Production of ACE Inhibitory Peptides from Whey Proteins Modified by High Intensity Ultrasound Using Bromelain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Ultrasonic Pretreatment
2.3. Enzymatic Hydrolysis of WPI Solutions
2.4. ACE Inhibition of WPI Hydrolysates
2.5. Hydrolysate Fractionation by Ultrafiltration
2.6. Simulated Digestion of UF Fractions
2.7. Intrinsic Fluorescence Spectra
2.8. Fourier-Transform Infrared Spectroscopy
3. Results and Discussion
3.1. Effect of Substrate Concentration and Ultrasound Pretreatment on ACE Inhibitory Activity
3.2. Membrane Fractionation of Ultrasound Pretreated Hydrolysates
3.3. Stability of ACE Inhibitory Activity of Associated Membrane Fractions Peptides after Simulated Gastrointestinal Digestion
3.4. Analysis of Fluorescence Spectra
3.5. FTIR-ATR Spectral Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimou, C.; Antonios, K.E.; Gardeli, C.; Papadaki, A.; Karantonis, H.C. Valorization of Cheese Whey To “Bio”-Value Added Food Products with Industrial Interest and Their Potential Beneficial Health Effects. Int. J. Hortic. Agric. Food Sci. 2019, 3, 64–74. [Google Scholar] [CrossRef]
- Barba, F.J. An Integrated Approach for the Valorization of Cheese Whey. Foods 2021, 10, 564. [Google Scholar] [CrossRef]
- Deeth, H.; Bansal, N. Whey Proteins: An Overview. In Whey Proteins; Deeth, H., Bansal, N., Eds.; Academic Press: London, UK, 2019; pp. 1–50. ISBN 978-0-12-812124-5. [Google Scholar]
- Kitts, D.; Weiler, K. Bioactive Proteins and Peptides from Food Sources. Applications of Bioprocesses Used in Isolation and Recovery. Curr. Pharm. Des. 2005, 9, 1309–1323. [Google Scholar] [CrossRef]
- Wu, J.; Liao, W.; Udenigwe, C.C. Revisiting the Mechanisms of ACE Inhibitory Peptides from Food Proteins. Trends Food Sci. Technol. 2017, 69, 214–219. [Google Scholar] [CrossRef]
- Mills, K.T.; Stefanescu, A.; He, J. The Global Epidemiology of Hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef]
- Gnasegaran, G.K.; Agyei, D.; Pan, S.; Sarethy, I.P.; Acquah, C.; Danquah, M.K. Process development for bioactive peptide production. In Food Bioactives: Extraction and Biotechnology Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 91–110. ISBN 9783319516394. [Google Scholar]
- Mazorra-Manzano, M.A.; Ramírez-Suarez, J.C.; Yada, R.Y. Plant Proteases for Bioactive Peptides Release: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2147–2163. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in Application of Ultrasound in Food Processing: A Review. Ultrason. Sonochemistry 2021, 70, 105293. [Google Scholar] [CrossRef]
- Cui, P.; Yang, X.; Liang, Q.; Huang, S.; Lu, F.; Owusu, J.; Ren, X.; Ma, H. Ultrasound-Assisted Preparation of ACE Inhibitory Peptide from Milk Protein and Establishment of Its in-Situ Real-Time Infrared Monitoring Model. Ultrason. Sonochemistry 2020, 62, 104859. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Espejo-Carpio, F.J.; Pérez-Gálvez, R.; Guadix, A.; Guadix, E.M. Effect of Ultrasound Pretreatment and Sequential Hydrolysis on the Production of Tenebrio Molitor Antidiabetic Peptides. Food Bioprod. Process. 2020, 123, 217–224. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.; Jia, J.; Kuang, C.; Yang, H. Effect of Ultrasonic Pretreatment on Whey Protein Hydrolysis by Alcalase: Thermodynamic Parameters, Physicochemical Properties and Bioactivities. Process. Biochem. 2018, 67, 46–54. [Google Scholar] [CrossRef]
- Kranthi Vanga, S.; Wang, J.; Raghavan, V. Effect of Ultrasound and Microwave Processing on the Structure, in-Vitro Digestibility and Trypsin Inhibitor Activity of Soymilk Proteins. LWT 2020, 131, 109708. [Google Scholar] [CrossRef]
