methylcarbamate (MPMC) isomers. Dimethacarb has been registered for use in rice in China, but no residue or degradation of dimethacarb in rice has been reported and the maximum [...] Read more.
Dimethacarb is a carbamate insecticide developed in China that contains 3,5-dimethylphenyl methylcarbamate (XMC) and 3,4-dimethylphenyl methylcarbamate (MPMC) isomers. Dimethacarb has been registered for use in rice in China, but no residue or degradation of dimethacarb in rice has been reported and the maximum residue limits (MRLs) for rice have not been established. A versatile high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed with modified QuEChERS sample preparation to determine two isomers of dimethacarb in rice. The average recovery of XMC and MPMC in brown rice, rice husk, and rice straw ranged from 71.69 to 100.60%, with spike levels of 0.01 to 1 mg/kg and relative standard deviations (RSDs) of 0.21 to 8.41%. Field experiments showed that the half-lives of XMC and MPMC in rice straw were 4.08 to 4.23 days and 3.48 to 3.69 days, respectively. Final residues of XMC and MPMC in rice husk after 21 days of spraying at six sites ranged from 0.23–2.65 mg/kg and 0.06–1.10 mg/kg, and <0.01–0.16 mg/kg and <0.01–0.04 mg/kg in brown rice. The ratio of XMC to MPMC content in the rice husk differed from the original 50% dimethacarb EC, indicating the difference in the degradation rate of XMC and MPMC. The estimated risk quotient (RQ) for both XMC and MPMC was less than 30%. These data for residues from six representative locations could provide a reference for establishing the MRL of dimethacarb in rice. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

12 pages, 3327 KiB  
Article
A Colorimetric Strategy Based on Aptamer-Catalyzed Hairpin Assembly for the On-Site Detection of Salmonella typhimurium in Milk
by Sihan Chen, Xinran Zong, Jiapeng Zheng, Jiaxin Zhang, Mengyao Zhou, Qing Chen, Chaoxin Man and Yujun Jiang
Foods 2021, 10(11), 2539; https://doi.org/10.3390/foods10112539 - 22 Oct 2021
Cited by 15 | Viewed by 2807
Abstract
Salmonella typhimurium (S. typhimurium) is a foodborne pathogen that has caused numerous outbreaks worldwide, necessitating the development of on-site strategy to prevent early contamination. Here, we set up an enzyme-free strategy for aptamer-catalyzed hairpin assembly in which salt-induced aggregation of unmodified [...] Read more.
Salmonella typhimurium (S. typhimurium) is a foodborne pathogen that has caused numerous outbreaks worldwide, necessitating the development of on-site strategy to prevent early contamination. Here, we set up an enzyme-free strategy for aptamer-catalyzed hairpin assembly in which salt-induced aggregation of unmodified gold nanoparticles (AuNPs) served as a colorimetric signal output, allowing on-site detection of S. typhimurium in milk. The aptamer-functionalized magnetic beads were used as a vehicle of specifically enriching target bacteria which conjugated with target aptamer to trigger the “Y” shape catalytic hairpin assembly (Y-CHA) circuit. Due to the hairpins desorbing from the surface of AuNPs to the formation of a large amount of double-stranded DNA (dsDNA), AuNPs turned from dispersion to aggregation in the presence of S. typhimurium, resulting in a change of the colorimetric signal from red to blue-gray. The signal output showed a linear relationship for S. typhimurium over a concentration range of 102 to 106 CFU/mL, with a sensitivity of 2.4 × 102 CFU/mL under optimal conditions. The visual protocol has excellent selectivity even in the presence of other competitive bacteria and has been validated in real milk samples with a sensitivity of 2.8 × 103 CFU/mL. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

13 pages, 2590 KiB  
Article
Development of a Double Nanobody-Based Sandwich Immunoassay for the Detecting Staphylococcal Enterotoxin C in Dairy Products
by Yanwei Ji, Lili Chen, Yingying Wang, Kaihui Zhang, Haofen Wu, Yuan Liu, Yanru Wang and Jianlong Wang
Foods 2021, 10(10), 2426; https://doi.org/10.3390/foods10102426 - 13 Oct 2021
Cited by 13 | Viewed by 2579
Abstract
Staphylococcal enterotoxins (SEs) represent the leading reason for staphylococcal food poisoning (SFP) and various other diseases. Reports often indicate Staphylococcal enterotoxin C (SEC) as the most frequently found enterotoxin in dairy products. To minimize consumer exposure to SEC, this paper aimed to create [...] Read more.
Staphylococcal enterotoxins (SEs) represent the leading reason for staphylococcal food poisoning (SFP) and various other diseases. Reports often indicate Staphylococcal enterotoxin C (SEC) as the most frequently found enterotoxin in dairy products. To minimize consumer exposure to SEC, this paper aimed to create a sandwich enzyme-linked immunosorbent assay (ELISA) based on nanobodies (sandwich Nbs-ELISA) to accurately detect SEC in dairy products without the influence of staphylococcal protein A (SpA). Therefore, after inoculating a Bactrian camel with SEC, a phage display Nb library was created. Eleven Nbs against SEC were identified in three biopanning steps. Based on their affinity and pairing level, a sandwich Nbs-ELISA was developed using the C6 anti-SEC Nb as the capture antibody, while the detection antibody was represented by the C11 phage display anti-SEC Nb. In optimal conditions, the quantitative range of the present sandwich ELISA was 4-250 ng/mL with a detection limit (LOD) of 2.47 ng/mL, obtained according to the blank value plus three standard deviations. The developed technique was subjected to specific measurements, revealing minimal cross-reactivity with Staphylococcus aureus (S. aureus), Staphylococcal enterotoxin A (SEA), Staphylococcal enterotoxin B (SEB), and SpA. The proposed method exhibited high specificity and an excellent recovery rate of 84.52~108.06% in dairy products. Therefore, the sandwich Nbs-ELISA showed significant potential for developing a specific, sensitive technique for SEC detection in dairy products. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

15 pages, 27060 KiB  
Article
A New Workflow to Generate Monoclonal Antibodies against Microorganisms
by Markus Göthel, Martin Listek, Katrin Messerschmidt, Anja Schlör, Anja Hönow and Katja Hanack
Appl. Sci. 2021, 11(20), 9359; https://doi.org/10.3390/app11209359 - 9 Oct 2021
Cited by 3 | Viewed by 3939
Abstract
Monoclonal antibodies are used worldwide as highly potent and efficient detection reagents for research and diagnostic applications. Nevertheless, the specific targeting of complex antigens such as whole microorganisms remains a challenge. To provide a comprehensive workflow, we combined bioinformatic analyses with novel immunization [...] Read more.
Monoclonal antibodies are used worldwide as highly potent and efficient detection reagents for research and diagnostic applications. Nevertheless, the specific targeting of complex antigens such as whole microorganisms remains a challenge. To provide a comprehensive workflow, we combined bioinformatic analyses with novel immunization and selection tools to design monoclonal antibodies for the detection of whole microorganisms. In our initial study, we used the human pathogenic strain E. coli O157:H7 as a model target and identified 53 potential protein candidates by using reverse vaccinology methodology. Five different peptide epitopes were selected for immunization using epitope-engineered viral proteins. The identification of antibody-producing hybridomas was performed by using a novel screening technology based on transgenic fusion cell lines. Using an artificial cell surface receptor expressed by all hybridomas, the desired antigen-specific cells can be sorted fast and efficiently out of the fusion cell pool. Selected antibody candidates were characterized and showed strong binding to the target strain E. coli O157:H7 with minor or no cross-reactivity to other relevant microorganisms such as Legionella pneumophila and Bacillus ssp. This approach could be useful as a highly efficient workflow for the generation of antibodies against microorganisms. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

