Co-Culture Strategy of Lactobacillus kefiranofaciens HL1 for Developing Functional Fermented Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria Cultures
2.2. Screening Candidate Strains for Co-Culture with L. kefiranofaciens HL1
2.2.1. Colony Size on Agar Plate
2.2.2. Cultivation with Supernatant of Candidate Strain
2.3. Co-Culture Conditions in MRS Broth and Skimmed Milk
2.4. Production of Fermented Milk
2.4.1. Physicochemical Properties
2.4.2. Sensory Evaluation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Pre-Screening Suitable Starter Cultures for Co-Culturing with Probiotic HL1
3.2. Evaluation of Co-Culture in Skimmed Milk
3.3. Physicochemical and Sensory Properties of Fermented Milk with HL1
3.3.1. pH Value and Titratable Acidity
3.3.2. Syneresis and Textural Analysis
3.3.3. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamann, W.T.; Marth, E.H. Survival of Streptococcus thermophilus and Lactobacillus bulgaricus in Commercial and Experimental Yogurts. J. Food Prot. 1984, 47, 781–786. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Codex-Standard 243-2003: Codex Standard for Fermented Milks (2003). Available online: http://www.fao.org/input/download/standards/400/CXS_243e.pdf (accessed on 18 December 2020).
- La Torre, L.; Tamime, A.Y.; Muir, D.D. Rheology and sensory profiling of set-type fermented milks made with different commercial probiotic and yoghurt starter cultures. Int. J. Dairy Technol. 2003, 56, 163–170. [Google Scholar] [CrossRef]
- Farag, M.A.; El Hawary, E.A.; Elmassry, M. Rediscovering acidophilus milk, its quality characteristics, manufacturing methods, flavor chemistry and nutritional value. Crit. Rev. Food Sci. Nutr. 2019, 60, 3024–3041. [Google Scholar] [CrossRef]
- Heller, K.J. Probiotic bacteria in fermented foods: Product characteristics and starter organisms. Am. J. Clin. Nutr. 2001, 73, 374s–379s. [Google Scholar] [CrossRef] [PubMed]
- Donkor, O.; Henriksson, A.; Vasiljevic, T.; Shah, N. Effect of acidification on the activity of probiotics in yoghurt during cold storage. Int. Dairy J. 2006, 16, 1181–1189. [Google Scholar] [CrossRef]
- Ng, E.W.; Yeung, M.; Tong, P.S. Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus. Int. J. Food Microbiol. 2011, 145, 169–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinderola, C.; Costa, G.; Regenhardt, S.; Reinheimer, J. Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. Int. Dairy J. 2002, 12, 579–589. [Google Scholar] [CrossRef]
- Lucas, A.; Sodini, I.; Monnet, C.; Jolivet, P.; Corrieu, G. Probiotic cell counts and acidification in fermented milks supplemented with milk protein hydrolysates. Int. Dairy J. 2004, 14, 47–53. [Google Scholar] [CrossRef]
- Cheirsilp, B.; Shimizu, H.; Shioya, S. Enhanced kefiran production by mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae. J. Biotechnol. 2003, 100, 43–53. [Google Scholar] [CrossRef]
- Xu, Z.; Lu, Z.; Soteyome, T.; Ye, Y.; Huang, T.; Liu, J.; Harro, J.M.; Kjellerup, B.V.; Peters, B.M. Polymicrobial interaction between Lactobacillus and Saccharomyces cerevisiae: Coexistence-relevant mechanisms. Crit. Rev. Microbiol. 2021, 47, 386–396. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Z.; Qin, L.; Kong, J. Low-sugar yogurt making by the co-cultivation of Lactobacillus plantarum WCFS1 with yogurt starter cultures. J. Dairy Sci. 2020, 103, 3045–3054. [Google Scholar] [CrossRef]
- Casarotti, S.; Monteiro, D.A.; Moretti, M.; Penna, A.L.B. Influence of the combination of probiotic cultures during fermentation and storage of fermented milk. Food Res. Int. 2014, 59, 67–75. [Google Scholar] [CrossRef]
