Investigation of Photoprotective, Anti-Inflammatory, Antioxidant Capacities and LC–ESI–MS Phenolic Profile of Astragalus gombiformis Pomel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.1.1. Chemicals and Reagents for Extraction and Spectrophotometric Determinations of Biochemical Activities
2.1.2. Reagents for LC/MS Analysis
2.2. Plant Collection and Extraction
2.3. Determination of Total Bioactive Compounds
2.3.1. Total Phenolic Content (TPC)
2.3.2. Total Flavonoid Content (TFC)
2.3.3. Total Saponin Content (TSC)
2.4. Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry (LC–ESI–MS) Analysis
2.5. Photoprotective Activity
2.6. Anti-Inflammatory Activity
2.7. Oxidative Hemolysis Inhibition Assay (OxHLIA)
- AE: the absorbance of the extract;
- AP: the absorbance of the positive control (phosphate buffer saline);
- AN: the absorbance of the negative control (distilled water).
2.8. Brine Shrimp Lethality Test (BST)
2.9. Statistical Analysis
3. Results
3.1. Bioactive Compounds
3.2. Identification and Quantification of Phenolic and Flavonoid Compounds
Compound | % Purity | Rt | ([M-H]-) | Concentration (mg/100 g DM) | RSD Curve Calibration | (R2) | Linear Range (μg/mL) | LOD (μg/mL) | LOQ (μg/mL) | |
---|---|---|---|---|---|---|---|---|---|---|
1 | Quinic acid | 98 | 2.017 | 191.00 | 6.16 ± 0.28 | 14.320 | 0.9952 | 0.05–7.5 | 0.616 | 1.867 |
2 | Gallic acid | 97.4 | 4.317 | 169.00 | 1.16 ± 0.75 | 10.548 | 0.9999 | 0.05–7.6 | 0.102 | 0.308 |
3 | p-coumaric acid | 98 | 22.283 | 163.00 | 8.99 ± 0.78 | 5.560 | 0.9981 | 0.05–7.5 | 0.337 | 1.022 |
4 | Rutin | 98 | 25.256 | 609.00 | 4.12 ± 0.19 | 11.809 | 0.9991 | 0.05–20.0 | 0.172 | 0.521 |
5 | trans-ferulic acid | 99 | 24.550 | 193.00 | 2.34 ± 0.73 | 5.231 | 0.9982 | 0.05–7.5 | 0.624 | 1.890 |
6 | Hyperoside (quercetin-3-O-galactoside) | 98 | 25.829 | 463.00 | 2.15 ± 0.56 | 10.851 | 0.9964 | 0.05–20.0 | 0.115 | 0.349 |
7 | Rosmarinic acid | 98 | 27.876 | 359.00 | 4.45 ± 0.48 | 8.618 | 0.9995 | 0.05–15.0 | 0.115 | 0.454 |
8 | Quercitrin (quercetin-3-O-rhamnoside) | 91.4 | 28.050 | 447.00 | 14.01 ± 0.20 | 10.970 | 0.9996 | 0.05–5.0 | 0.171 | 0.520 |
9 | Apigenin-7-O-glucoside | 98 | 28.028 | 431.00 | 1.87 ± 0.39 | 12.817 | 0.9989 | 0.05–2.0 | 0.821 | 2.489 |
10 | Kaempferol | 97 | 33.350 | 285.00 | 10.05 ± 0.90 | 12.466 | 0.9985 | 0.05–5.0 | 0.148 | 0.450 |
11 | Silymarin | >95 | 35.398 | 481.00 | 14.76 ± 0.65 | 13.218 | 0.9952 | 0.05–20.0 | 0.051 | 0.154 |
12 | Naringenin | 95 | 35.083 | 271.00 | 1.29 ± 0.25 | 10.058 | 0.9970 | 0.05–2.0 | 0.115 | 0.349 |
13 | Apigenin | >95 | 35.717 | 269.00 | 1.41 ± 0.16 | 11.067 | 0.9981 | 0.05–1.0 | 0.068 | 0.206 |
14 | Luteolin | 97 | 36.283 | 285.00 | 1.99 ± 0.09 | 12.376 | 0.9973 | 0.05–5.0 | 0.516 | 1.565 |
15 | Cirsiliol | 95 | 36.975 | 329.00 | 44.46 ± 0.36 | 12.911 | 0.9982 | 0.05–5.0 | 0.030 | 0.090 |
16 | Cirsilineol | 95 | 40.139 | 343.00 | 1.68 ± 0.19 | 6.743 | 0.9977 | 0.05–2.0 | 0.181 | 0.548 |
17 | Acacetin | ≥99 | 42.117 | 283.00 | 0.92 ± 0.11 | 20.134 | 0.9987 | 0.10–7.5 | 0.085 | 0.258 |
3.3. Photoprotective Activity
3.4. Anti-Inflammatory Activity
3.5. OxHLIA Assay
