Effect of Salt Content Reduction on Food Processing Technology
Abstract
:1. Introduction
2. Sodium Occurrence in Foods and Possibilities of Its Reduction
- (1)
- Influence taste receptors or signaling pathways with unsalted substances. So far, this direction is only theoretical.
- (2)
- (3)
2.1. Salt in Cheese, Bakery and Meat Products
2.2. Spices and Herbs as Salt Substitutes
3. Salt Content Reduction and Its Consequences
3.1. Salt Reduction in Cheese Products
- Grain salting, where dry salt is added to the ground or sliced curd at the end of processing before molding (Cheddar). The advantage is the short diffusion distance; even salinity is achieved in 20 min.
- Dry salting carried out by repeated salt spreading on the surface of the cheese. In this way, the proteins on the surface of the cheese are withdrawn and diffusion is reduced.
- Salt bath salting, which is used with most cheese, where the salt solution contains 18–22% of salt. The pH of the solution is 5.2 for hard and 4.8–5.0 for soft cheese; the salting process takes place at a temperature of 10–14 °C. In addition, 0.1–0.2% of calcium is added to the salt bath. When using a salt bath, contamination by yeast and fungi can occur, and even a specific microflora tolerating acidic pH, and higher salt levels can develop. In contrast, lactic acid bacteria are inhibited by salt [70].
3.2. Salt Reduction in Bakery Product
3.2.1. Effect of Salt on Yeast Activity
3.2.2. Effect of Salt on Texture and Final Quality of Bakery Products
3.2.3. Reduction of Salt in Bakery
Simple Salt Dosage Reduction and Use of Salt Substitutes
The Application of Sourdough
3.3. Salt Reduction in Meat Products
3.3.1. Salt Replacement in Meat Products
3.3.2. Use of Flavour Enhancers
3.3.3. Reduced Salt Content and Microorganisms Growth in Meat Product
4. Special Technologies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guido, D.; Perna, S.; Carrai, M.; Barale, R.; Grassi, M.; Rondanelli, M. Multidimensional evaluation of endogenous and health factors affecting food preferences, taste and smell perception. J. Nutr. Health Aging 2016, 20, 971–981. [Google Scholar] [CrossRef]
- Hardikar, S.; Hochenberger, R.; Villringer, A.; Ohla, K. Higher sensitivity to sweet and salty taste in obese compared to lean individuals. Appetite 2017, 111, 158–165. [Google Scholar] [CrossRef] [Green Version]
- EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.-I.; Kearney, J.; Knutsen, H.K.; Maciuk, A; Mangelsdorf, I.; McArdle, H.J.; et al. Scientific Opinion on the dietary reference values for sodium. EFSA J. 2019, 17, 5778. [Google Scholar] [CrossRef] [Green Version]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium intake and hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- Burnier, M.; Phan, O.; Wang, Q. High salt intake: A cause of blood pressure-idependent left ventricular hypertrophy? Nephrol. Dial. Transplant. 2007, 22, 2426–2429. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.J.; Bibbins-Domingo, K.; Jin, Z.; Daviglus, M.L.; Goff, D.C., Jr.; Jacobs, D.R., Jr. Association of sodium and potassium intake with left ventricular mass: Coronary artery risk development in young adults. Hypertension 2011, 58, 410–416. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Reducing Salt Intake in Population; Report of a WHO Forum and Technical Meeting 5–7 October 2006, Paris; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Thout, S.R.; Santos, J.A.; McKenzie, B.; Trieu, K.; Johnson, C.; McLean, R.; Arcand, A.A.; Campbell, N.R.C.; Webster, J. The Science of Salt: Updating the evidence on global estimates of salt intake. J. Clin. Hypertens. 2019, 21, 710–721. [Google Scholar] [CrossRef] [Green Version]