15 pages, 4103 KiB  
Article
Interaction of Carbon Dots from Grilled Spanish Mackerel with Human Serum Albumin, γ-Globulin and Fibrinogen
by Guoxin Cui, Yukun Song, Kangjing Liu and Mingqian Tan
Foods 2021, 10(10), 2336; https://doi.org/10.3390/foods10102336 - 30 Sep 2021
Cited by 8 | Viewed by 1921
Abstract
The potential biological effects of food-borne carbon dots (FCDs) generated during food heating procedures on human health has received great attention. The FCDs will be inevitably exposed to blood proteins along with our daily diet to produce unknown biological effects. In this study, [...] Read more.
The potential biological effects of food-borne carbon dots (FCDs) generated during food heating procedures on human health has received great attention. The FCDs will be inevitably exposed to blood proteins along with our daily diet to produce unknown biological effects. In this study, the interaction between FCDs extracted from grilled Spanish mackerel and three main types of human plasma proteins including human serum albumin (HSA), human γ-globulin (HGG) and human fibrinogen (HF) was reported. It was found that the grilled Spanish mackerel FCDs could affect the morphology, size and surface electrical properties of the three proteins. The interaction between the FCDs and proteins had different effects on the secondary structure of the three proteins through a static mechanism. The tested HSA, HGG, and HF could adsorb FCDs to reach saturation state within 0.5 min after the adsorption happened. The binding affinity of the FCDs to the plasma proteins was sorted as follows: HF > HGG > HSA. The results of FCDs interacted with plasma proteins provided useful information in the assessment of the safety of FCDs in our daily diet. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

15 pages, 2507 KiB  
Article
Nondestructive Detection of Weight Loss Rate, Surface Color, Vitamin C Content, and Firmness in Mini-Chinese Cabbage with Nanopackaging by Fourier Transform-Near Infrared Spectroscopy
by Qiang Liu, Shaoxia Chen, Dandan Zhou, Chao Ding, Jiahong Wang, Hongsheng Zhou, Kang Tu, Leiqing Pan and Pengxia Li
Foods 2021, 10(10), 2309; https://doi.org/10.3390/foods10102309 - 29 Sep 2021
Cited by 11 | Viewed by 2441
Abstract
A nondestructive optical method is described for the quality assessment of mini-Chinese cabbage with nanopackaging during its storage, using Fourier transform-near infrared (FT-NIR) spectroscopy. The sample quality attributes measured included weight loss rate, surface color index, vitamin C content, and firmness. The level [...] Read more.
A nondestructive optical method is described for the quality assessment of mini-Chinese cabbage with nanopackaging during its storage, using Fourier transform-near infrared (FT-NIR) spectroscopy. The sample quality attributes measured included weight loss rate, surface color index, vitamin C content, and firmness. The level of freshness of the mini-Chinese cabbage during storage was divided into three categories. Partial least squares regression (PLSR) and the least squares support vector machine were applied to spectral datasets in order to develop prediction models for each quality attribute. For a comparative analysis of performance, the five preprocessing methods applied were standard normal variable (SNV), first derivative (lst), second derivative (2nd), multiplicative scattering correction (MSC), and auto scale. The SNV-PLSR model exhibited the best prediction performance for weight loss rate (Rp2 = 0.96, RMSEP = 1.432%). The 1st-PLSR model showed the best prediction performance for L* value (Rp2 = 0.89, RMSEP = 3.25 mg/100 g), but also the lowest accuracy for firmness (Rp2 = 0.60, RMSEP = 2.453). The best classification model was able to predict freshness levels with 88.8% accuracy in mini-Chinese cabbage by supported vector classification (SVC). This study illustrates that the spectral profile obtained by FT-NIR spectroscopy could potentially be implemented for integral assessments of the internal and external quality attributes of mini-Chinese cabbage with nanopacking during storage. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

15 pages, 2153 KiB  
Article
Moroccan Strawberry Tree (Arbutus unedo L.) Fruits: Nutritional Value and Mineral Composition
by Zakaria Ait lhaj, Rahma Bchitou, Fatima Gaboun, Rabha Abdelwahd, Tarik Benabdelouahab, Mohammed Rachid Kabbour, Paul Pare, Ghizlane Diria and Khadija Bakhy
Foods 2021, 10(10), 2263; https://doi.org/10.3390/foods10102263 - 24 Sep 2021
Cited by 14 | Viewed by 4607
Abstract
The strawberry tree (Arbutus unedo L.), grown throughout the Mediterranean, produces edible fruit; as it is easily bruised, the sweet, reddish fruit is used mostly to prepare jams, marmalades and alcoholic beverages. As the genus is paraphyletic, phytochemical analysis can assist in [...] Read more.
The strawberry tree (Arbutus unedo L.), grown throughout the Mediterranean, produces edible fruit; as it is easily bruised, the sweet, reddish fruit is used mostly to prepare jams, marmalades and alcoholic beverages. As the genus is paraphyletic, phytochemical analysis can assist in defining the fruit composition with the species Arbutus unedo L. (A. unedo). Here we report on the carbohydrate, total sugar, protein, fat, fiber, ash, and mineral content of wild fruit, harvested from 45 specimens from five locations. The dominant nutrients were carbohydrates (78.2–84.8 g/100 g), total sugars (52.1–67.2 g/100 g) and dietary fiber (11.0–20.1 g/100 g). Other important nutrients supplied by A. unedo fruit include P, K, and Fe. The fruit was observed to contain health-promoting components providing 42 and 36%, of recommended daily allowance (RDA) for fiber and zinc, respectively, as well as iron and manganese, at levels exceeding minimum RDA. The free-sugar profile revealed high glucose followed by fructose content with minor amounts of sucrose (14, 11, and 6 g/100 g, respectively). Significant differences both between regions and within individuals were observed for several traits. The richness of fruit nutrients in A. unedo confers nutritional value and as such, a promising alternative fruit source. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

16 pages, 281 KiB  
Article
Polycyclic Aromatic Hydrocarbon Risk Assessment and Analytical Methods Using QuEchERS Pretreatment for the Evaluation of Herbal Medicine Ingredients in Korea
by Hee-Jeong Hwang, Sae-Ha Lee, Yong-Yeon Kim and Han-Seung Shin
Foods 2021, 10(9), 2200; https://doi.org/10.3390/foods10092200 - 16 Sep 2021
Cited by 8 | Viewed by 2999
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and mutagenic compounds that are often formed during the thermal processing of herbal medicine ingredients. In this study, the concentrations of four PAHs (PAH4) in various herbal medicine ingredients were monitored. Further, the QuEChERS method was used [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and mutagenic compounds that are often formed during the thermal processing of herbal medicine ingredients. In this study, the concentrations of four PAHs (PAH4) in various herbal medicine ingredients were monitored. Further, the QuEChERS method was used to replace conventional pretreatment, a more complex and cumbersome approach. The recovery range of the QuEChERS method ranged between 89.65–118.59%, and the average detection levels of benzo[a]anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene (BbF), and Benzo[a]pyrene (BaP) in 50 herbal medicine ingredients were 0.18, 0.27, 1.13, and 0.17 μg/kg, respectively. The BaP and PAH4 levels in all tested samples were deemed safe according to risk characterization analyses based on European Union and Korean guidelines. Therefore, our findings indicated that the QuEChERS method could be used as an effective alternative to conventional sample pretreatment for the analysis of herbal medicine ingredients. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
16 pages, 3123 KiB  
Article
Non-Targeted LC-MS Metabolomics Approach towards an Authentication of the Geographical Origin of Grain Maize (Zea mays L.) Samples
by David Schütz, Elisabeth Achten, Marina Creydt, Janet Riedl and Markus Fischer
Foods 2021, 10(9), 2160; https://doi.org/10.3390/foods10092160 - 13 Sep 2021
Cited by 18 | Viewed by 2737
Abstract
Safety along the food and feed supply chain is an emerging topic and closely linked to the ability to analytical trace the geographical origin of food or feed. In this study, ultra-performance liquid chromatography coupled with electrospray ionization quadrupole-time-of-flight mass spectrometry was used [...] Read more.
Safety along the food and feed supply chain is an emerging topic and closely linked to the ability to analytical trace the geographical origin of food or feed. In this study, ultra-performance liquid chromatography coupled with electrospray ionization quadrupole-time-of-flight mass spectrometry was used to trace back the geographical origin of 151 grain maize (Zea mays L.) samples from seven countries using a high resolution non-targeted metabolomics approach. Multivariate data analysis and univariate statistics were used to identify promising marker features related to geographical origin. Classification using only 20 selected markers with the Random Forest algorithm led to 90.5% correctly classified samples with 100 times repeated 10-fold cross-validation. The selected markers were assigned to the class of triglycerides, diglycerides and phospholipids. The marker set was further evaluated for its ability to separate between one sample class and the rest of the dataset, yielding accuracies above 89%. This demonstrates the high potential of the non-polar metabolome to authenticate the geographic origin of grain maize samples. Furthermore, this suggests that focusing on only a few lipids with high potential for grain maize authentication could be a promising approach for later transfer of the method to routine analysis. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

