The Role of Coffee Silver Skin against Oxidative Phenomena in Newly Formulated Chicken Meat Burgers after Cooking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coffee Silver Skin
2.2. Preparation of Burgers
2.3. Physico-Chemical, Colour, and Compositional Analyses
2.4. Cooking Yield
2.5. Thiobarbituric Acid Reacting Substances (TBARS) Assay
2.6. Volatile Compounds (VOCs)
2.7. Descriptive Sensory Analysis of WOF Assessment, Rancidity and Extraneous Flavours
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of CSS on the Qualitative Characteristics of Burger Samples
3.1.1. Compositive Characteristics
3.1.2. Cooking Yield
3.1.3. Colour
3.2. Effect of CSS on the Shelf Life of Cooked Chicken Burger Samples
3.2.1. Thiobarbituric Acid Reacting Substances (TBARS) Test
3.2.2. Volatile Compounds (VOCs) and Warmed Off-Flavours (WOF) in Chicken Burgers
3.2.3. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Comunian, T.A.; Silva, M.P.; Souza, C.J.F. The use of food by-products as a novel for functional foods: Their use as ingredients and for the encapsulation process. Trends Food Sci. Technol. 2021, 108, 269–280. [Google Scholar] [CrossRef]
- Martuscelli, M.; Esposito, L.; Di Mattia, C.; Ricci, A.; Mastrocola, D. Characterization of coffee silver skin as potential food safe ingredient. Foods 2021, 10, 1367. [Google Scholar] [CrossRef] [PubMed]
- Amaral, A.B.; da Silva, M.V.; Lannes, S.C. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Longato, E.; Meinrei, G.; Peiretti, P.G.; Gai, F.; Viuda-Martos, M.; Pérez-Álverez, J.Á.; Amarowicz, R.; Férnandez-López, J. Effects of hazelnut skin addition on the cooking, antioxidant and sensory properties of chicken burgers. J. Food Sci. Tech. 2019, 56, 3329–333652. [Google Scholar] [CrossRef] [PubMed]
- Oswell, N.J.; Thippareddi, H.; Pegg, R.B. Practical use of natural antioxidants in meat products in the U.S.: A review. Meat Sci. 2018, 145, 469–479. [Google Scholar] [CrossRef]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef] [Green Version]
- Gobena Gemechu, F. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci. Technol. 2020, 104, 235–261. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, C.S.G.; Costa, M.A.; Nunes, A.A.; Almeida, A.; Santos-Silva Oliveira, M.B.P.P. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 30, 28–35. [Google Scholar] [CrossRef]
- Kralik, G.; Kralik, Z.; Grčević, M.; Hanžek, D. Quality of Chicken Meat. In Animal Husbandry and Nutrition, 1st ed.; Yücel, B., Taşkin, T., Eds.; Intech Ope: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Ianni, A.; Grotta, L.; Martino, G. Feeding influences the oxidative stability of poultry meat treated with ozone. Asian Australas. J. Anim. Sci. 2019, 32, 874–880. [Google Scholar] [CrossRef]
- Pateiro, M.; Barba, F.J.; Domínguez, R.; Sant’Ana, A.S.; Khaneghah, A.M.; Gavahian, M.; Gómez, B.; Lorenzo, J.M. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res. Int. 2018, 113, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Ahn, D.U.; Eun, J.B.; Moon, S.H. Antioxidant Effect of Extracts from the Coffee Residue in Raw and Cooked Meat. Antioxidant 2016, 5, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Ospina, J.; Martuscelli, M.; Grande-Tovar, C.D.; Lucas-González, R.; Molina-Hernandez, J.B.; Viuda-Martos, M.; Fernández-Lopez, J.; Pérez-Álvarez, J.A.; Chaves-Lopez, C. Cacao Pod Husk Flour as an Ingredient for Reformulating Frankfurters: Effects on Quality Properties. Foods 2021, 10, 1243. [Google Scholar] [CrossRef]
- Lungu, N.S.; Afolayan, A.J.; Thomas, R.S.; Idamokoro, E.M. Consumer exposure to warmedover flavour and their attitudes towards the use of natural antioxidants as preservatives in meat and meat products. Br. Food J. 2020, 122, 2927–2937. [Google Scholar] [CrossRef]
