Tocochromanols and Chlorophylls Accumulation in Young Pomelo (Citrus maxima) during Early Fruit Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Sample Collection
2.2. Extraction and Determination of Tocochromanol
2.3. Extraction and Determination of Chlorophyll
2.4. RNA Extraction, cDNA Synthesis and RT-PCR Analysis
2.5. Statistical Analysis
3. Results
3.1. Dynamic Changes of Chlorophyll Profiles during Early Fruit Development
3.2. Dynamic Changes of Tocochromanol Profiles during Early Fruit Development
3.3. Differential Genes Expression in Tocochromanol Biosynthesis Pathway
3.4. Correlations between Compositions and Gene Expressions
4. Discussion
4.1. Variations in Tocochromanol Accumulation and Gene Expression
4.2. Changes of Tocochromanol Composition and Contents during Fruit Development
4.3. Potential Interrelationships of Tocochromanol and Chlorophyll in Pomelo during Fruit Development
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mene-Saffrane, L.; DellaPenna, D. Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiol. Biochem. 2010, 48, 301–309. [Google Scholar] [CrossRef]
- Granados-Principal, S.; Quiles, J.L.; Ramirez-Tortosa, C.L.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C. New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidant nutrients. Food Chem. Toxicol. 2010, 48, 1425–1438. [Google Scholar] [CrossRef] [PubMed]
- Radenkovs, V.; Kviesis, J.; Juhnevica-Radenkova, K.; Valdovska, A.; Pussa, T.; Klavins, M.; Drudze, I. Valorization of Wild Apple (Malus spp.) By-Products as a Source of Essential Fatty Acids, Tocopherols and Phytosterols with Antimicrobial Activity. Plants 2018, 7, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munne-Bosch, S.; Alegre, L. The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci. 2002, 21, 31–57. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C. Chemistry and biology of vitamin E. Mol. Nutr. Food Res. 2005, 49, 7–30. [Google Scholar] [CrossRef]
- De, S.; Sengupta, A.; Chakraborty, R.N.; Das, S. Influence of alpha tocopherol during carcinogenesis in uterine cervix of mice. Nutr. Res. 2000, 20, 261–272. [Google Scholar] [CrossRef]
- Heinonen, O.P.; Albanes, D.; Virtamo, J.; Taylor, P.R.; Huttunen, J.K.; Hartman, A.M.; Haapakoski, J.; Malila, N.; Rautalahti, M.; Ripatti, S.; et al. Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: Incidence and mortality in a controlled trial. J. Natl. Cancer Inst. 1998, 90, 440–446. [Google Scholar] [CrossRef] [Green Version]
- Schaffer, S.; Muller, W.E.; Eckert, G.P. Tocotrienols: Constitutional effects in aging and disease. J. Nutr. 2005, 135, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Viera, I.; Perez-Galvez, A.; Roca, M. Green Natural Colorants. Molecules 2019, 24, 154. [Google Scholar] [CrossRef] [Green Version]
- Saleh, H.S.; Omar, E.; Froemming, G.R.A.; Said, R.M. Tocotrienol preserves ovarian function in cyclophosphamide therapy. Hum. Exp. Toxicol. 2015, 34, 946–952. [Google Scholar] [CrossRef]
- Tiwari, R.V.; Parajuli, P.; Sylvester, P.W. gamma-Tocotrienol-induced endoplasmic reticulum stress and autophagy act concurrently to promote breast cancer cell death. Biochem. Cell Biol. 2015, 93, 306–320. [Google Scholar] [CrossRef]
- Valentin, H.E.; Lincoln, K.; Moshiri, F.; Jensen, P.K.; Qi, Q.G.; Venkatesh, T.V.; Karunanandaa, B.; Baszis, S.R.; Norris, S.R.; Savidge, B.; et al. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 2006, 18, 212–224. [Google Scholar] [CrossRef] [Green Version]