14 pages, 2486 KiB  
Article
Optimisation of Stingless Bee Honey Nanoemulsions Using Response Surface Methodology
by Azri Shahir Rozman, Norhashila Hashim, Bernard Maringgal and Khalina Abdan
Foods 2021, 10(9), 2133; https://doi.org/10.3390/foods10092133 - 9 Sep 2021
Viewed by 2462
Abstract
Nanoemulsions (NEs) have been used in a wide range of products, such as those produced by the food, cosmetics, and pharmaceutical industries, due to their stability and long shelf life. In the present study, stingless bee honey (SBH) NEs were formulated using SBH, [...] Read more.
Nanoemulsions (NEs) have been used in a wide range of products, such as those produced by the food, cosmetics, and pharmaceutical industries, due to their stability and long shelf life. In the present study, stingless bee honey (SBH) NEs were formulated using SBH, oleic acid, tween 80, glycerol, and double-distilled water. SBH NEs were prepared using a high-pressure homogeniser and were characterised by observing their stability and droplet size. Fourier Transform-Infrared (FTIR) analysis was used to observe the functional groups of the SBH NEs after being subjected to high-pressure homogenisation. Transmission Electron Microscopy (TEM) images were then used to confirm the particle size of the SBH NEs and to investigate their morphology. The effects of the independent variables (percentage of oleic acid, storage time, and storage temperature) on the response variables (particle size and polydispersity index) were investigated using the response surface methodology, along with a three-level factorial design. The results showed that the models developed via the response surface methodology were reliable, with a coefficient of determination (R2) of more than 0.90. The experimental validation indicated an error of less than 10% in the actual results compared to the predicted results. The FTIR analysis showed that SBH NEs have the same functional group as SBH. Observation through TEM indicated that the SBH NEs had a similar particle size, which was between 10 and 100 nm. Thus, this study shows that SBH NEs can be developed using a high-pressure homogeniser, which indicates a new direction for SBH by-products. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

15 pages, 17630 KiB  
Article
3D Printing of Steak-like Foods Based on Textured Soybean Protein
by Yangyang Chen, Min Zhang and Bhesh Bhandari
Foods 2021, 10(9), 2011; https://doi.org/10.3390/foods10092011 - 26 Aug 2021
Cited by 55 | Viewed by 7101
Abstract
Due to the lack of a sufficient amount of animal protein and the pursuit of health and reduced environmental impact, the global demand for plant protein is increasing. This study endeavors to using textured soybean protein (TSP) or drawing soy protein (DSP) as [...] Read more.
Due to the lack of a sufficient amount of animal protein and the pursuit of health and reduced environmental impact, the global demand for plant protein is increasing. This study endeavors to using textured soybean protein (TSP) or drawing soy protein (DSP) as raw materials to produce steak-like foods through 3D printing technology. The textural difference between fried 3D printed samples and fried commercial chicken breast (control) was studied. The results show that different ink substrates (TSP and DSP) and hydrocolloids (xanthan gum, konjac gum, sodium alginate, guar gum, sodium carboxymethyl cellulose, and hydroxyethyl cellulose) were the keys to successful printing. The ink composed of TSP and xanthan gum had the best printing characteristics and sample integrity after frying. It was found that different infilling patterns and infill rates had a significant effect on the texture properties of the fried samples. When the triangle infilling pattern was used at an infill rate of 60%, the product had had the closest hardness (2585.13 ± 262.55), chewiness (1227.18 ± 133.00), and gumminess (1548.09 ± 157.82) to the control sample. This work proved the feasibility of using 3D printing based on plant protein to produce steak-like food with texture properties similar to chicken breast. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

24 pages, 1476 KiB  
Article
The Types of Polysaccharide Coatings and Their Mixtures as a Factor Affecting the Stability of Bioactive Compounds and Health-Promoting Properties Expressed as the Ability to Inhibit the α-Amylase and α-Glucosidase of Chokeberry Extracts in the Microencapsulation Process
by Kamil Haładyn, Karolina Tkacz, Aneta Wojdyło and Paulina Nowicka
Foods 2021, 10(9), 1994; https://doi.org/10.3390/foods10091994 - 25 Aug 2021
Cited by 10 | Viewed by 3905
Abstract
This study aimed to evaluate the feasibility of microencapsulating chokeberry extract by extrusion, and assess the effects of the selected carrier substance on the contents of polyphenolic compounds, antioxidant activity, color of microspheres, and ability of microspheres to inhibit α-amylase and α-glucosidase, after [...] Read more.
This study aimed to evaluate the feasibility of microencapsulating chokeberry extract by extrusion, and assess the effects of the selected carrier substance on the contents of polyphenolic compounds, antioxidant activity, color of microspheres, and ability of microspheres to inhibit α-amylase and α-glucosidase, after 14 and 28 days of storage. The results showed that appropriate selection of the polysaccharide coating is of great importance for the proper course of the microencapsulation process, the polyphenolic content of chokeberry capsules, and their antioxidant and antidiabetic properties. The addition of guar gum to a sodium alginate solution significantly increased the stability of polyphenolic compounds in microspheres during storage, whereas the addition of chitosan had a significantly negative effect on the stability of polyphenols. The coating variant composed of sodium alginate and guar gum was also found to be the most favorable for the preservation of the antioxidant activity of the capsules. On the other hand, capsules composed of sodium alginate, guar gum, and chitosan showed the best antidiabetic properties, which is related to these tricomponent microspheres having the best α-glucosidase inhibition. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

15 pages, 3777 KiB  
Article
Effect of Vertical and Horizontal Sample Orientations on Uniformity of Microwave Heating Produced by Magnetron and Solid-State Generators
by Somayeh Taghian Dinani, Alina Jenn and Ulrich Kulozik
Foods 2021, 10(9), 1986; https://doi.org/10.3390/foods10091986 - 25 Aug 2021
Cited by 8 | Viewed by 2267
Abstract
In this study, the effect of different horizontal and vertical orientations of a model sample (cuboid gellan gel samples containing Maillard reactants) on microwave heat processing was investigated in the solid-state and magnetron microwave systems. To achieve this target, seven orientations inside both [...] Read more.
In this study, the effect of different horizontal and vertical orientations of a model sample (cuboid gellan gel samples containing Maillard reactants) on microwave heat processing was investigated in the solid-state and magnetron microwave systems. To achieve this target, seven orientations inside both microwave cavities were defined. Two of the investigated sample orientations were in a vertical position with and without turntable rotation, and five in a horizontal position. Furthermore, samples at horizontal orientations were put at an angle position without turntable rotation. To analyze the microwave heating patterns, infrared (IR) pictures and photographs of the gellan gel samples were taken after processing to document IR-based thermal and Maillard color changes, respectively. Three main factors for improvement of the heating homogeneity were identified: first, processing samples in the solid-state microwave system; second, position variation of the sample by turntable activated; and third, horizontal orientation. In addition, it was observed that placing the gellan gel samples in a vertical position in the magnetron microwave system resulted in considerably more absorbed power and a more uniform microwave heat processing compared to other horizontal orientations in this system. This indicated a non-uniform microwave field distribution. The results of this study can also confirm the importance of designing suitable food packaging: a vertical shape for more microwave energy absorbance and thus, more energy efficiency, and a horizontal shape for more uniform microwave heat processing. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