3.6. Brine Shrimp Lethality Bioassay (BSLB)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mancini, A.J.; Lawley, L.P. Structure and function of newborn skin. In Neonatal Dermatology; Einchenfield, L.F., Frieden, I.J., Esterly, N.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 2, pp. 19–32. [Google Scholar]
- Afaq, F. Natural agents: Cellular and molecular mechanisms of photoprotection. Arch. Biochem. Biophys. 2011, 508, 144–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillai, S.; Oresajo, C.; Hayward, J. Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation_induced matrix degradation—A review. Int. J. Cosmet. 2005, 27, 17–34. [Google Scholar] [CrossRef]
- Mahjoub, S.; Masrour-Roudsari, J. Role of oxidative stress in pathogenesis of metabolic syndrome. Casp. J. Intern. Med. 2012, 3, 386. [Google Scholar]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.; Trost, A.; Richter, K. Oxidative stress in aging human skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [Green Version]
- Afaq, F.; Katiyar, S.K. Polyphenols: Skin photoprotection and inhibition of photocarcinogenesis. Mini-Rev. Med. Chem. 2011, 11, 1200–1215. [Google Scholar]
- Tiwari, R.; Rana, C.S. Plant secondary metabolites: A review. IJERGS 2015, 3, 3–5. [Google Scholar]
- Nieto, G. A Review on Applications and Uses of Thymus in the Food Industry. Plants 2020, 9, 961. [Google Scholar] [CrossRef]
- Heywood, V.H. Flowering Plants of the World; Oxford University Press: London, UK, 1978; Published by OUP Australia and New Zealand 14/09/1978; ISBN10: 0192176749, ISBN13: 9780192176745. [Google Scholar]
- Davis, A.M. Crude protein, crude fiber, tannin, and oxalate concentrations of 33 Astragalus species. J. Range Manag. 1982, 35, 32–34. [Google Scholar] [CrossRef]
- Mahmoudia, M.; Abdellaoui, R.; Boughalleb, F.; Yahia, B.; Mabrouk, M.; Nasria, N. Characterization of lipids, proteins, and bioactive compounds in the seeds of three Astragalus species. Food Chem. 2021, 339, 127824. [Google Scholar] [CrossRef]
- Ozenda, P. Flore et Végétation du Sahara, 3rd ed.; CNRS: Paris, France, 1991. [Google Scholar]
- Rios, J.L.; Waterman, P.G. A review of the pharmacology and toxicology of Astragalus. Phytother. Res. 1997, 11, 411–418. [Google Scholar] [CrossRef]
- Yesilada, E.; Bedir, E.; Calış, İ.; Takaishi, Y.; Ohmoto, Y. Effects of triterpene saponins from Astragalus species on in vitro cytokine release. J. Ethnopharmaco. 2005, 96, 71–77. [Google Scholar] [CrossRef]
- Lei, H.; Wang, B.; Li, W.P.; Yang, Y.; Zhou, A.W.; Chen, M.Z. Anti-aging effect of astragalosides and its mechanism of action. Acta Pharm. Sin. 2003, 24, 230–234. [Google Scholar]
- Yin, X.; Zhang, Y.; Yu, J.; Zhang, P.; Shen, J.; Qiu, J.; Wu, H.; Zhu, X. The antioxidative eff ects of Astragalus saponin I Protect against development of early diabetic nephropathy. J. Pharmacol. Sci. 2006, 101, 166–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarre, S. Systematic revision of Astragalus sect. Adiaspastus, sect. Macrophyllium and sect. Pterophorus (Fabaceae). Englera 2000, 18, 1–219. [Google Scholar]
- Somer, G.; Calışkan, A.C. Selenium and trace element distribution in Astragalus plants: Developing a differential pulse polarographic method for their determination. Turk J. Chem. 2007, 31, 411–422. [Google Scholar]