- vom Dorp, K.; Hoelzl, G.; Plohmann, C.; Eisenhut, M.; Abraham, M.; Weber, A.P.M.; Hanson, A.D.; Doermann, P. Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis. Plant Cell 2015, 27, 2846–2859. [Google Scholar] [CrossRef] [Green Version]
- Ischebeck, T.; Zbierzak, A.M.; Kanwischer, M.; Dormann, P. A salvage pathway for phytol metabolism in Arabidopsis. J. Biol. Chem. 2006, 281, 2470–2477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, J.J.; Beecher, G.R.; Bhagwat, S.A.; Dwyer, J.T.; Gebhardt, S.E.; Haytowitz, D.B.; Holden, J.M. Flavanones in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature. J. Food Compos. Anal. 2006, 19, S74–S80. [Google Scholar] [CrossRef]
- Goulas, V.; Manganaris, G.A. Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus. Food Chem. 2012, 131, 39–47. [Google Scholar] [CrossRef]
- Xie, L.; Yu, Y.; Mao, J.; Liu, H.; Hu, J.G.; Li, T.; Guo, X.; Liu, R.H. Evaluation of Biosynthesis, Accumulation and Antioxidant Activityof Vitamin E in Sweet Corn (Zea mays L.) during Kernel Development. Int. J. Mol. Sci. 2017, 18, 2780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.Q.; Lu, Y.Y.; Chen, H.L.; Wang, L.X.; Wang, S.H.; Guo, X.B.; Cheng, X.Z. Effect of photoperiod on vitamin E and carotenoid biosynthesis in mung bean (Vigna radiata) sprouts. Food Chem. 2021, 358, 129915. [Google Scholar] [CrossRef]
- Sattler, S.E.; Gilliland, L.U.; Magallanes-Lundback, M.; Pollard, M.; DellaPenna, D. Vitamin E is essential for seed longevity, and for preventing lipid peroxidation during germination. Plant Cell 2004, 16, 1419–1432. [Google Scholar] [CrossRef] [Green Version]
- Styrczewska, M.; Kulma, A.; Kostyn, K.; Hasiewicz-Derkacz, K.; Szopa, J. Flax Terpenoid Pathway as a Source of Health Promoting Compounds. Mini-Rev. Med. Chem. 2013, 13, 353–364. [Google Scholar] [PubMed]
- Chen, M.-H.; Bergman, C.J. Vitamin E Homologs and gamma-Oryzanol Levels in Rice (Oryza sativa L.) During Seed Development. Cereal Chem. 2016, 93, 182–188. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Lai, Q.; Li, T.; Fu, X.; Guo, X.; Liu, R.H. The dynamic changes of ascorbic acid, tocopherols and antioxidant activity during germination of soya bean (Glycine max). Int. J. Food Sci. Technol. 2015, 50, 2367–2374. [Google Scholar] [CrossRef]
- Hiran, P.; Kerdchoechuen, O.; Laohakunjit, N. Combined effects of fermentation and germination on nutritional compositions, functional properties and volatiles of maize seeds. J. Cereal Sci. 2016, 71, 207–216. [Google Scholar] [CrossRef]
- Hahm, T.-S.; Park, S.-J.; Lo, Y.M. Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds. Bioresour. Technol. 2009, 100, 1643–1647. [Google Scholar] [CrossRef]
- Kim, M.Y.; Lee, S.H.; Jang, G.Y.; Li, M.; Lee, Y.R.; Lee, J.; Jeong, H.S. Changes of phenolic-acids and vitamin E profiles on germinated rough rice (Oryza sativa L.) treated by high hydrostatic pressure. Food Chem. 2017, 217, 106–111. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Z.; Ban, L.; Wu, Y.; Huang, J.; Chu, J.; Fang, S.; Wang, Z.; Gao, H.; Wang, X. P-HYDROXYPHENYLPYRUVATE DIOXYGENASE from Medicago sativa is involved in vitamin E biosynthesis and abscisic acidmediated seed germination. Sci. Rep. 2017, 7, 40625. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Li, H.; Liu, G. Progress of vitamin E metabolic engineering in plants. Transgenic Res. 2006, 15, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Mene-Saffrane, L. Vitamin E Biosynthesis and Its Regulation in Plants. Antioxidants 2018, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvath, G.; Wessjohann, L.; Bigirimana, J.; Monica, H.; Jansen, M.; Guisez, Y.; Caubergs, R.; Horemans, N. Accumulation of tocopherols and tocotrienols during seed development of grape (Vitis vinifera L. cv. Albert Lavallee). Plant Physiol. Biochem. 