- Rodrigues, D.; Rocha-Santos, T.A.; Pereira, C.I.; Gomes, A.M.; Malcata, F.X.; Freitas, A.C. The potential effect of FOS and inulin upon probiotic bacterium performance in curdled milk matrices. LWT 2011, 44, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.P.D.S.; Perego, P.; de Oliveira, M.N.; Converti, A. Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: The inulin effect. Food Res. Int. 2012, 48, 21–27. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Evans, C.A.; Adams, M.; Baines, S.K. Co-culturing of probiotics influences the microbial and physico-chemical properties but not sensory quality of fermented dairy drink made from goats’ milk. Small Rumin. Res. 2016, 136, 104–108. [Google Scholar] [CrossRef]
- Slačanac, V.; Božanić, R.; Hardi, J.; Szabó, J.R.; Lučan, M.; Krstanović, V. Nutritional and therapeutic value of fermented caprine milk. Int. J. Dairy Technol. 2010, 63, 171–189. [Google Scholar] [CrossRef]
- Zhang, L.; Mi, S.; Liu, R.; Sang, Y.; Wang, X. Evaluation of Volatile Compounds in Milks Fermented Using Traditional Starter Cultures and Probiotics Based on Odor Activity Value and Chemometric Techniques. Molecules 2020, 25, 1129. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Tang, S.; He, Q.; Hu, J.; Zheng, J. In vitro antioxidant and angiotensin-converting enzyme inhibitory activity of fermented milk with different culture combinations. J. Dairy Sci. 2020, 103, 1120–1130. [Google Scholar] [CrossRef]
- Wu, Q.; Law, Y.-S.; Shah, N.P. Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk. Sci. Rep. 2015, 5, 12885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanlari, Z.; Moayedi, A.; Ebrahimi, P.; Khomeiri, M.; Sadeghi, A. Enhancement of gamma-aminobutyric acid (GABA) content in fermented milk by using Enterococcus faecium and Weissella confusa isolated from sourdough. J. Food Process. Preserv. 2021, 45, e15869. [Google Scholar]
- Ng, K.-S.; Wang, S.-Y.; Chen, M.-J. A novel immobilized cell system involving Taiwanese kefir microorganisms and sugar cane pieces for fermented milk production. J. Dairy Sci. 2020, 103, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, Y.T. Selecting Probiotics with Anti-Oxidative Ability and Investigating Their Anti-Aging Effects. Master’s Thesis, National Taiwan University, Taipei, Taiwan, 2016. [Google Scholar]
- Ho, S.T.; Hsieh, Y.T.; Chen, M.J. Probiotic strains mixture Pm1 and Lactobacillus kefiranofaciens attenuated D-Galactose-induced oxidative stress and brain damage in mice model. In Proceedings of the 9th Asian Conference on Lactic Acid Bacteria, Gwangju, Korea, 3–5 July 2017. [Google Scholar]
- Chen, H.-C.; Wang, S.-Y.; Chen, M.-J. Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiol. 2008, 25, 492–501. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Chen, K.-N.; Lo, Y.-M.; Chiang, M.-L.; Chen, H.-C.; Liu, J.-R.; Chen, M.-J. Investigation of microorganisms involved in biosynthesis of the kefir grain. Food Microbiol. 2012, 32, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C. Isolation and Identification of Exopolysaccharide-Producing Lactic Acid Bacteria from Taiwanese Ropy Fermented Milk for Low-Fat Fermented Milk Production. Master’s Thesis, National Taiwan University, Taipei, Taiwan, 2018. [Google Scholar]
- Sieuwerts, S.; Bron, P.A.; Smid, E.J. Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation. LWT 2018, 90, 201–206. [Google Scholar] [CrossRef]
- Mani-López, E.; Palou, E.; López-Malo, A. Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. J. Dairy Sci. 2014, 97, 2578–2590. [Google Scholar] [CrossRef] [Green Version]
- Brennan, C.S.; Tudorica, C.M. Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: Comparative study of the utilisation of barley beta-glucan, guar gum and inulin. Int. J. Food Sci. Technol. 2008, 43, 824–833. [Google Scholar] [CrossRef]