- Latimer, G.W. ; AOAC International. Official Methods of Analysis of AOAC International, Methods 2009.01, and 2011.25, 19th ed.; AOAC International: Rockville, MD, USA, 2012. [Google Scholar]
- Folch, J.; Lees, M.; Sloane-Stanley, G. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Soyer, A.; Özalp, B.; Dalmış, Ü.; Bilgin, V. Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat. Food Chem. 2010, 120, 1025–1030. [Google Scholar] [CrossRef]
- Qi, J.; Wang, H.H.; Zhou, G.H.; Xu, X.L.; Li, X.; Bai, Y.; Yu, X. Evaluation of the taste-active and volatile compounds in stewed meat from the Chinese yellow-feather chicken breed. Int. J. Food Prop. 2017, 20, S2579–S2595. [Google Scholar] [CrossRef]
- Byrne, D.V.; Bredie, W.L.P.; Mottram, D.S.; Martens, M. Sensory and chemical investigations on the effect of oven cooking on warmed-over flavour development in chicken meat. Meat Sci. 2002, 61, 127–139. [Google Scholar] [CrossRef]
- Byrne, D.V.; Bredie, W.L.P.; Martens, M. Development of a sensory vocabulary for warmed-over flavour: Part II, in chicken meat. J. Sens. Stud. 1999, 14, 67–78. [Google Scholar] [CrossRef]
- O’Sullivan, M.G.; Byrne, D.V.; Jensen, M.T.; Andersen, H.J.; Vestergaard, J. A comparison of warmed-over flavour in pork by sensory analysis, GC/MS and the electronic nose. Meat Sci. 2003, 65, 1125–1138. [Google Scholar] [CrossRef]
- Aaslyng, M.G.; Meinert, L. Meat flavour in pork and beef—From animal to meal. Meat Sci. 2017, 132, 112–117. [Google Scholar] [CrossRef]
- Mörlein, D. Sensory evaluation of meat and meat products: Fundamentals and applications. In Proceedings of the 60th International Meat Industry Conference MEATCON2019, Kopaonik, Serbia, 22–25 September 2019; p. 012007. [Google Scholar]
- Shahidi, F.; Abad, A. Lipid-Derived Flavours and Off-Flavours in Food. Encycl. Food Chem. 2019, 2, 182–192. [Google Scholar] [CrossRef]
- International Organization for Standardization. General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors; ISO 8586:2012 Sensory Analysis; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- International Organization for Standardization. Guidelines for the Use of Quantitative Response Scales; ISO 4121:2003 Sensory analysis; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- American Meat Science Association. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat; American Meat Science Association (AMSA): Champaign, IL, USA, 2015. [Google Scholar]
- International Organization for Standardization. General Guidance for the Design of Test Rooms; ISO 8589:2007 Sensory analysis; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Garcia, R.G.; Freitas, L.W.; de Schwingel, A.W.; Farias, R.M.; Caldara, F.R.; Gabriel, A.M.A.; Graciano, J.D.; Komiyama, C.M.; Almeida Paz, I.C.L. Incidence and Physical Properties of PSE Chicken Meat in a Commercial Processing Plant. Rev. Bras. Cienc. Agric. 2010, 12, 233–237. [Google Scholar] [CrossRef]
- Brambila, G.S.; Chatterje, D.; Bowker, B.; Zhuang, H. Descriptive texture analyses of cooked patties made of chicken breast with the woody breast condition. Poult. Sci. 2017, 96, 3489–3494. [Google Scholar] [CrossRef] [PubMed]
- Nardoia, M.; Ruiz-Capillas, C.; Casamassima, D.; Herrero, A.M.; Pintado, T.; Jiménez-Colmenero, F.; Chamorro, S.; Brenes, A. Effect of polyphenols dietary grape by-products on chicken patties. Eur. Food Res. Technol. 2017, 244, 367–377. [Google Scholar] [CrossRef]
- De Marchi, M.; Riovanto, R.; Penasa, M.; Cassandro, M. At-line prediction of fatty acid profile in chicken breast using near infrared reflectance spectroscopy. Meat Sci. 2012, 90, 653–657. [Google Scholar] [CrossRef]
- Harvard Health Publishing. Available online: https://www.health.harvard.edu/staying-healthy/how-much-calcium-do-you-really-need (accessed on 2 April 2021).
- National Institute of Health. Available online: https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/ (accessed on 2 April 2021).