11 pages, 1962 KiB  
Article
A Sensitive SERS Method for Determination of Pymetrozine in Apple and Cabbage Based on an Easily Prepared Substrate
by Ting-Tiao Pan, Mei-Ting Guo, Wang Guo, Ping Lu and De-Yu Hu
Foods 2021, 10(8), 1874; https://doi.org/10.3390/foods10081874 - 13 Aug 2021
Cited by 7 | Viewed by 2444
Abstract
Residual pesticides are one of the major food safety concerns around the world. There is a demand for simple and reliable methods to monitor pesticide residues in foods. In this study, a sensitive method for determination of pymetrozine in apple and cabbage samples [...] Read more.
Residual pesticides are one of the major food safety concerns around the world. There is a demand for simple and reliable methods to monitor pesticide residues in foods. In this study, a sensitive method for determination of pymetrozine in apple and cabbage samples using surface-enhanced Raman spectroscopy (SERS) based on decanethiol functionalized silver nanoparticles was established. The proposed method performed satisfactorily with the linear detection range of 0.01–1.00 mg/L and limit of detection (LOD) of 0.01 mg/L in methanol. In addition, it was successfully used to detect pymetrozine in apple and cabbage samples, the LOD was 0.02 and 0.03 mg/L, respectively, and the recoveries of spiked cabbage and apple ranged 70.40–104.00%, with relative standard deviations below 12.18% and 10.33% for intra-day and inter-day tests. Moreover, the results of the correlation test with real cabbage samples of liquid chromatography-tandem mass spectrometry showed that they were highly correlated (slope = 0.9895, R2 = 0.9953). This study provides a sensitive approach for detection of pymetrozine in apple and cabbage, which has great potential for determination of pymetrozine residues in food products. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

18 pages, 4141 KiB  
Article
Physicochemical, Mineral and Sensory Characteristics of Instant Citrullus lanatus mucosospermus (Egusi) Soup
by Olakunbi Olubi, Joseline Veronica Felix-Minnaar and Victoria Adaora Jideani
Foods 2021, 10(8), 1817; https://doi.org/10.3390/foods10081817 - 6 Aug 2021
Cited by 6 | Viewed by 2826
Abstract
Defatted egusi flour offers a food option high in protein and essential micronutrients. An instant processing method was adopted in a ready-to-eat instant soup using egusi grit, hydrocolloid, and defatted flour. A D-optimal quadratic mixture model was used to study the effect of [...] Read more.
Defatted egusi flour offers a food option high in protein and essential micronutrients. An instant processing method was adopted in a ready-to-eat instant soup using egusi grit, hydrocolloid, and defatted flour. A D-optimal quadratic mixture model was used to study the effect of the independent variables (grit, flour, and hydrocolloid) qualities. The quadratic model was adequate to navigate the design space for taste and appearance. The numerical optimization for appearance and taste of instant soup (IES) was used to obtain the optimal soup mix of 10 g of hydrocolloid, 57.2 of defatted flour and 17 g of grits. Sixteen trace and five major mineral elements were found in the egusi soup, with a high concentration of phosphorus (1220.4, 1326.2 and 1277.9 mg/100 g), potassium (1220.4, 1326.2 and 1277.9 mg/100 g), magnesium (822.2, 905.3 and 863.70 mg/100 g), calcium (172.3, 190.9 and 183.4 mg/100 g) and iron (53.7, 57.5 and 29.5 mg/100 g), and for instant egusi soups from boiled egusi grit (IESBG), instant egusi grit from spherified grit (IESSG) and instant egusi grit from extruded grit (IESEG), respectively. The amino acid profile of instant egusi soup offers all essential amino acids necessary to nourish the body. Phosphorus content was significantly (p ≤ 0.05) high across the three soups: 1742, 1836 and 1838 mg/100 g for IESBG, IESSG, and IESEG, respectively; IESSG and IESEG were significantly (p ≤ 0.05) higher in minerals when compared with IESBG. Instant egusi soup differed significantly (p ≤ 0.05) in lightness (L*), while the redness (a*) and yellowness (b*) did not vary significantly. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

13 pages, 4709 KiB  
Article
Mathematical Model for Describing Corn Grain Dehydration Kinetics after a Nixtamalization Process
by Miguel Ángel Gruintal-Santos, María Teresa Zagaceta-Álvarez, Karen Alicia Aguilar Cruz, Juan Reséndiz-Muñoz, Héctor Eduardo Martinez-Flores and Jose Luis Fernández-Muñoz
Foods 2021, 10(8), 1771; https://doi.org/10.3390/foods10081771 - 30 Jul 2021
Cited by 2 | Viewed by 2248
Abstract
In this research, the mathematical model associated with the hydrothermal dehydration process of Nixtamalized Corn Grains (NCG) with different Steeping Time (ST) values, allows the fitting of experimental data with initial moisture M0 and the equilibrium moisture ME as a function [...] Read more.
In this research, the mathematical model associated with the hydrothermal dehydration process of Nixtamalized Corn Grains (NCG) with different Steeping Time (ST) values, allows the fitting of experimental data with initial moisture M0 and the equilibrium moisture ME as a function of Isothermal Dehydration Time (IDT). The moisture percentage for any time t and dehydration rate (isolines M(t) and isolines vI respectively) of the NCG is shown by means of matrix graphics as a simultaneous function of IDT and ST. The relationship between initial dehydration rate v0 and initial moisture M0 establishes as a function of ST. Also, the mathematical model associated with the solution of the second Fick’s law allows calculating the diffusivity rate vk (H2O molecules out of NCG) and verify that the rate of change in moisture and the dynamical proportionality constant k has a non-linear dependence on the IDT and that k is directly proportional to Deff. The k values strongly relate to ST and the calcium ions percentage into NCG according to solubility lime values into cooking water (or nejayote) as a function of decreasing temperature when ST increases. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

13 pages, 1316 KiB  
Article
Detection of Carrageenan in Cheese Using Lectin Histochemistry
by Marie Bartlová, Matej Pospiech, Zdeňka Javůrková and Bohuslava Tremlová
Appl. Sci. 2021, 11(15), 6903; https://doi.org/10.3390/app11156903 - 27 Jul 2021
Cited by 1 | Viewed by 1999
Abstract
Carrageenan is a substance widely used as an additive in the food industry. Among other things, it is often added to processed cheese, where it has a positive effect on texture. Processing of such cheese involves grinding, melting and emulsifying the cheese. There [...] Read more.
Carrageenan is a substance widely used as an additive in the food industry. Among other things, it is often added to processed cheese, where it has a positive effect on texture. Processing of such cheese involves grinding, melting and emulsifying the cheese. There is currently no official method by which carrageenan can be detected in foodstuffs, but there are several studies describing its negative health impact on consumers. Lectin histochemistry is a method that is used mainly in medical fields, but it has great potential to be used in food analysis as well. It has been demonstrated that lectin histochemistry can be used to detect carrageenan in processed cheese by Human Inspection and Computer-Assisted Analysis (CIE L*a*b*). The limit of detection (LoD) was established at 100 mg kg−1 for Human Inspection and 43.64 for CIE L*a*b*. The CIE L*a*b* results indicate that Computer-Assisted Analysis may be an appropriate alternative to Human Inspection. The most suitable parameter for Computer-Assisted Analysis was the b* parameter in the CIE L*a*b* color space. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

12 pages, 712 KiB  
Article
Volatile and Sensory Characterization of La Mancha Trujillo Melons over Three Consecutive Harvests
by M. A. Ferrer Valverde, E. Sánchez-Palomo, M. Osorio Alises, C. Chaya Romero and M. A. González-Viñas
Foods 2021, 10(8), 1683; https://doi.org/10.3390/foods10081683 - 21 Jul 2021
Cited by 2 | Viewed by 2006
Abstract
In this work, Trujillo melons were harvested across three years (2011–2013) in La Mancha region. Instrumental and sensory analysis were used for studying Trujillo melons. Solid phase extraction (SPE) was used for isolating free aroma compounds, and then, they were analysed by gas [...] Read more.
In this work, Trujillo melons were harvested across three years (2011–2013) in La Mancha region. Instrumental and sensory analysis were used for studying Trujillo melons. Solid phase extraction (SPE) was used for isolating free aroma compounds, and then, they were analysed by gas chromatography coupled with mass spectrometry (GC/MS). Fifty-five (55) volatile compounds were identified and quantified in La Mancha Trujillo melons over this three-year period. Experienced tasters evaluated the sensory profile of Trujillo melons, and it was characterized by jam/marmalade, cucumber, fresh fruit, sweet, green, honey and ripe fruit aroma descriptors and sweet, honey, jam/marmalade, cucumber, fresh fruit ripe fruit, spice and green flavour by mouth descriptors. This study represents the first complete aromatic characterization of Trujillo melons from La Mancha region. The obtained data suggested that these melons presented a great aromatic profile and that they represent a viable alternative for expanding the traditional market. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