- Krasteva, I.; Toshkova, R.; Nikolov, S. Protective effect of Astragalus corniculatus saponins against myeloid Graffi tumor in hamsters. Phytother. Res. 2004, 18, 255–257. [Google Scholar] [CrossRef]
- El Rhaffari, L.; Zaid, A. Pratique de la phytotherapie dans le sud-est du Maroc (Tafilalet): Un savoir empirique pour une pharmacopee renovee. Des Sources Du Savoir Aux Medicam. Du Futur 2002, 1, 293–318. [Google Scholar]
- Teyeb, H.; Zouari, S.; Douki, W.; Najjar, M.F.; Neffati, M. Phytochemical Investigation of Astragalus gombiformis Pomel (Fabaceae). ACL 2011, 3, 246–253. [Google Scholar]
- Yunfei, L.; Haibin, Q.; Yiyu, C. Identification of major constituents in the traditional Chinese medicine “QI-SHEN-YI-QI” dropping pill by high-performance liquid chromatography coupled with diode array detection-electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2008, 47, 407–412. [Google Scholar] [CrossRef]
- Teyeb, H.; Zouari, S.; Douki, W.; Najjar, M.F.; Neffati, M. Variation in volatiles of Astragalus gombiformis Pomel. Z. Naturforsch C J. Biosci. 2011, 66, 1–2. [Google Scholar] [CrossRef]
- Bensouici, C.; Boudiar, T.; Kashi, I.; Bouhedjar, K.; Boumechhour, A.; Khatabi, L.; Larguet, H. Chemical characterization, antioxidant, anticholinesterase and alpha-glucosidase potentials of essential oil of Rosmarinus tournefortii de noé. J. Food Meas. Charact. 2019, 31, 432–443. [Google Scholar] [CrossRef]
- Lekmine, S.; Boussekine, S.; Kadi, K.; Martín-García, A.I.; Kheddouma, A.; Nagaz, K.; Bensouici, C. A comparative study on chemical profile and biological activities of aerial parts (stems, flowers, leaves, pods and seeds) of Astragalus gombiformis. Biocatal. Agric. Biotechnol. 2020, 27, 101668. [Google Scholar] [CrossRef]
- Müller, L.; Gnoyke, S.; Popken, A.M.; Böhm, V. Antioxidant capacity and related parameters of different fruit formulations. LWT 2010, 43, 992–999. [Google Scholar] [CrossRef]
- Le, K.; Chiu, F.; Ng, K. Identification and quantification of antioxidants in Fructuslycii. Food. Chem. 2007, 1, 353–563. [Google Scholar] [CrossRef]
- Topçu, G.; Ay, A.; Bilici, A.; Sarıkürkcü, C.; Öztürk, M.; Ulubelen, A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem. 2007, 103, 816–822. [Google Scholar] [CrossRef]
- Hiai, S.; Oura, H.; Nakajima, T. Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Med. 1976, 29, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Shiau, I.L.; Shih, T.L.; Wang, Y.N.; Chen, H.T.; Lan, H.F.; Lin, H.C.; Yang, B.Y.; Ko, C.H.; Murase, Y. Quantification for saponin from a soapberry in cleaning products by a chromatographic and two colorimetric assays. J. Fac. Agric. Kyushu Univ. 2009, 54, 215–221. [Google Scholar] [CrossRef]
- Susamci, E.; Romero, C.; Tuncay, O.; Brenes, M. An explanation for the natural de-bittering of Hurma olives during ripening on the tree. Grasas Y Aceites. 2017, 68, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Maske, P.P.; Lokapure, S.G.; Nimbalkar, D.; Malavi, S.; D’souza, J.I. In vitro determination of sun protection factor and chemical stability of Rosa kordesii extract gel. J. Pharm. Res. 2013, 7, 520–524. [Google Scholar] [CrossRef]