- Klingel, T.; Kremer, J.I.I.; Vera Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- European Union. European Union Commission implementing regulation (EU) 2017/2468 of 20 December 2017 laying down administrative and scientific requirements concerning traditional foods from third countries in accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods. Off. J. Eur. Union 2017, L351, 55–63. [Google Scholar]
- European Union. European Union Commission implementing regulation (EU) 2017/2469 of 20 December 2017 laying down administrative and scientific requirements for applications referred to in Article 10 of Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods. Off. J. Eur. Union 2017, L351, 64–71. [Google Scholar]
- US Department of Agriculture. USDA Table of Cooking Yields for Meat and Poultry, Release 2; US Department of Agriculture: Beltsville, MD, USA, 2014; p. 20705.
- Bresciani, L.; Calani, L.; Bruni, R.; Brighenti, F.; Del Rio, D. Phenolic composition, caffeine content and antioxidant capacity of coffee silverskin. Food Res. Int. 2014, 61, 196–201. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. Review on utilization and composition of coffee silverskin. Food Res. Int. 2014, 61, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess. Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef] [Green Version]
- Ateş, G.; Elmacı, Y. Coffee silverskin as fat replacer in cake formulations and its effect on physical, chemical and sensory attributes of cakes. LWT Food Sci. Technol. 2018, 90, 519–525. [Google Scholar] [CrossRef]
- Ziober, I.; Paião, G.F.; Marchi, D.F.; Coutinho, L.L.; Binneck, E.; Nepomuceno, A.; Shimokomaki, M. Heat and chemical stress modulate the expression of the α-RYR gene in broiler chickens. Genet. Mol. Res. 2010, 9, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Paula de Oliveira, M.M.; Resende Gonçalves Silva, J.; Lamas de Oliveira, K.; Massingue, A.A.; Mendes Ramos, E.; Júnior, A.A.B.; Louzada Silva, M.H.; Olimi Silva, V.R. Technological and sensory characteristics of hamburgers added with chia seed as fat replacer. Cienc. Rural 2019, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Fernández-López, J.; Lucas-González, R.; Viuda-Martos, M.; Sayas-Barberá, E.; Navarro, C.; Haros, C.M.; Pérez-Álvarez, J.A. Chia (Salvia hispanica L.) products as ingredients for reformulating frankfurters: Effects on quality properties and shelf-life. Meat Sci. 2019, 156, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Angeloni, S.; Scortichini, S.; Fiorini, D.; Sagratini, G.; Vittori, S.; Neiens, S.D.; Steinhaus, M.; Zheljazkov, V.D.; Maggi, F.; Caprioli, G. Characterization of Odor-Active Compounds, Polyphenols, and Fatty Acids in Coffee Silverskin. Molecules 2020, 25, 2993. [Google Scholar] [CrossRef]
- Ito, J.; Komuro, M.; Supardi Parida, I.; Shimizu, N.; Kato, S.; Meguro, Y.; Ogura, Y.; Kuwahara, S.; Miyazawa, T.; Nakagawa, K. Evaluation of lipid oxidation mechanisms in beverages and cosmetics via analysis of lipid hydroperoxide isomers. Sci. Rep. 2019, 9, 7387. [Google Scholar] [CrossRef] [PubMed]