16 pages, 4717 KiB  
Article
Effect of In Vitro Digestion on the Antioxidant and Angiotensin-Converting Enzyme Inhibitory Potential of Buffalo Milk Processed Cheddar Cheese
by Amal Shaukat, Muhammad Nadeem, Tahir Mahmood Qureshi, Rabia Kanwal, Muhammad Sultan, Olivier Basole Kashongwe, Redmond R. Shamshiri and Mian Anjum Murtaza
Foods 2021, 10(7), 1661; https://doi.org/10.3390/foods10071661 - 19 Jul 2021
Cited by 3 | Viewed by 2951
Abstract
The purpose of this study was to develop an in-vitro digestion protocol to evaluate the antioxidant potential of the peptides found in processed cheddar cheese using digestion enzymes. We first studied antioxidant and angiotensin-converting enzyme (ACE) inhibition and antioxidant activities of processed cheddar [...] Read more.
The purpose of this study was to develop an in-vitro digestion protocol to evaluate the antioxidant potential of the peptides found in processed cheddar cheese using digestion enzymes. We first studied antioxidant and angiotensin-converting enzyme (ACE) inhibition and antioxidant activities of processed cheddar cheese with the addition of spices e.g., cumin, clove, and black pepper made from buffalo milk and ripened for 9 months. Then we conducted an in vitro digestion of processed cheddar cheese by gastric and duodenal enzymes. Freeze-dried water (WSE) and ethanol-soluble fractions (ESE) of processed cheddar cheese were also monitored for their ACE inhibition activity and antioxidant activities. In our preliminary experiments, different levels of spices (cumin, clove, and black pepper) were tested into a cheese matrix and only one level 0.2 g/100 g (0.2%) based on cheese weight was considered good after sensory evaluation. Findings of the present study revealed that ACE-inhibitory potential was the highest in processed cheese made from buffalo milk with the addition of 0.2% cumin, clove, and black pepper. A significant increase in ACE-inhibition (%) of processed cheddar cheese, as well as its WSE and ESE, was obtained. Lower IC50 values were found after duodenal phase digestion compared to oral phase digestion. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

11 pages, 2147 KiB  
Article
Multiple Light Scattering Measurements for Online Monitoring of Milk Fermentation
by Mohsen Ramezani, Giovanna Ferrentino, Ksenia Morozova and Matteo Scampicchio
Foods 2021, 10(7), 1582; https://doi.org/10.3390/foods10071582 - 7 Jul 2021
Cited by 5 | Viewed by 2228
Abstract
The present paper investigates the use of multiple light scattering for the monitoring of milk fermentation. The experiments were performed on milk fermented with different starter concentrations (0.05% to 4.5% (w/w) at temperatures from 36 to 44 °C and in the [...] Read more.
The present paper investigates the use of multiple light scattering for the monitoring of milk fermentation. The experiments were performed on milk fermented with different starter concentrations (0.05% to 4.5% (w/w) at temperatures from 36 to 44 °C and in the presence of antibiotics at concentrations up to 100 µg/kg. The fermentation was monitored continuously by using a multiple light scattering technique and simultaneously by a pH meter, a rheometer and a texture analyzer. The backscattering signal recorded by multiple light scattering measurements was correlated with the changes in pH, rheological parameters and firmness of the samples along the fermentation. A gelation time of 120 min was obtained when the highest concentration of starter (4.5%, w/w) and incubation temperature of 44 °C were used. These results were confirmed by the pH, rheological and texture monitoring. The analysis of backscattering spectra allowed the detection of the effect of antibiotic on the gel formation even at low concentrations (1.3 µg/kg). Overall, the results highlighted the advantages of using a multiple light scattering technique as quality control tool for online monitoring of milk fermentation. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

12 pages, 1908 KiB  
Article
Comparison of Egg Yolk and Soybean Phospholipids on Hepatic Fatty Acid Profile and Liver Protection in Rats Fed a High-Fructose Diet
by Mingyu Yin, Ryosuke Matsuoka, Yinci Xi and Xichang Wang
Foods 2021, 10(7), 1569; https://doi.org/10.3390/foods10071569 - 6 Jul 2021
Cited by 12 | Viewed by 4166
Abstract
Perturbed lipid metabolism leads to ectopic lipid accumulation in tissues, such as the liver, thereby causing nonalcoholic fatty liver disease (NAFLD) and negatively influencing circulating lipid profile-inducing dyslipidemia. Phospholipids (PLs) with special biological activity are used to treat chronic diseases such as cardiovascular [...] Read more.
Perturbed lipid metabolism leads to ectopic lipid accumulation in tissues, such as the liver, thereby causing nonalcoholic fatty liver disease (NAFLD) and negatively influencing circulating lipid profile-inducing dyslipidemia. Phospholipids (PLs) with special biological activity are used to treat chronic diseases such as cardiovascular and cerebrovascular disease. PLs derived from egg yolk and soya bean have significant antioxidant and lipid-lowering abilities. This study examined the therapeutic effects of them on hyperlipidemia using a high-fructose-fed rat model; lipid metabolism and anti-inflammatory effects were also analyzed. The results showed that both egg yolk and soya bean phospholipids (EPLs and SPLs) reduced liver weight, hepatic TG, and MDA content as well as serum ALT, AST, TBA, and CRP levels (p < 0.05). The PLs also showed hypolipidemic and anti-inflammatory effects. EPLs and SPLs could inhibit the accumulation of hepatic fatty acids C18:1N9C, C18:0, and C22:6NS of rats fed a high-fat-and-sucrose diet. The intake of EPLs could significantly increase acetylcholine content in the blood and brain tissue. Histological examination showed that PLs intake could ameliorate the damage to liver tissue. This study suggested that EPLs and SPLs had a certain capacity of hypolipidemic and liver protection, and the therapeutic benefits of EPLs tended to be more effective than that of soybean phospholipids. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

18 pages, 14956 KiB  
Article
Formation of Volatile and Aroma Compounds during the Dehydration of Membrane-Clarified Sugarcane Juice to Non-Centrifugal Sugar
by Yanjing Ge, Kai Li, Caifeng Xie, Yongshi Xu, Changrong Shi, Fangxue Hang and William O. S. Doherty
Foods 2021, 10(7), 1561; https://doi.org/10.3390/foods10071561 - 5 Jul 2021
Cited by 12 | Viewed by 3485
Abstract
The development of volatile compounds and their precursors during the dehydration process of membrane-clarified sugarcane juice to non-centrifugal sugar (NCS) was investigated. Head-space solid phase microextraction/gas chromatography–mass spectrometry (HS-SPME/GC–MS) coupled with chemometrics was employed to assess the differences at the various stages of [...] Read more.
The development of volatile compounds and their precursors during the dehydration process of membrane-clarified sugarcane juice to non-centrifugal sugar (NCS) was investigated. Head-space solid phase microextraction/gas chromatography–mass spectrometry (HS-SPME/GC–MS) coupled with chemometrics was employed to assess the differences at the various stages of the dehydration process. A total of 111 volatile compounds were identified, among which 57 were endogenous compounds from sugarcane juice and displayed an attenuated abundance in the first 30 min. Typical oxygen and nitrogen heterocyclic compounds, including furans and pyrazines, and aldehydes derived were found to be the main volatiles contributing to the formation of NCS characteristic aroma, with phenols, alcohols, esters, acids, and sulfur compounds as supplementary odor. Free amino acids and reducing sugars were identified as important precursors for the aroma development process. The low temperature (90–108 °C) and micro vacuum condition (−0.03 MPa) approach used in this study could be an alternative option for the manufacture of NCS. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