- Mansur, J.D.S.; Breder, M.N.R.; Mansur, M.C.D.A. Determina¸c~ao do fator de prote¸c~ao solar por espectrofotometria. Ana. Bras. Dermatol. 1986, 61, 121–124. [Google Scholar]
- Karthik, K.; Rathna, B.; Kumar, P.R.; VenuPriya, R.; Sunilkumar, K.; Singh, R. Evaluation of anti-inflammatory activity of canthium parviflorum by in-vitromethod. Indian J. Res. Pharm. Biotechnol. 2013, 1, 729–730. [Google Scholar]
- Kumar, G.; Karthik, L.; Rao, K.V.B. Hemolytic activity of Indian medicinal plants towards human erythrocytes: An in vitro study. Elixir. Appl. Botany. 2011, 40, 5534–5537. [Google Scholar]
- Takebayashi, J.; Chen, J.; Tai, A. A method for evaluation of antioxidant activity based on inhibition of free radical-induced erythrocyte hemolysis. In Advanced Protocols in Oxidative Stress II; Humana Press: Totowa, NJ, USA, 2010; pp. 287–296. [Google Scholar]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; McLaughlin, J.L. Brine shrimp: A convenient generalbioassay for active plant constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Havsteen, H.B. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Teyeb, H.; Houta, O.; Najjaa, H.; Lamari, A.; Neffati, M.; Doukia, W.; Najjara, M.F. Biological and Chemical Study of Astragalus gombiformis. Z. Für NaturforschTübingen. 2012, 67, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Sevil, A.; Onur, K. Antioxidant, Antimicrobial and Cytotoxic Activities of Endemic Astragalus argaeus Boiss. from Turkey. Hacettepe J. Biol. Chem. 2019, 47, 87–97. [Google Scholar]
- Bronislava, B.; Audron, D.; Raimondas, B.; Audrius, P.; Jurgita, C.; Vilma, O.; Nijol, L. Meneral and Phytochemical Profiles and Antioxidant Activity of Herbal Material from Two Temperate Astragalus Species. BioMed Res. Int. 2018, 11, 6318630. [Google Scholar]
- Rakib, E.; Chicha, H.; Abouricha, S.; Alaoui, M.; Bouli, A.A.; Hansali, M.; Owen, R.W. Determination of phenolic composition of carob pods grown in different regions of Morocco. J. Nat. Prod. 2010, 3, 2034–2140. [Google Scholar]
- Papageorgiou, V.C.; Gardeli, A.; Mallouchos, M.; Papaioannou, M. Komaitis Variation of the Chemical Profile and Antioxidant Behavior of Rosmarinus officinalis L. and Salvia fruticosa Miller Grown in Greece. J. Agric. Food Chem. 2008, 56, 7254–7264. [Google Scholar] [CrossRef]
- Benchikh, Y.; Louaileche, H.; George, B.; Merlin, A. Changes in bioactive phytochemical content and in vitro antioxidant activity of carob (Ceratoniasiliqua L.) as influenced by fruit ripening. Ind. Crop. Prod. 2014, 60, 298–303. [Google Scholar] [CrossRef]
- Saci, F.; Bachir bey, M.; Louaileche, H.; Gali, L.; Bensouici, C. Changes in anticholinesterase, antioxidant activities and related bioactive compounds of carob pulp (Ceratonia siliqua L.) during ripening stages. Food Meas. 2020, 14, 937–994. [Google Scholar] [CrossRef]
- Saci, F.; Louaileche, H.; Bachirbey, M.; Meziant, L. Optimization of phenolic compound recovery and antioxidant activity from carob pulp using response surface methodology. Int. Food Res. J. 2017, 24, 1094. [Google Scholar]
- Haşimi, N.; Ertaş, A.; Yilmaz, M.A.; Boğa, M.; Temel, H.; Demirci, S.; Yılmaz-Özden, T.; Yener, İ.; Kolak, U. LC-MS/MS and GC-MS analyses of three endemic Astragalus species from Anatolia towards their total phenolic-flavonoid contents and biological activities. Biodivers. Conserv. 2017, 10, 18–30. [Google Scholar]