- Margulis, M.A.; Margulis, I.M. Calorimetric Method for Measurement of Acoustic Power Absorbed in a Volume of a Liquid. Ultrason. Sonochemistry 2003, 10, 343–345. [Google Scholar] [CrossRef]
- Cushman, D.W.; Cheung, H.S. Spectrophotometric Assay and Properties of the Angiotensin-Converting Enzyme of Rabbit Lung. Biochem. Pharmacol. 1971, 20, 1637–1648. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Nitrogen (total) in milk, method 991.20. In Official Methods of Analysis of AOAC International, 18th ed.; Horowitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2005; pp. 10–12. [Google Scholar]
- Majumder, K.; Wu, J. Angiotensin i Converting Enzyme Inhibitory Peptides from Simulated in Vitro Gastrointestinal Digestion of Cooked Eggs. J. Agric. Food Chem. 2009, 57, 471–477. [Google Scholar] [CrossRef]
- Martín-del-Campo, S.T.; Picque, D.; Cosío-Ramírez, R.; Corrieu, G. Middle Infrared Spectroscopy Characterization of Ripening Stages of Camembert-Type Cheeses. Int. Dairy J. 2007, 17, 835–845. [Google Scholar] [CrossRef]
- Shah, V.; Balasubramaniam, K. Effect of Viscosity on Ultrasound Wave Reflection from a Solid/Liquid Interface. Ultrasonics 1996, 34, 817–824. [Google Scholar] [CrossRef]
- Uluko, H.; Zhang, S.; Liu, L.; Li, H.; Cui, W.; Xue, H.; Zhao, L.; Sun, Y.; Lu, J.; Lv, J. Pilot-Scale Membrane Fractionation of ACE Inhibitory and Antioxidative Peptides from Ultrasound Pretreated Milk Protein Concentrate Hydrolysates. J. Funct. Foods. 2014, 7, 350–361. [Google Scholar] [CrossRef]
- Abdelhedi, O.; Nasri, R.; Mora, L.; Jridi, M.; Toldrá, F.; Nasri, M. In Silico Analysis and Molecular Docking Study of Angiotensin I-Converting Enzyme Inhibitory Peptides from Smooth-Hound Viscera Protein Hydrolysates Fractionated by Ultrafiltration. Food Chem. 2018, 239, 453–463. [Google Scholar] [CrossRef]
- Wang, R.; Lu, X.; Sun, Q.; Gao, J.; Ma, L.; Huang, J. Novel ACE Inhibitory Peptides Derived from Simulated Gastrointestinal Digestion in Vitro of Sesame (Sesamum Indicum L.) Protein and Molecular Docking Study. Int. J. Mol. Sci. Artic. 2020, 21, 1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Powers, J.R.; Swanson, B.G.; Hill, H.H.; Clark, S. Modification of Whey Protein Concentrate Hydrophobicity by High Hydrostatic Pressure. Innov. Food Sci. Emerg. Technol. 2005, 6, 310–317. [Google Scholar] [CrossRef]
- Gao, H.; Ma, L.; Li, T.; Sun, D.; Hou, J.; Li, A.; Jiang, Z. Impact of Ultrasonic Power on the Structure and Emulsifying Properties of Whey Protein Isolate under Various PH Conditions. Process. Biochem. 2019, 81, 113–122. [Google Scholar] [CrossRef]
- Kristo, E.; Hazizaj, A.; Corredig, M. Structural Changes Imposed on Whey Proteins by UV Irradiation in a Continuous UV Light Reactor. J. Agric. Food Chem. 2012, 60, 6204–6209. [Google Scholar] [CrossRef]
- Gallagher, W. FTIR Analysis of Protein Structure. Biochemistry 1997, 392, 662–666. [Google Scholar]
- Vargas, S.A.; Delgado-Macuil, R.J.; Ruiz-Espinosa, H.; Rojas-López, M.; Amador-Espejo, G.G. High-Intensity Ultrasound Pretreatment Influence on Whey Protein Isolate and Its Use on Complex Coacervation with Kappa Carrageenan: Evaluation of Selected Functional Properties. Ultrason. Sonochemistry 2021, 70, 105340. [Google Scholar] [CrossRef]