19 pages, 8237 KiB  
Article
A Comparison of Microfluidic-Jet Spray Drying, Two-Fluid Nozzle Spray Drying, and Freeze-Drying for Co-Encapsulating β-Carotene, Lutein, Zeaxanthin, and Fish Oil
by Yongchao Zhu, Yaoyao Peng, Jingyuan Wen and Siew Young Quek
Foods 2021, 10(7), 1522; https://doi.org/10.3390/foods10071522 - 1 Jul 2021
Cited by 14 | Viewed by 4465
Abstract
Various microencapsulation techniques can result in significant differences in the properties of dried microcapsules. Microencapsulation is an effective approach to improve fish oil properties, including oxidisability and unpleasant flavour. In this study, β-carotene, lutein, zeaxanthin, and fish oil were co-encapsulated by microfluidic-jet [...] Read more.
Various microencapsulation techniques can result in significant differences in the properties of dried microcapsules. Microencapsulation is an effective approach to improve fish oil properties, including oxidisability and unpleasant flavour. In this study, β-carotene, lutein, zeaxanthin, and fish oil were co-encapsulated by microfluidic-jet spray drying (MFJSD), two-fluid nozzle spray drying (SD), and freeze-drying (FD), respectively. The aim of the current study is to understand the effect of different drying techniques on microcapsule properties. Whey protein isolate (WPI) and octenylsuccinic anhydride (OSA) modified starch were used as wall matrices in this study for encapsulating carotenoids and fish oil due to their strong emulsifying properties. Results showed the MFJSD microcapsules presented uniform particle size and regular morphological characteristics, while the SD and FD microcapsules presented a large distribution of particle size and irregular morphological characteristics. Compared to the SD and FD microcapsules, the MFJSD microcapsules possessed higher microencapsulation efficiency (94.0–95.1%), higher tapped density (0.373–0.652 g/cm3), and higher flowability (the Carr index of 16.0–30.0%). After a 4-week storage, the SD microcapsules showed the lower retention of carotenoids, as well as ω-3 LC-PUFAs than the FD and MFJSD microcapsules. After in vitro digestion trial, the differences in the digestion behaviours of the microcapsules mainly resulted from the different wall materials, but independent of drying methods. This study has provided an alternative way of delivering visual-beneficial compounds via a novel drying method, which is fundamentally essential in both areas of microencapsulation application and functional food development. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

14 pages, 633 KiB  
Article
Combination of Direct Viable Count and Fluorescent In Situ Hybridization (DVC-FISH) as a Potential Method for Identifying Viable Vibrio parahaemolyticus in Oysters and Mussels
by Jorge García-Hernández, Manuel Hernández and Yolanda Moreno
Foods 2021, 10(7), 1502; https://doi.org/10.3390/foods10071502 - 29 Jun 2021
Cited by 6 | Viewed by 2977
Abstract
Vibrio parahaemolyticus is a human food-borne pathogen with the ability to enter the food chain. It is able to acquire a viable, non-cultivable state (VBNC), which is not detected by traditional methods. The combination of the direct viable count method and a fluorescent [...] Read more.
Vibrio parahaemolyticus is a human food-borne pathogen with the ability to enter the food chain. It is able to acquire a viable, non-cultivable state (VBNC), which is not detected by traditional methods. The combination of the direct viable count method and a fluorescent in situ hybridization technique (DVC-FISH) makes it possible to detect microorganisms that can present VBNC forms in complex samples The optimization of the in vitro DVC-FISH technique for V. parahaemolyticus was carried out. The selected antibiotic was ciprofloxacin at a concentration of 0.75 μg/mL with an incubation time in DVC broth of 5 h. The DVC-FISH technique and the traditional plate culture were applied to detect and quantify the viable cells of the affected pathogen in artificially contaminated food matrices at different temperatures. The results obtained showed that low temperatures produced an important logarithmic decrease of V. parahaemolyticus, while at 22 °C, it proliferated rapidly. The DVC-FISH technique proved to be a useful tool for the detection and quantification of V. parahaemolyticus in the two seafood matrices of oysters and mussels. This is the first study in which this technique has been developed to detect viable cells for this microorganism. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

14 pages, 8009 KiB  
Article
Effect of Ginger on Chemical Composition, Physical and Sensory Characteristics of Chicken Soup
by Wen Duan, Li Liang, Yan Huang, Yuyu Zhang, Baoguo Sun and Lina Li
Foods 2021, 10(7), 1456; https://doi.org/10.3390/foods10071456 - 23 Jun 2021
Cited by 19 | Viewed by 4161
Abstract
In order to investigate the effect of ginger on taste components and sensory characteristics in chicken soup, the content of amino acids, organic acids, 5′-nucleotides, and mineral elements were determined in chicken soup sample. With the ginger added, free amino acids in chicken [...] Read more.
In order to investigate the effect of ginger on taste components and sensory characteristics in chicken soup, the content of amino acids, organic acids, 5′-nucleotides, and mineral elements were determined in chicken soup sample. With the ginger added, free amino acids in chicken soup obviously increased and exceeded the total amounts in ginger soup and chicken soup. The content of glutamic acid (122.74 μg/mL) was the highest among 17 free amino acids in ginger chicken soup. Meanwhile, six organic acids detected in chicken soup all obviously increased, among which lactic acid (1523.58 μg/mL) and critic acid (4692.41 μg/mL) exceeded 1000 μg/mL. The content of 5′-nucleotides had no obvious difference between ginger chicken soup and chicken soup. Compared with chicken soup, ginger chicken soup had a smaller particle size (136.43 nm) and color difference (79.69), but a higher viscosity. With ginger added in chicken soup, the content of seven mineral elements was reduced, and the content of total sugar increased. Results from an electronic tongue indicated a difference in taste profiles among the soups. The taste components and sensory quality of chicken soup were obviously affected by adding the ginger. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

16 pages, 1832 KiB  
Article
Short-Term Implications of Climate Shocks on Wheat-Based Nutrient Flows: A Global “Nutrition at Risk” Analysis through a Stochastic CGE Model
by Tetsuji Tanaka, Özge Geyik and Bariş Karapinar
Foods 2021, 10(6), 1414; https://doi.org/10.3390/foods10061414 - 18 Jun 2021
Cited by 3 | Viewed by 2760
Abstract
Food security analyses of international trade largely overlook the importance of substantial heterogeneity and complexity of nutrient content in food products. This paper quantifies the extent to which wheat-based nutrient supplies, including energy, protein, iron, zinc, and magnesium, are exposed to the risks [...] Read more.
Food security analyses of international trade largely overlook the importance of substantial heterogeneity and complexity of nutrient content in food products. This paper quantifies the extent to which wheat-based nutrient supplies, including energy, protein, iron, zinc, and magnesium, are exposed to the risks of realistic productivity and trade shocks. By employing a static and stochastic world trade computable general equilibrium (CGE) model, we find that productivity shocks may result in losses in households’ nutrient consumption of up to 18% for protein, 33.1% for zinc, and 37.4% for magnesium. Significant losses are observed in countries mostly in the Middle East, North Africa, and Central Asia. Since the main centers of wheat exports have recently been shifting to former Soviet Union countries, we also simulated the nutritional risks of export restrictions imposed by the Russian Federation, Ukraine, and Kazakhstan, which have resorted to this policy instrument in recent years. We find that partial export restrictions increase the probability of nutrient shocks by five times or more in most countries that we studied. Increased nutrient deficiencies have a range of public health implications in the affected countries, which could be mitigated and/or avoided by adjusting production and trade policies and by targeting high nutritional risk groups, such as women and children. Since the potential implications of supply shocks are diffused across countries through international trade, the stricter regulation of export restrictions to enhance the predictably and reliability of global food supplies is also needed. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

25 pages, 6856 KiB  
Review
Proton Low Field NMR Relaxation Time Domain Sensor for Monitoring of Oxidation Stability of PUFA-Rich Oils and Emulsion Products
by Maysa T. Resende, Tatiana Osheter, Charles Linder and Zeev Wiesman
Foods 2021, 10(6), 1385; https://doi.org/10.3390/foods10061385 - 15 Jun 2021
Cited by 9 | Viewed by 2808
Abstract
The nutritional characteristics of fatty acid (FA) containing foods are strongly dependent on the FA’s chemical/morphological arrangements. Paradoxically the nutritional, health enhancing FA polyunsaturated fatty acids (PUFAs) are highly susceptible to oxidation into harmful toxic side products during food preparation and storage. Current [...] Read more.
The nutritional characteristics of fatty acid (FA) containing foods are strongly dependent on the FA’s chemical/morphological arrangements. Paradoxically the nutritional, health enhancing FA polyunsaturated fatty acids (PUFAs) are highly susceptible to oxidation into harmful toxic side products during food preparation and storage. Current analytical technologies are not effective in the facile characterization of both the morphological and chemical structures of PUFA domains within materials for monitoring the parameters affecting their oxidation and antioxidant efficacy. The present paper is a review of our work on the development and application of a proton low field NMR relaxation sensor (1H LF NMR) and signal to time domain (TD) spectra reconstruction for chemical and morphological characterization of PUFA-rich oils and their oil in water emulsions, for assessing their degree and susceptibility to oxidation and the efficacy of antioxidants. The NMR signals are energy relaxation signals generated by spin–lattice interactions (T1) and spin–spin interactions (T2). These signals are reconstructed into 1D (T1 or T2) and 2D graphics (T1 vs. T2) by an optimal primal-dual interior method using a convex objectives (PDCO) solver. This is a direct measurement on non-modified samples where the individual graph peaks correlate to structural domains within the bulk oil or its emulsions. The emulsions of this review include relatively complex PUFA-rich oleosome-oil bodies based on the aqueous extraction from linseed seeds with and without encapsulation of externally added oils such as fish oil. Potential applications are shown in identifying optimal health enhancing PUFA-rich food formulations with maximal stability against oxidation and the potential for on-line quality control during preparation and storage. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