- Purwandari, U.; Shah, N.; Vasiljevic, T. Effects of exopolysaccharide-producing strains of Streptococcus thermophilus on technological and rheological properties of set-type yoghurt. Int. Dairy J. 2007, 17, 1344–1352. [Google Scholar] [CrossRef]
- Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O.N. Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT Food Sci. Technol. 2016, 65, 978–986. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Civille, G.; Carr, B.T. Sensory Evaluation Techniques, 4th ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Courtin, P.; Monnet, V.; Rul, F. Cell-wall proteinases PrtS and PrtB have a different role in Streptococcus thermophilus/Lactobacillus bulgaricus mixed cultures in milk. Microbiology 2002, 148, 3413–3421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savijoki, K.; Ingmer, H.; Varmanen, P. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 2006, 71, 394–406. [Google Scholar] [CrossRef]
- Sieuwerts, S.; Molenaar, D.; van Hijum, S.A.F.T.; Beerthuyzen, M.; Stevens, M.J.A.; Janssen, P.W.M.; Ingham, C.J.; de Bok, F.A.M.; de Vos, W.M.; van Hylckama Vlieg, J.E.T. Mixed-Culture Transcriptome Analysis Reveals the Molecular Basis of Mixed-Culture Growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Appl. Environ. Microbiol. 2010, 76, 7775–7784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontaine, L.; Hols, P. The inhibitory spectrum of thermophilin 9 from Streptococcus thermophilus LMD-9 depends on the production of multiple peptides and the activity of BlpGSt, a thiol-disulfide oxidase. Appl. Environ. Microbiol. 2007, 74, 1102–1110. [Google Scholar] [CrossRef] [Green Version]
- Renye, J.A.; Somkuti, J.A.G.A.; Garabal, J.I.; Steinberg, D.H. Bacteriocin production by Streptococcus thermophilus in complex growth media. Biotechnol. Lett. 2016, 38, 1947–1954. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.; Mauro, M.S.; Sanchez, A.; Torres, J.; Marquina, D. The Antimicrobial Properties of Different Strains of Lactobacillus spp. Isolated from Kefir. Syst. Appl. Microbiol. 2003, 26, 434–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, D.; Kim, D.-H.; Song, K.-Y.; Seo, K.-H. Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens. J. Oral Microbiol. 2018, 10, 1472985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, I.W. Biofilm exopolysaccharides: A strong and sticky framework. Microbiology 2001, 147, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Sodini, I.; Lucas, A.; Oliveira, M.; Remeuf, F.; Corrieu, G. Effect of Milk Base and Starter Culture on Acidification, Texture, and Probiotic Cell Counts in Fermented Milk Processing. J. Dairy Sci. 2002, 85, 2479–2488. [Google Scholar] [CrossRef]
- Kitazawa, H.; Yamaguchi, T.; Itoh, T. B-Cell Mitogenic Activity of Slime Products Produced from Slime-Forming, Encapsulated Lactococcus lactis ssp. cremoris. J. Dairy Sci. 1992, 75, 2946–2951. [Google Scholar] [CrossRef]
- Nakajima, H.; Suzuki, Y.; Hirota, T. Cholesterol Lowering Activity of Ropy Fermented Milk. J. Food Sci. 1992, 57, 1327–1329. [Google Scholar] [CrossRef]
- Ruas-Madiedo, P.; Gueimonde, M.; Reyes-Gavilán, C.D.L.; Salminen, S. Short Communication: Effect of Exopolysaccharide Isolated from “Viili” on the Adhesion of Probiotics and Pathogens to Intestinal Mucus. J. Dairy Sci. 2006, 89, 2355–2358. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.P.D.S.; Perego, P.; Converti, A.; De Oliveira, M.N. Growth and acidification performance of probiotics in pure culture and co-culture with Streptococcus thermophilus: The effect of inulin. LWT 2009, 42, 1015–1021. [Google Scholar] [CrossRef]
- Kristo, E.; Miao, Z.; Corredig, M. The role of exopolysaccharide produced by Lactococcus lactis ssp cremoris in structure formation and recovery of acid milk gels. Int. Dairy J. 2011, 21, 656–662. [Google Scholar] [CrossRef]