- Qi, L.W.; Yi, L.; Ren, M.T.; Wen, X.D.; Wang, Y.X.; Li, P. Simultaneous determination of 15 marker constituents in various Radix Astragali preparations by solid-phase extraction and high-performance liquid chromatography. J. Sep. Sci. 2008, 31, 97–106. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, Z.; Zhang, Q.; Qiu, J.; Jia, Z. Acute and subchronic toxicological studies of the iridoid glycosides extract of Lamiophlomis rotata (Benth.) Kudo in rats. Regul. Toxicol. Pharmacol. 2018, 92, 315–323. [Google Scholar] [CrossRef]
- Yasinov, R.K.; Syrovezhko, N.V.; Yakovelev, G.P. Flavonoids of Astragalus quisqualis. Chem. Nat. Compd. 1983, 19, 368. [Google Scholar] [CrossRef]
- Yasinov, R.K.; Khaitov, I.K. Flavonoids of Astragalus kabadianus. Chem. Nat. Compd. 1988, 24, 386. [Google Scholar] [CrossRef]
- Pu, W.; Wang, D.; Zhou, D. Structural Characterization and Evaluation of the Antioxidant Activity of Phenolic Compounds from Astragalus taipaishanensis and Their Structure-Activity Relationship. Sci. Rep. 2015, 5, 13914. [Google Scholar] [CrossRef] [Green Version]
- Lobanova, E. PhytochAmical description of Astragalus glycyphyllos (Fabaceae). Veg. World Asian Russ. 2011, 1, 87–90. [Google Scholar]
- Mollaei, S.; Ebadi, M.; Hazrati, S.; Habibi, B.; Gholami, F.; Sourestani, M.M. Essential oil variation and antioxidant capacity of Mentha pulegium populations and their relation to ecological factors. Biochem. Syst. Ecol. 2020, 91, 104084. [Google Scholar] [CrossRef]
- Mehalaine, S.; Chenchouni, H. Plants of the same place do not have the same metabolic pace: Soil properties affect differently essential oil yields of plants growing wild in semiarid Mediterranean lands. Arab. J. Geosci. 2020, 13, 1263. [Google Scholar] [CrossRef]
- Mehalaine, S.; Chenchouni, H. Quantifying how climatic factors influence essential oil yield in wild-growing plants. Arab. J. Geosci. 2021, 14, 1257. [Google Scholar] [CrossRef]
- Ratnasooriya, W.D.; Pathirana, R.N.; Dissanayake, A.S.; Samanmali, B.L.C.; Desman, P.K. Evaluation of in vitro sun screen activities of salt marshy plants Suaedamonoica, Suaeda maritima and Halosarcia indica. Int. J. Pharm. Res. Allied Sci. 2016, 5, 15–20. [Google Scholar]
- Sánchez-Campillo, M.; Gabaldon, J.A.; Castillo, J.; Benavente-García, O.; Del Baño, M.J.; Alcaraz, M.; Vicente, V.; Alvarez, N.J.A.; Lozano, J.A. Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food Chem. Toxicol. 2009, 47, 386–392. [Google Scholar] [CrossRef]
- Matwiejczuk, N.; Galicka, A.; Ilona Zaręba, I.; Brzóska, M.M. The Protective Effect of Rosmarinic Acid against Unfavorable Influence of Methylparaben and Propylparaben on Collagen in Human Skin Fibroblasts. Nutrients 2020, 12, 1282. [Google Scholar] [CrossRef]
- Fernando, P.M.; Piao, M.J.; Kang, K.A.; Ryu, Y.S.; Hewage, S.R.; Chae, S.W.; Hyun, W. Rosmarinic acid attenuates cell damage against UVB radiation-induced oxidative stress via enhancing antioxidant effects in human HaCaT cells. Biomol. Ther. (Seoul) 2016, 24, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Curnow, A.; Owen, S.J. An Evaluation of Root Phytochemicals Derived from Althea officinalis (Marshmallow) and Astragalus membranaceus as PotentialNatural Components of UV Protecting Dermatological Formulations. Oxid. Med. Cell. Longev. 2016, 9, 7053897. [Google Scholar]