- Ghani, M.A.; Barril, C.; Bedgood, D.R., Jr.; Prenzler, P.D. Measurements of antioxidant activity woth the thiobarbituric acid reactive substances assay. Food Chem. 2017, 230, 195–207. [Google Scholar] [CrossRef]
- Chen, D.W.; Balagiannis, D.P.; Parker, J.K. Use of egg yolk phospholipids to generate chicken meat odorants. Food Chem. 2019, 286, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.C.S.; Morcuende, D.; Madruga, M.S.; Hernández-López, S.H.; Silva, F.A.P.; Ventanas, S.; Estévez, M. Effect of pre-cooking methods on the chemical and sensory deterioration of ready-to-eat chicken patties during chilled storage and microwave reheating. Food Sci. Technol. 2016, 53, 2760–2769. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Li, J.; Lim, N.R.; Kang, B.S.; Park, H.J. Prediction of warmed-over flavor development in cooked chicken by colorimetric sensor array. Food Chem. 2016, 211, 440–447. [Google Scholar] [CrossRef]
- Sanchez del Pulgar, J.; Roldan, M.; Ruiz-Carrascal, J. Volatile Compounds Profile of Sous-Vide Cooked Pork Cheeks as Affected by Cooking Conditions (Vacuum Packaging, Temperature and Time). Molecules 2013, 18, 12538–12547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apriyantonio, A.; Indrawaty, D. Comparison on Flavor Characteristics of Domestic Chicken and Broiler as Affected by Different Processing Methods. Chapter Aroma, meat. In Food Flavors: Formation, Analysis and Packaging Influences; Contis, E.T., Ho, C.T., Mussinas, C.J., Parliment, T.H., Shahidi, F., Spanier, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 233–244. [Google Scholar]
- Ribeiro Dias, D. Industrial uses of cocoa by-products. In Cocoa and Coffee Fermentation, 1st ed.; Schwan, D., Fleet, R.F., Agro, G.H., Eds.; CRC Taylor & Francis: Boca Raton, FL, USA, 2015; pp. 309–330. [Google Scholar]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Influence of thermal treatment on formation of volatile compounds, cooking loss and lipid oxidation in foal meat. LWT Food Sci. Technol. 2014, 58, 439–445. [Google Scholar] [CrossRef]
- Pegg, R.B.; Kerrihard, A.L.; Shahidi, F. Warmed Over Flavor. In Encyclopedia of Meat Science; Devine, C., Dikeman, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 410–415. [Google Scholar]
- Córdoba, N.; Moreno, F.L.; Osorio, C.; Velásquez, S.; Ruiz, Y. Chemical and sensory evaluation of cold brew coffees using different roasting profiles and brewing methods. Food Res. Int. 2021, 141, 110141. [Google Scholar] [CrossRef] [PubMed]
Sample | Moisture (%) | Proteins (%) | Lipids (%) | Ashes (%) |
---|---|---|---|---|
CTRL | 74.56 ± 0.05 | 19.72 ± 0.05 | 2.48 ± 0.01 | 1.97 a ± 0.01 |
CSS 1.5% | 74.14 ± 0.03 | 20.01 ± 0.23 | 2.74 ± 0.02 | 2.11 b ± 0.01 |
CSS 3% | 73.39 ± 0.05 | 19.62 ± 0.05 | 2.69 ± 0.01 | 2.69 c ± 0.01 |
sign. | n.s. | n.s. | n.s. | ** |
pH Uncooked | pH Cooked | aw Cooked | Cooking Yield % | |
---|---|---|---|---|
CTRL | 5.82 ± 0.03 | 6.10 ± 0.03 | 0.985 ± 0.0013 | 76.15 a ± 0.58 |