- Haque, M.A.; Chen, J.; Aldred, P.; Adhikari, B. Denaturation and Physical Characteristics of Spray-Dried Whey Protein Isolate Powders Produced in the Presence and Absence of Lactose, Trehalose, and Polysorbate-80. Dry. Technol. 2015, 33, 1243–1254. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Jiang, L.; Qi, B.; Zhou, L. Relationship between Secondary Structure and Surface Hydrophobicity of Soybean Protein Isolate Subjected to Heat Treatment. J. Chem. 2014. [Google Scholar] [CrossRef] [Green Version]
- Eissa, A.S.; Puhl, C.; Kadla, J.F.; Khan, S.A. Enzymatic Cross-Linking of β-Lactoglobulin: Conformational Properties Using FTIR Spectroscopy. Biomacromolecules 2006, 7, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Huppertz, T. Effect of Nonthermal Processing on Milk Protein Interactions and Functionality. In Milk Proteins, 3rd ed.; Boland, M., Harjinder, S., Eds.; Academic Press: London, UK, 2020; pp. 293–324. ISBN 978-0-1281-5251-5. [Google Scholar]
- Jiang, Z.; Wang, C.; Li, T.; Sun, D.; Gao, H.; Gao, Z.; Mu, Z. Effect of Ultrasound on the Structure and Functional Properties of Transglutaminase-Crosslinked Whey Protein Isolate Exposed to Prior Heat Treatment. Int. Dairy J. 2019, 88, 79–88. [Google Scholar] [CrossRef]
ACE Inhibitory Activity (IC50 µg Protein/mL) | ||||
---|---|---|---|---|
Without HIUS Pretreatment | With HIUS Pretreatment | |||
Samples | Before Simulated Gastrointestinal Digestion | After Simulated Gastrointestinal Digestion | Before Simulated Gastrointestinal Digestion | After Simulated Gastrointestinal Digestion |
WPI Hydrolysate (WPI-H) | 87.29 ± 0.08 a | 68.21± 2.15 b | 45.07 ± 4.90 b | 41.08 ± 5.23 b |
F1 (>10 kDa) | 111.60 ± 7.06 a | 74.56 ± 4.58 b | 108.65 ± 5.58 a | 63.00 ± 10.12 b |
F2 (5–10 kDa) | 64.80 ± 4.12 a | 53.15 ± 5.68 b | 51.10 ± 2.51 a | 45.15 ± 2.30 b |
F3 (3–5 kDa) | 60.03 ± 7.09 a | 78.45 ± 4.12 b | 34.30 ± 4.02 a | 72.05 ± 6.12 b |
F4 (1–3 kDa) | 54.40 ± 6.24 a | 62.14 ± 3.52 b | 37.80 ± 5.20 a | 58.07 ± 5.10 b |
F5 (˂1 kDa) | 69.60 ± 6.32 a | 69.15 ± 4.57 a | 63.70 ± 7.10 a | 61.14 ± 6.51 a |
Secondary Structure Composition (%) | |||||
---|---|---|---|---|---|
Samples | R2 | α-Helix | β-Sheet | β-Turn | Random Coil |
Non-sonicated WPI | 0.97 | 12.01 ± 0.24 a | 31.99 ± 0.17 a | 34.44 ± 0.28 a | 21.58 ± 0.19 a |
Ultrasound-treated WPI 25% amplitude | 0.98 | 9.81 ± 0.19 b | 39.56 ± 0.21 b | 34.97 ± 0.23 a | 15.66 ± 0.18 b |
Ultrasound-treated WPI 50% amplitude | 0.97 | 9.59 ± 0.22 b | 36.43 ± 0.19 b | 37.10 ± 0.32 b | 16.89 ± 0.26 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abadía-García, L.; Castaño-Tostado, E.; Cardador-Martínez, A.; Martín-del-Campo, S.T.; Amaya-Llano, S.L. Production of ACE Inhibitory Peptides from Whey Proteins Modified by High Intensity Ultrasound Using Bromelain. Foods 2021, 10, 2099. https://doi.org/10.3390/foods10092099
Abadía-García L, Castaño-Tostado E, Cardador-Martínez A, Martín-del-Campo ST, Amaya-Llano SL. Production of ACE Inhibitory Peptides from Whey Proteins Modified by High Intensity Ultrasound Using Bromelain. Foods. 2021; 10(9):2099. https://doi.org/10.3390/foods10092099
Chicago/Turabian StyleAbadía-García, Lucía, Eduardo Castaño-Tostado, Anaberta Cardador-Martínez, Sandra Teresita Martín-del-Campo, and Silvia L. Amaya-Llano. 2021. "Production of ACE Inhibitory Peptides from Whey Proteins Modified by High Intensity Ultrasound Using Bromelain" Foods 10, no. 9: 2099. https://doi.org/10.3390/foods10092099
APA StyleAbadía-García, L., Castaño-Tostado, E., Cardador-Martínez, A., Martín-del-Campo, S. T., & Amaya-Llano, S. L. (2021). Production of ACE Inhibitory Peptides from Whey Proteins Modified by High Intensity Ultrasound Using Bromelain. Foods, 10(9), 2099. https://doi.org/10.3390/foods10092099