22 pages, 6235 KiB  
Article
Nondestructive Analysis of Internal Quality in Pears with a Self-Made Near-Infrared Spectrum Detector Combined with Multivariate Data Processing
by Xin Wu, Guanglin Li and Fengyun He
Foods 2021, 10(6), 1315; https://doi.org/10.3390/foods10061315 - 7 Jun 2021
Cited by 16 | Viewed by 2592
Abstract
The consumption of pears has increased, thanks not only to their delicious and juicy flavor, but also their rich nutritional value. Traditional methods of detecting internal qualities (e.g., soluble solid content (SSC), titratable acidity (TA), and taste index (TI)) of pears are reliable, [...] Read more.
The consumption of pears has increased, thanks not only to their delicious and juicy flavor, but also their rich nutritional value. Traditional methods of detecting internal qualities (e.g., soluble solid content (SSC), titratable acidity (TA), and taste index (TI)) of pears are reliable, but they are destructive, time-consuming, and polluting. It is necessary to detect internal qualities of pears rapidly and nondestructively by using near-infrared (NIR) spectroscopy. In this study, we used a self-made NIR spectrum detector with an improved variable selection algorithm, named the variable stability and cluster analysis algorithm (VSCAA), to establish a partial least squares regression (PLSR) model to detect SSC content in snow pears. VSCAA is a variable selection method based on the combination of variable stability and cluster analysis to select the infrared spectrum variables. To reflect the advantages of VSCAA, we compared the classical variable selection methods (synergy interval partial least squares (SiPLS), genetic algorithm (GA), successive projections algorithm (SPA), and bootstrapping soft shrinkage (BOSS)) to extract useful wavelengths. The PLSR model, based on the useful variables selected by SiPLS-VSCAA, was optimal for measuring SSC in pears, and the correlation coefficient of calibration (Rc), root mean square error of cross validation (RMSECV), correlation coefficient of prediction (Rp), root mean square error of prediction (RMSEP), and residual predictive deviation (RPD) were 0.942, 0.198%, 0.936, 0.222%, and 2.857, respectively. Then, we applied these variable selection methods to select the characteristic wavelengths for measuring the TA content and TI value in snow pears. The prediction PLSR models, based on the variables selected by GA-BOSS to measure TA and that by GA-VSCAA to detect TI, were the best models, and the Rc, RMSECV, Rp and RPD were 0.931, 0.124%, 0.912, 0.151%, and 2.434 and 0.968, 0.080%, 0.968, 0.089%, and 3.775, respectively. The results showed that the self-made NIR-spectrum detector based on a portable NIR spectrometer with multivariate data processing was a good tool for rapid and nondestructive analysis of internal quality in pears. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

20 pages, 1645 KiB  
Article
Food Integrity Climate in Food Businesses: Conceptualization, Development, and Validation of a Self-Assessment Tool
by Waeel Salih Alrobaish, Liesbeth Jacxsens, Pieternel A Luning and Peter Vlerick
Foods 2021, 10(6), 1302; https://doi.org/10.3390/foods10061302 - 6 Jun 2021
Cited by 10 | Viewed by 5867
Abstract
Current scientific research and industry guidelines focus on food safety, aiming to reduce unintentional food contaminations through technological and managerial measures. Due to the deceptive nature of food fraud, the fight to prevent intentional food adulteration and counterfeiting threats requires an approach that [...] Read more.
Current scientific research and industry guidelines focus on food safety, aiming to reduce unintentional food contaminations through technological and managerial measures. Due to the deceptive nature of food fraud, the fight to prevent intentional food adulteration and counterfeiting threats requires an approach that goes beyond the common food safety-based strategies and falls into the sphere of food integrity. With food integrity being an emerging discipline, a definition was proposed and the concept of food integrity climate was introduced. A food integrity climate (FIC) self-assessment tool in the form of a questionnaire, with twenty indicators and a five-point Likert rating scale was developed, expert-validated, and tested in practice in a large-scale meat distribution company. The questionnaire was designed to measure the performance level of food integrity in food businesses along the supply chain through managers’ and operators’ perceptions. Minor but interesting differences were found in the food integrity climate perceived between managers and operators as well as among the company’s affiliates. The tool helps food businesses to get a deeper insight on the human dimension behind food integrity through the assessment of five climate components in relation to four food integrity elements, identifying strengths and weaknesses regarding a company’s food integrity climate. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

13 pages, 1122 KiB  
Article
Is Ultra-High Temperature Processed Milk Safe in Terms of Heterocyclic Aromatic Amines?
by Fatih Oz, Emel Oz, Eyad Aoudeh, A. M. Abd El-Aty, Maomao Zeng and Theodoros Varzakas
Foods 2021, 10(6), 1247; https://doi.org/10.3390/foods10061247 - 31 May 2021
Cited by 9 | Viewed by 3744
Abstract
Herein, the presence of heterocyclic aromatic amines (HAAs) in 24 different commercial ultra-high temperature processed (UHT) milk types was investigated. The dry matter and pH values of the samples were also determined. The milk types showed significant differences (p < 0.01) regarding [...] Read more.
Herein, the presence of heterocyclic aromatic amines (HAAs) in 24 different commercial ultra-high temperature processed (UHT) milk types was investigated. The dry matter and pH values of the samples were also determined. The milk types showed significant differences (p < 0.01) regarding the dry matter, pH values, and individual HAAs and total HAAs. The milk sample dry matter and pH values were in the range of 8.56–13.92% and 6.66–6.91, respectively. The growing up milk samples had the highest dry matter and pH values. While no significant correlation between the total HAAs and dry matter was found, a negative correlation (p < 0.01) between the total HAAs and pH value was determined. Among the tested HAAs, five compounds, (IQx (up to 0.06 ng), IQ (up to 0.10 ng), MeIQx (up to 0.55 ng), MeIQ (up to 1.97 ng), and PhIP (up to 0.39 ng)) were quantified in the samples. The average total HAAs of the samples ranged from 0.13 to 0.67 ng; however, one milk sample (200 mL) contained between 10.10 and 53.35 ng total HAAs. Therefore, it was shown that protein fortification and lactose hydrolysis substantially increased the formation of HAAs in UHT milk. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

14 pages, 1520 KiB  
Article
An Editing-Site-Specific PCR Method for Detection and Quantification of CAO1-Edited Rice
by Hongwen Zhang, Jun Li, Shengbo Zhao, Xiaohong Yan, Nengwu Si, Hongfei Gao, Yunjing Li, Shanshan Zhai, Fang Xiao, Gang Wu and Yuhua Wu
Foods 2021, 10(6), 1209; https://doi.org/10.3390/foods10061209 - 27 May 2021
Cited by 12 | Viewed by 2284
Abstract
Genome-edited plants created by genome editing technology have been approved for commercialization. Due to molecular characteristics that differ from classic genetically modified organisms (GMOs), establishing regulation-compliant analytical methods for identification and quantification of genome-edited plants has always been regarded as a challenging task. [...] Read more.
Genome-edited plants created by genome editing technology have been approved for commercialization. Due to molecular characteristics that differ from classic genetically modified organisms (GMOs), establishing regulation-compliant analytical methods for identification and quantification of genome-edited plants has always been regarded as a challenging task. An editing-site-specific PCR method was developed based on the unique edited sequence in CAO1-edited rice plants. Test results of seven primer/probe sets indicated that this method can identify specific CAO1-edited rice from other CAO1-edited rice and wild types of rice with high specificity and sensitivity. The use of LNA (locked nucleic acid) in a probe can efficiently increase the specificity of the editing-site-specific PCR method at increased annealing temperature which can eliminate non-specific amplification of the non-target. The genome-edited ingredient content in blinded samples at the level of 0.1% to 5.0% was accurately quantified by this method on the ddPCR platform with RSD of <15% and bias in the range of ±17%, meeting the performance requirements for GMO detection method. The developed editing-site-specific PCR method presents a promising detection and quantification technique for genome-edited plants with known edited sequence. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