- Martínez, A.; Estevez, J.C.; Silva-Pando, F.J. Antioxidant activity, total phenolic. Front Life Sci. 2012, 6, 77–86. [Google Scholar] [CrossRef]
- Saewan, N.; Jimtaisong, A. Photoprotection of natural flavonoids. J. Appl. Pharm. Sci. 2013, 3, 129–141. [Google Scholar]
- De-Oliveira-Junior, R.G.; Ferraz, C.A.A.; Souza, G.R.; Guimaraes, A.L.; De-Oliveira, A.P.; Lima-Saraiva, S.R.G.D.; Silva Almeida, J.R.G. Phytochemical analysis and eval-uation of antioxidant and photoprotective activities of extracts from flowers of Bromelia laciniosa (Bromeliaceae). Biotechnol. Biotechnol. Equip. 2017, 31, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Korac, R.R.; Khambholja, K.M. Potential of herbs in skin protection from ultravio-let radiation. Pharmacogn. Rev. 2011, 5, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizushima, Y.; Kobayashi, M. Interaction of anti-inflammatory drugs with serum proteins, especially with same biologically active proteins. J. Pharm. Pharmacol. 1968, 20, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Falcão, S.; Baptista, P.; Freire, C.; Vilas-Boas, M.; Ferreira, I.C.F.R. Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem. 2008, 111, 61–66. [Google Scholar] [CrossRef]
- Mouffouk, C.; Hambaba, L.; Haba, H.; Mouffouk, S.; Bensouici, C.; Hachemi, M.; Khadraoui, H. Acute toxicity and in vivo anti-inflammatory effects and in vitro antioxidant and anti-arthritic potential of Scabiosa Stellata. Orient. Pharm. Exp. Med. 2018, 18, 335–348. [Google Scholar] [CrossRef]
- Mouffouk, C.; Mouffouk, S.; Oulmi, K.; Mouffouk, S.; Haba, H. In vitro photoprotective, hemostatic, anti-inflammatory and antioxidant activities of the species Linaria scariosa Desf. S. Afr. J. Bot. 2020, 130, 383–388. [Google Scholar] [CrossRef]
- Nalbantsoy, A.; Nesil, T.; Yılmaz-Dilsiz, Ö.; Aksu, G.; Khan, S.; Bedir, E. Evaluation of the immunomodulatory properties in mice and in vitro anti-inflammatory activity of cycloartane type saponins from Astragalus species. J. Ethnopharmacol. 2012, 139, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Sharma, O.P.; Kumar, N.; Singh, B.; Bhat, T.K. An improved method for thin layer chromatographic analysis of saponins. Food. Chem. 2012, 132, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Voutquenne, L.; Lavaud, C.; Massiot, G.; Men-Olivier, L.L. Structure-Activity Relationships of Hemolytic Saponins. Pharm. Biol. 2002, 40, 253–262. [Google Scholar] [CrossRef]
- Milla, P.G.; Peñalver, R.; Nieto, G. Health Benefits of Uses and Applications of Moringa oleifera in Bakery Products. Plants 2021, 10, 318. [Google Scholar] [CrossRef]
- Golmohammadi, F. A viewpoint toward medical plant of Astragalus and its main characteristics, products and economical importance in Iran (Case study: Boldaji and lake Choghakhor in Chaharmahal and Bakhtiari Province). Tech. J. Eng. Appl. Sci. 2013, 3, 3702–3721. [Google Scholar]
- Mclaughlin, J.L.; Rogers, L.L. The use of biological assays to evaluate botanicals. Drug. Dev. Ind. Pharm. 1998, 32, 513–524. [Google Scholar] [CrossRef]