CSS 1.5% | 5.75 ± 0.01 | 6.06 ± 0.01 | 0.986 ± 0.0016 | 89.5 b ± 0.36 |
CSS 3% | 5.75 ± 0.01 | 6.02 ± 0.01 | 0.986 ± 0.0007 | 88.95 b ± 0.52 |
sign. | n.s. | n.s. | n.s. | ** |
Uncooked Samples | L* | a* | b* | C* |
---|---|---|---|---|
CTRL | 45.91 ± 0.18 a | 0.28 ± 0.11 b | 10.95 ± 0.53 | 10.96 ± 0.53 b |
CSS 1.5% | 32.83 ± 1.33 b | 3.81 ± 1.21 a | 13.74 ± 1.58 | 15.42 ± 1.82 a |
CSS 3% | 29.40 ± 0.71 c | 4.96 ± 0.83 a | 14.60 ± 0.31 | 14.28 ± 0.52 a |
sign. | ** | ** | n.s. | * |
Cooked Samples | ||||
CTRL | 56.12 ± 0.76 a | 1.18 ± 0.77 | 16.75 ± 0.49 a | 16.80 ± 1.08 a |
CSS 1.5% | 47.35 ± 0.44 b | 2.25 ± 0.60 | 10.94 ± 0.36 b | 11.17 ± 0.42 b |
CSS 3% | 43.54 ± 0.27 b | 2.83 ± 0.60 | 12.05 ± 0.40 b | 12.38 ± 1.22 b |
sign. | * | n.s. | ** | ** |
VOCCs from Burgers’ Samples | Burgers T0 | Burgers T72 | |||||
---|---|---|---|---|---|---|---|
CTRL T0 | CSS 1.5% T0 | CSS 3% T0 | CTRL T72 | CSS 1.5% T72 | CSS 3% T72 | Sign. | |
Aldehydes | |||||||
2-Decenal, (Z)- | nd | nd | 1.25 | nd | nd | nd | * |
2-Nonenal, (E)- | nd | nd | nd | nd | 2.82 | nd | * |
10-Undecenal | nd | nd | 4.06 | nd | nd | nd | * |
Benzaldehyde | nd | 6.27 c | 4.46 b | nd | 3.62 a | 7.42 d | * |
Benzaldehyde, 2,5-bis[(trimethylsilyl)oxy]- | 0.86 a | nd | nd | nd | 0.72 a | 1.73 b | * |
Butanal, 2-methyl- | nd | nd | 5.48 a | nd | nd | 46.86 b | ** |
Butanal-3 methyl | nd | nd | 5.67 a | nd | 4.11 a | 7.00 b | * |
Heptanal | 1.77 a | 4.46 b | 2.29 a | nd | * | ||
Hexanal | 55.1 b | 11.7 a | nd | 72 c | nd | nd | *** |
Octanal | 41.2 b | nd | nd | 7.94 a | nd | nd | * |
Pentanal | 2.09 a | nd | nd | nd | nd | nd | * |
Propanal, 2-methyl- | nd | nd | 3.34 B | nd | nd | 1.98 a | * |
Alcohols | |||||||
1,5-Pentanediol, 3-methyl- | nd | nd | 8.96 b | nd | nd | 3.90 a | * |
1-Methylcyclopropanemethanol | nd | nd | nd | nd | nd | 3.71 a | * |
2-Hexen-1-ol, (Z)- | nd | nd | nd | nd | 10.52 | nd | * |
3-Decyn-2-ol | nd | nd | nd | nd | 5.76 | nd | * |
2-Nonen-1-ol, (E)- | 0.58 a | 10.76 b | 8.38 a | 8.80 a | nd | nd | * |
2-Octen-1-ol, (E)- | nd | nd | 2.03 | nd | nd | nd | * |
Ketones | |||||||
2,3-Octanedione | nd | nd | nd | 5.14 | nd | nd | * |
7,9-Di-tert-butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione | nd | nd | 3.78 b | 0.20 a | nd | nd | * |
Nitrogen-containing compounds | |||||||
2-(Aziridinylethyl)amine | nd | 16.09 c | 7.43 b | nd | 15.24 c | 4.59 a | * |
2,6,6-Trimethyl-bicyclo [3.1.1]hept-3-ylamine | nd | nd | nd | nd | 4.42 | nd | * |
Benzeneethanamine, 2,5-difluoro-β,3,4-trihydroxy-N-methyl- | nd | nd | 4.37 | nd | nd | nd | * |
Oxime-, methoxy-phenyl-_ | nd | nd | nd | nd | nd | 1.48 | * |
Propanamide, 2-hydroxy- | nd | nd | 8.86 a | nd | 20.18 b | nd | * |
Topotecan | nd | nd | nd | nd | 8.81 | nd | * |
Hydrocarbons | |||||||
2-Trifluoroacetoxydodecane | nd | 3.98 | nd | nd | nd | nd | * |
3-Trifluoroacetoxydodecane | nd | 4.35 | nd | nd | nd | nd | * |
Butane, 2-nitro- | nd | 3.74 | nd | nd | nd | nd | * |
Cyclohexene, 1-methyl-4-(1-methylethenyl)-, (S)- | nd | nd | nd | nd | nd | 3.43 | * |