12 pages, 3645 KiB  
Article
A Fluorescent Detection for Paraquat Based on β-CDs-Enhanced Fluorescent Gold Nanoclusters
by Hong-Xin Ren, Min-Xin Mao, Min Li, Cun-Zheng Zhang, Chi-Fang Peng, Jiang-Guo Xu and Xin-Lin Wei
Foods 2021, 10(6), 1178; https://doi.org/10.3390/foods10061178 - 24 May 2021
Cited by 13 | Viewed by 3528
Abstract
In this report, a fluorescent sensing method for paraquat based on gold nanoclusters (AuNCs) is proposed. It was found that paraquat could quench both glutathione-capped AuNCs (GSH-AuNCs) and β-cyclodextrin-modified GSH-AuNCs (GSH/β-CDs-AuNCs). The modification of β-CDs on the surface of GSH-AuNCs obviously enhanced the [...] Read more.
In this report, a fluorescent sensing method for paraquat based on gold nanoclusters (AuNCs) is proposed. It was found that paraquat could quench both glutathione-capped AuNCs (GSH-AuNCs) and β-cyclodextrin-modified GSH-AuNCs (GSH/β-CDs-AuNCs). The modification of β-CDs on the surface of GSH-AuNCs obviously enhanced the fluorescence intensity of GSH-AuNCs and improved the sensitivity of paraquat sensing more than 4-fold. This sensibilization was ascribed to the obvious fluorescence intensity enhancement of GSH-AuNCs by β-CDs and the “host–guest” interaction between paraquat and β-CDs. The fluorescence quenching was mainly due to the photoinduced energy transfer (PET) between GSH/β-CDs-AuNCs and paraquat. With the optimized β-CDs modification of the GSH-AuNC surfaces and under buffer conditions, the fluorescent detection for paraquat demonstrated a linear response in the range of 5.0–350 ng/mL with a detection limit of 1.2 ng/mL. The fluorescent method also showed high selectivity toward common pesticides. The interference from metal ions could be easily masked by ethylene diamine tetraacetic acid (EDTA). This method was applied to the measurement of paraquat-spiked water samples and good recoveries (93.6–103.8%) were obtained. The above results indicate that host molecule modification of fluorescent metal NC surfaces has high potential in the development of robust fluorescent sensors. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

23 pages, 5061 KiB  
Article
Proton Dynamics of Water Diffusion in Shrimp Hydrolysates Flour and Effects of Moisture Absorption on Its Properties
by Yue Zhao, Songyi Lin, Ruiwen Yang, Dong Chen and Na Sun
Foods 2021, 10(5), 1137; https://doi.org/10.3390/foods10051137 - 20 May 2021
Cited by 2 | Viewed by 2506
Abstract
Moisture absorbed into shrimp hydrolysates (SHs) flour profoundly affected its properties. The unstored hydrolysate flour was called SHs-0h and SHs stored for 30 h at 25 °C and 75% relative humidity was named SHs-30. During the process of storage, the moisture dynamics in [...] Read more.
Moisture absorbed into shrimp hydrolysates (SHs) flour profoundly affected its properties. The unstored hydrolysate flour was called SHs-0h and SHs stored for 30 h at 25 °C and 75% relative humidity was named SHs-30. During the process of storage, the moisture dynamics in SHs flour were investigated by dynamic vapor sorption (DVS) and low-field nuclear magnetic resonance (LF-NMR). The effects of moisture absorption on the radicals scavenging rates of SHs flour were evaluated by electron paramagnetic resonance (EPR). The effects of moisture absorption on secondary structure were studied by mid-infrared (MIR) spectroscopy and infrared microimaging spectroscopy. The changes of volatile components were monitored by purge and trap coupled with gas chromatography-mass spectrometry (PT-GC-MS). DVS results showed that the moisture absorption rate of SHs flour could reach a maximum of 88.93%. Meanwhile, the water was transformed into more stable water with shorter relaxation times. The porous structure of the SHs-30 h flour disappeared and became smoother compared to SH-0 h flour. DPPH (31.09 ± 0.54%) and OH (26.62 ± 1.14%) radicals scavenging rates of SHs-30 h significantly reduced (p < 0.05) compared to that of SHs-0 h flour. The vibrations of the MIR absorbance peaks were changed. Finally, eight volatile components disappeared and six new volatile compounds were found. This study provided a theory basis for moisture dynamics in peptide flour during the storage process. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

15 pages, 2575 KiB  
Article
Highland Barley and Its By-Products Enriched with Phenolic Compounds for Inhibition of Pyrraline Formation by Scavenging α-Dicarbonyl Compounds
by Dianwei Zhang, Pei Zhu, Luxuan Han, Xiaomo Chen, Huilin Liu and Baoguo Sun
Foods 2021, 10(5), 1109; https://doi.org/10.3390/foods10051109 - 17 May 2021
Cited by 6 | Viewed by 2457
Abstract
Pyrraline, a typical kind of advanced glycation end product, has been found to contribute to the development of pathologies associated with ageing and diabetes mellitus. In the study, phenolic compounds extracted from highland barley whole grain (HBWG) and vinasse (HBVN) were used to [...] Read more.
Pyrraline, a typical kind of advanced glycation end product, has been found to contribute to the development of pathologies associated with ageing and diabetes mellitus. In the study, phenolic compounds extracted from highland barley whole grain (HBWG) and vinasse (HBVN) were used to inhibit pyrraline formation in a simulated food. The optimal extraction condition for HBWG and HBVN was using 8 mL of 50% acetone solution at 50 °C for 60 min. The extraction and identification of phenolic compounds from HBWG and HBVN were performed by UPLC–PAD–MS/MS. The inhibitory effects of pyrraline in the simulated food were 52.03% and 49.22% by HBVN and HBWG, respectively. The diphenyl picrylhydrazyl radical- and ferric-reducing ability of plasma assays was used to evaluate the antioxidant activity of the extracts. The main inhibition pathways and molecular mechanism of phenolic compounds on pyrraline regulation were explored by scavenging α-dicarbonyl compounds. The study demonstrated that highland barley and its by-products can potentially be used as a functional food to regulate pyrraline formation during food processing. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

15 pages, 1263 KiB  
Article
Potential Risk of Consuming Vegetables Planted in Soil with Copper and Cadmium and the Influence on Vegetable Antioxidant Activity
by Wen-Lii Huang, Wei-Hsiang Chang, Shu-Fen Cheng, Huai-Yuan Li and Hsiu-Ling Chen
Appl. Sci. 2021, 11(9), 3761; https://doi.org/10.3390/app11093761 - 22 Apr 2021
Cited by 9 | Viewed by 3236
Abstract
Once in soil and water, metals can enter the food chain, and the consumption of contaminated crops can pose a serious risk to human health. This study used pot experiments to evaluate the accumulation of metal elements and their influence on levels of [...] Read more.
Once in soil and water, metals can enter the food chain, and the consumption of contaminated crops can pose a serious risk to human health. This study used pot experiments to evaluate the accumulation of metal elements and their influence on levels of antioxidants in vegetables. The current study clearly demonstrates that metals accumulated in the five vegetables that were planted in the contaminated soils, especially so for water spinach. Cd accumulation of all of the vegetables planted in the contaminated soils was greater Cu. The low accumulation rate that was seen in sweet potato leaf, potato, and tomato indicated their suitability for planting in suspected contaminated soil, such as at farms nearby metal industries, in replacement of high accumulators, such as leafy vegetables. The non-carcinogenic HI of Cd exposure from water spinach and sweet potato were >1, whereas those for Cu were <1. This study suggests that residents may experience health risks due to vegetable consumption, and that children are vulnerable to the adverse effects of heavy metal ingestion. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Graphical abstract

Back to TopTop