- Mouffouk, S.; Mouffouk, C.; Bensouici, C.; Haba, H. In vitro cytotoxic effect, hemolytic and antioxidant activities of the Algerian species NoneavesicariaRchb. Curr. Bioact. Compd. 2020, 16, 1197–1204. [Google Scholar] [CrossRef]
- Moshi, M.H.; Inonocent, E.; Magadula, J.J.; Otieno, D.F.; Weisheit, A.; Mbabazi, P.K.; Nondo, R.S.O. Brine shrimp toxicity of some plants used as traditional medicine in kagera region North Western Tanzania. Tanzan J. Health Res. 2010, 12, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Subhan, F.; Khan, M.A.; Ahmad, S. Molecularly characterized solvent extracts and saponins from Polygonum hydropiper L. show high anti-angiogenic, anti-tumor, brine shrimp, and fibroblast NIH/3T3 cell line cytotoxicity. Front. Pharmacol. 2016, 7, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
λ (nm) | EE(λ) × I(λ) (Norms) | A. gombiformis Extract. | |
---|---|---|---|
Absorbance | SPF | ||
290 | 0.0150 | 4.143 ± 0.01 | 0.621 ± 0.00 |
295 | 0.0817 | 3.862 ± 0.02 | 3.155 ± 0.02 |
300 | 0.2874 | 3.843 ± 0.00 | 11.046 ± 0.01 |
305 | 0.2780 | 3.682 ± 0.26 | 12.069 ± 0.85 |
310 | 0.1864 | 3.802 ± 0.00 | 7.087 ± 0.00 |
315 | 0.0837 | 3.733 ± 0.00 | 3.132 ± 0.00 |
320 | 0.0180 | 3.698 ± 0.00 | 0.665 ± 0.00 |
Total | 1 | 37.78 ± 0.85 |
Extract/Reference Compound | EC50 (µg/mL) |
---|---|
Diclofenac | 63.5 ± 0.02 a |
Ketoprofen | 165.83 ± 0.103 c |
A. gombiformis extract | 69.42 ± 0.02 b |
A. gombiformis Butanolic Fraction μg/mL | A. gombiformis % of Mortality | K2Cr2O7 % of Mortality |
---|---|---|
10 | 16.7 ± 5.77 | 0 ± 0.00 |
20 | 26.7 ± 5.77 | 50 ± 0.00 |
40 | 43.3 ± 5.77 | 80 ± 10.00 |
80 | 86.7 ± 5.77 | 100 ± 0.00 |
DC50 (μg/mL) | 44.7 ± 1.76 | 20.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lekmine, S.; Boussekine, S.; Akkal, S.; Martín-García, A.I.; Boumegoura, A.; Kadi, K.; Djeghim, H.; Mekersi, N.; Bendjedid, S.; Bensouici, C.; et al. Investigation of Photoprotective, Anti-Inflammatory, Antioxidant Capacities and LC–ESI–MS Phenolic Profile of Astragalus gombiformis Pomel. Foods 2021, 10, 1937. https://doi.org/10.3390/foods10081937
Lekmine S, Boussekine S, Akkal S, Martín-García AI, Boumegoura A, Kadi K, Djeghim H, Mekersi N, Bendjedid S, Bensouici C, et al. Investigation of Photoprotective, Anti-Inflammatory, Antioxidant Capacities and LC–ESI–MS Phenolic Profile of Astragalus gombiformis Pomel. Foods. 2021; 10(8):1937. https://doi.org/10.3390/foods10081937
Chicago/Turabian StyleLekmine, Sabrina, Samira Boussekine, Salah Akkal, Antonio Ignacio Martín-García, Ali Boumegoura, Kenza Kadi, Hanene Djeghim, Nawal Mekersi, Samira Bendjedid, Chawki Bensouici, and et al. 2021. "Investigation of Photoprotective, Anti-Inflammatory, Antioxidant Capacities and LC–ESI–MS Phenolic Profile of Astragalus gombiformis Pomel" Foods 10, no. 8: 1937. https://doi.org/10.3390/foods10081937
APA StyleLekmine, S., Boussekine, S., Akkal, S., Martín-García, A. I., Boumegoura, A., Kadi, K., Djeghim, H., Mekersi, N., Bendjedid, S., Bensouici, C., & Nieto, G. (2021). Investigation of Photoprotective, Anti-Inflammatory, Antioxidant Capacities and LC–ESI–MS Phenolic Profile of Astragalus gombiformis Pomel. Foods, 10(8), 1937. https://doi.org/10.3390/foods10081937