2006, 44, 724–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.K.; Ali, S.A.; Nath, P.; Sane, V.A. Activation of ethylene-responsive p-hydroxyphenylpyruvate dioxygenase leads to increased tocopherol levels during ripening in mango. J. Exp. Bot. 2011, 62, 3375–3385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quadrana, L.; Almeida, J.; Otaiza, S.N.; Duffy, T.; da Silva, J.V.C.; de Godoy, F.; Asis, R.; Bermudez, L.; Fernie, A.R.; Carrari, F.; et al. Transcriptional regulation of tocopherol biosynthesis in tomato. Plant Mol. Biol. 2013, 81, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Bodoira, R.; Torres, M.; Pierantozzi, P.; Taticchi, A.; Servili, M.; Maestri, D. Oil biogenesis and antioxidant compounds from “Arauco” olive (Olea europaea L.) cultivar during fruit development and ripening. Eur. J. Lipid Sci. Technol. 2015, 117, 377–388. [Google Scholar] [CrossRef]
- Tlili, N.; Nasri, N.; Khaldi, A.; Triki, S.; Munne-Bosch, S. Phenolic compounds, tocopherols, carotenoids and vitamin C of commercial caper. J. Food Biochem. 2011, 35, 472–483. [Google Scholar] [CrossRef]
- Munoz, P.; Munne-Bosch, S. Vitamin E in Plants: Biosynthesis, Transport, and Function. Trends Plant Sci. 2019, 24, 1040–1051. [Google Scholar] [CrossRef]
- Kitagawa, M.; Ito, H.; Shiina, T.; Nakamura, N.; Inakuma, T.; Kasumi, T.; Ishiguro, Y.; Yabe, K.; Ito, Y. Characterization of tomato fruit ripening and analysis of gene expression in F-1 hybrids of the ripening inhibitor (rin) mutant. Physiol. Plant. 2005, 123, 331–338. [Google Scholar] [CrossRef]
Gene Name | Gene ID | Prime Direction | Primer Sequence 5′-3′ |
---|---|---|---|
CmHPPD | LOC18044823 | Forward | TGTTGAAGTTGAAGACGCCG |
Reverse | AATCTCATCCGTCGGTTCGA | ||
CmHPT | LOC18055996 | Forward | GTGTCAGTTGCTCTCCTTGC |
Reverse | AGCACACCAGTCTTGAAGGA | ||
CmHST | LOC18039406 | Forward | CTAAGGCCACACACAATCCG |
Reverse | TCCCGCAGCTATTGGTAAGT | ||
CmMPBQ-MT | LOC18048001 | Forward | AGAGACGATGCACTAGAGCC |
Reverse | AGTGGCTCCTTTTGCTTAGC | ||
CmTC | LOC18055331 | Forward | TGGGAATACAGTACTCGGCC |
Reverse | TTCGCCATCCCACTCTATCC | ||
CmTMT | LOC18045307 | Forward | TGTTGTGGATGTTGGCTGTG |
Reverse | TGTCAGGCATGTGTTCTCCA | ||
CmACTIN | LOC18038212 | Forward | GCTATCCAGGCTGTGCTTTC |
Reverse | AACAATTTCCCGCTCAGCAG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, J.; Huang, S.; Li, H.; Liu, Y.; Gu, Q.; Guo, X.; Hu, Y. Tocochromanols and Chlorophylls Accumulation in Young Pomelo (Citrus maxima) during Early Fruit Development. Foods 2021, 10, 2022. https://doi.org/10.3390/foods10092022
Zhao Y, Li J, Huang S, Li H, Liu Y, Gu Q, Guo X, Hu Y. Tocochromanols and Chlorophylls Accumulation in Young Pomelo (Citrus maxima) during Early Fruit Development. Foods. 2021; 10(9):2022. https://doi.org/10.3390/foods10092022
Chicago/Turabian StyleZhao, Yihan, Junhao Li, Shaohua Huang, Huayong Li, Yutao Liu, Qiuming Gu, Xinbo Guo, and Yuwei Hu. 2021. "Tocochromanols and Chlorophylls Accumulation in Young Pomelo (Citrus maxima) during Early Fruit Development" Foods 10, no. 9: 2022. https://doi.org/10.3390/foods10092022
APA StyleZhao, Y., Li, J., Huang, S., Li, H., Liu, Y., Gu, Q., Guo, X., & Hu, Y. (2021). Tocochromanols and Chlorophylls Accumulation in Young Pomelo (Citrus maxima) during Early Fruit Development. Foods, 10(9), 2022. https://doi.org/10.3390/foods10092022