Ergosta-5,22-dien-3-ol, acetate, (3β,22E)- | nd | nd | nd | nd | 10.26 | nd | * |
Ethylbenzene | nd | nd | 1.56 a | nd | nd | 4.17 b | * |
Hydroperoxide, heptyl | nd | 3.87 | nd | nd | nd | nd | * |
Propane | nd | nd | nd | nd | nd | 4.05 | * |
p-Xylene | nd | 2.57 a | nd | nd | 2.48 a | 3.00 b | * |
Esters | |||||||
1,2-Benzenedicarboxylic acid, butyl octyl ester | nd | nd | nd | 0.04 | nd | nd | * |
Other compounds | |||||||
2-Formylhistamine | nd | nd | nd | nd | 5.55 | nd | * |
Butylated Hydroxytoluene | nd | nd | nd | 0.20 | nd | nd | * |
Nitrous oxide | nd | nd | 3.91 | nd | nd | nd | * |
Pregnan-18-oic acid,3,11,21-trihydroxy-20-oxo-, γ-lactone, (3β,5α,11β)- | nd | nd | 1.24 | nd | nd | nd | * |
Average Scores | CTRL | CSS 1.5% | CSS 3% | |||
---|---|---|---|---|---|---|
0 h | 72 h | 0 h | 72 h | 0 h | 72 h | |
Descriptors | ||||||
cooked meat odour | 1.8 ± 0.9 b | 4 ± 1.4 a | 2.9 ± 1.1 a | 2.7 ± 1.0 ab | 2.8 ± 1.1 a | 2.6 ± 0.7 ab |
cardboard | 1.9 ± 0.8 | 1.7 ± 0.9 | 1.5 ± 0.7 | 2.0 ± 0.5 | 1.6 ± 0.9 | 2.0 ± 0.1 |
Sulphur/rubber | 1.6 ± 1.0 | 2.0 ± 1.0 | 1.3 ± 0.4 | 1.5 ± 1.0 | 1.3 ± 0.4 | 1.5 ± 0.7 |
roasted | 2.1 ± 1.1 | 1.7 ± 0.7 | 2.6 ± 0.7 | 1.8 ± 0.8 | 2.8 ± 1.3 | 2.5 ± 0.9 |
painty | 1.0 ± 0.0 | 1.3 ± 0.7 | 1.0 ± 0.0 | 1.1 ± 0.3 | 1.5 ± 1.0 | 1.2 ± 0.4 |
rancid | 1.6 ± 1.0 | 1.5 ± 0.7 a | 1.0 ± 0.0 | 1.1 ± 0.3 | 1.2 ± 0.3 | 1.3 ± 0.7 |
vegetable oil-like | 1.6 ± 0.7 | 1.6 ± 0.7 | 1.6 ± 0.9 | 1.3 ± 0.5 | 1.6 ± 0.7 | 1.6 ± 0.7 |
sour | 1.8 ± 0.7 | 1.2 ± 0.4 a | 1.9 ± 0.8 a | 1.6 ± 0.7 | 1.6 ± 0.9 | 1.6 ± 1.0 |
bitter | 1.3 ± 0.5 b | 1.4 ± 0.2 b | 1.9 ± 1.0 ab | 1.6 ± 0.7 ab | 2.6 ± 0.3 a | 2.3 ± 0.9 a |
metallic | 1.3 ± 0.5 | 1.1 ± 0.3 | 1.4 ± 0.7 | 2.0 ± 1.2 a | 1.3 ± 0.4 | 1.8 ± 1.1 |
astringent | 1.6 ± 0.7 | 1.8 ± 0.7 | 1.8 ± 0.9 | 1.7 ± 0.9 | 2.4 ± 1.0 | 2.6 ± 0.8 |
Cooked Meat Odour | Bitterness | |||
---|---|---|---|---|
Factor | F | sign. | F | sign. |
Formulation | 1.8019 | n.s. | 3.7026 | * |
Time | 14.6049 | ** | 0.7326 | n.s. |
Formulation × Time | 3.4424 | * | 0.4273 | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martuscelli, M.; Esposito, L.; Mastrocola, D. The Role of Coffee Silver Skin against Oxidative Phenomena in Newly Formulated Chicken Meat Burgers after Cooking. Foods 2021, 10, 1833. https://doi.org/10.3390/foods10081833
Martuscelli M, Esposito L, Mastrocola D. The Role of Coffee Silver Skin against Oxidative Phenomena in Newly Formulated Chicken Meat Burgers after Cooking. Foods. 2021; 10(8):1833. https://doi.org/10.3390/foods10081833
Chicago/Turabian StyleMartuscelli, Maria, Luigi Esposito, and Dino Mastrocola. 2021. "The Role of Coffee Silver Skin against Oxidative Phenomena in Newly Formulated Chicken Meat Burgers after Cooking" Foods 10, no. 8: 1833. https://doi.org/10.3390/foods10081833
APA StyleMartuscelli, M., Esposito, L., & Mastrocola, D. (2021). The Role of Coffee Silver Skin against Oxidative Phenomena in Newly Formulated Chicken Meat Burgers after Cooking. Foods, 10(8), 1833. https://doi.org/10.3390/foods10081833