- Mizrahi, S. Syneresis in food gels and its implications for food quality. In Chemical Deterioration and Physical Instability of Food and Beverages; Skibsted, L.H., Risbo, J., Andersen, M.L., Eds.; Woodhead Publishing: Cambridge, UK, 2010; pp. 324–348. [Google Scholar]
- Walsh, A.M.; Crispie, F.; Kilcawley, K.; O’Sullivan, O.; O’Sullivan, M.G.; Claesson, M.; Cotter, P.D. Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir. mSystems 2016, 1, e00052-16. [Google Scholar] [CrossRef] [Green Version]
- Tamime, A.Y.; Robinson, R.K. Yoghurt: Science and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Luckow, T.; Sheehan, V.; Fitzgerald, G.; Delahunty, C. Exposure, health information and flavour-masking strategies for improving the sensory quality of probiotic juice. Appetite 2006, 47, 315–323. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, S.; Hao, G.; Yu, H.; Tian, H.; Zhao, G. Role of lactic acid bacteria on the yogurt flavour: A review. Int. J. Food Prop. 2017, 20, S316–S330. [Google Scholar] [CrossRef] [Green Version]
- Junaid, M.; Javed, I.; Abdullah, M.; Gulzar, M.; Younas, U.; Nasir, J.; Ahmad, N. Development and quality assessment of flavored probiotic acidophilus milk. J. Anim. Plant Sci. 2013, 23, 1342–1346. [Google Scholar]
- Srisuvor, N.; Chinprahast, N.; Prakitchaiwattana, C.; Subhimaros, S. Effects of inulin and polydextrose on physicochemical and sensory properties of low-fat set yoghurt with probiotic-cultured banana purée. LWT 2013, 51, 30–36. [Google Scholar] [CrossRef]
- Gallina, D.A.; Barbosa, P.D.P.M.; Ormenese, R.D.C.S.C.; Garcia, A.D.O. Development and characterization of probiotic fermented smoothie beverage. Rev. Ciência Agronômica 2019, 50, 378–386. [Google Scholar] [CrossRef]
Samples 1 | Syneresis (%) | Firmness (g) | Consistency (g×s) | Cohesiveness (g) | Viscosity Index (g×s) |
---|---|---|---|---|---|
GDL-induced curd | 44.89 ± 10.96 a | 15.23 ± 0.73 | 389.84 ± 3.47 | 8.66 ± 0.22 | 45.35 ± 3.30 |
Non-fat yoghurt | 36.59 ± 2.22 a,b | 15.98 ± 0.59 | 395.66 ± 7.17 | 8.91 ± 0.13 | 50.36 ± 2.19 |
FSMAPL15 | 27.59 ± 0.88 b | 15.63 ± 0.65 | 391.05 ± 5.06 | 9.52 ± 0.38 | 59.91 ± 8.48 |
FSMHL1+APL15 | 23.40 ± 2.55 b | 17.13 ± 1.13 | 402.92 ± 14.88 | 9.83 ± 0.83 | 54.22 ± 5.54 |
Fermented Skim Milk 1 | Appearance | Aroma | Texture | Flavor | Overall Acceptability |
---|---|---|---|---|---|
Non-fat yogurt | 6.29 ± 1.48 | 6.78 ± 1.45 a | 5.28 ± 1.96 | 5.78 ± 1.80 a | 5.88 ± 1.67 a |
FSMAPL15 | 6.82 ± 1.10 | 6.05 ± 1.29 b | 5.78 ± 1.55 | 5.68 ± 1.90 a | 5.46 ± 1.78 a |
FSMHL1+APL15 | 6.72 ± 1.35 | 4.66 ± 1.75 c | 5.86 ± 1.45 | 4.09 ± 2.21 b | 4.60 ± 1.97 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-Y.; Huang, R.-F.; Ng, K.-S.; Chen, Y.-P.; Shiu, J.-S.; Chen, M.-J. Co-Culture Strategy of Lactobacillus kefiranofaciens HL1 for Developing Functional Fermented Milk. Foods 2021, 10, 2098. https://doi.org/10.3390/foods10092098
Wang S-Y, Huang R-F, Ng K-S, Chen Y-P, Shiu J-S, Chen M-J. Co-Culture Strategy of Lactobacillus kefiranofaciens HL1 for Developing Functional Fermented Milk. Foods. 2021; 10(9):2098. https://doi.org/10.3390/foods10092098
Chicago/Turabian StyleWang, Sheng-Yao, Ren-Feng Huang, Ker-Sin Ng, Yen-Po Chen, Jia-Shian Shiu, and Ming-Ju Chen. 2021. "Co-Culture Strategy of Lactobacillus kefiranofaciens HL1 for Developing Functional Fermented Milk" Foods 10, no. 9: 2098. https://doi.org/10.3390/foods10092098
APA StyleWang, S.-Y., Huang, R.-F., Ng, K.-S., Chen, Y.-P., Shiu, J.-S., & Chen, M.-J. (2021). Co-Culture Strategy of Lactobacillus kefiranofaciens HL1 for Developing Functional Fermented Milk. Foods, 10(9), 2098. https://doi.org/10.3390/foods10092098