- Mallamaci, F.; Tripepi, G. Salt restriction in chronic kidney disease: A simple need or a must? Kidney Blood Press Res. 2017, 39, 124–128. [Google Scholar] [CrossRef]
- Ohta, Y.; Tsuchihashi, T.; Kiyohara, K.; Oniki, H. High salt intake promotes a decline in renal function in hypertensive patients: A 10-year observational study. Hypertens. Res. 2013, 36, 172–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Elia, L.; Rossi, G.; Ippolito, R.; Cappuccio, F.P.; Strazzullo, P. Habitual salt intake and risk of gastric cancer: A meta-analysis of prospective studies. Clin. Nutr. 2012, 31, 489–498. [Google Scholar] [CrossRef]
- Shikata, K.; Kiyohara, Y.; Kubo, M.; Yonemoto, K.; Ninomiya, T.; Shirota, T.; Tanizaki, Y.; Doi, Y.; Tanaka, K.; Oishi, Y.; et al. A prospective study of dietary salt intake and gastric cancer incidence in a defined Japanese population: The Hisayama study. Int. J. Cancer 2006, 119, 196–201. [Google Scholar] [CrossRef]
- He, F.J.; Tan, M.; Ma, Y.; MacGregor, G.A. Salt Reduction to Prevent Hypertension and Cardiovascular Disease: State of the Art Review. J. Am. Coll. Cardiol. 2020, 75, 632–647. [Google Scholar] [CrossRef] [PubMed]
- Trusková, I.; Bezegová, D.; Horváthová-Trúchla, K.; Jóžeffiová, E.; Kromerová, K.; Némethová, D. Best Practices of the Member States in Food Reformulation; Public Health Authority of the Slovak Republic: Bratislava, Slovak Republic, 2016. [Google Scholar]
- World Health Organization. WHO Global Sodium Benchmarks for Different Food Categories; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Web of Science. Available online: https://www.webofscience.com/wos/woscc/advanced-search (accessed on 11 August 2021).
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1924&from=CS (accessed on 20 April 2021).
- Bansal, V.; Mishra, S.K. Reduced-sodium cheeses: Implications of reducing sodium chloride on cheese quality and safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 733–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nejedlá, M. Sociálně marketingové nástroje ke snížení spotřeby soli [Social marketing tools to reduce salt consumption]. In Proceedings of the BCA—Bilateral Collaborative Agreements. Konference Školní Stravování [School Catering Conference], Praha, Czech Republic, 20–22 May 2014. [Google Scholar]
- Chen, J.; Hu, Y.; Wen, R.; Liu, Q.; Chen, Q.; Kong, B. Effect of NaCl substitutes on the physical, microbial and sensory characteristics of Harbin dry sausage. Meat Sci. 2019, 156, 205–213. [Google Scholar] [CrossRef]
- Opletal, L.; Wimmer, Z.; Čopíková, J.; Lapčík, O.; Moravcová, J.; Cahlíková, L.; Drašar, P. Slaná chuť přírodních látek a jejich derivátů [Salty taste of natural substances and their derivatives]. Chem. Listy 2011, 105, 761–765. [Google Scholar]
- Rama, R.; Chiu, N.; da Silva, M.C.; Hewson, L.; Hort, J.; Fisk, I.D. Impact of salt crystal size on in-mouth delivery of sodium and saltiness perception from snack foods. J. Texture Stud. 2013, 44, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Micronized Salt Market to Record 3% Growth on Back of Reduced Salt Consumption. Available online: https://ksusentinel.com/2021/05/12/food-grade-micronized-salt-market-to-record-3-growth-on-back-of-reduced-salt-consumption-fact-mr/ (accessed on 26 August 2021).
- Lake Shore Gazette. Micronized Salt Market Will Reach US $3305.8 Mn by 2018 to 2028: Persistence Market Research. Available online: https://www.lakeshoregazette.com/2021/08/16/micronized-salt-market-will-reach-us-3305-8-mn-by-2018-to-2028persistence-market-research/ (accessed on 26 August 2021).
- Vinitha, K.; Leena, M.M.; Moses, J.A.; Anandharamakrishnan, C. Size-dependent enhancement in salt perception: Spraying approaches to reduce sodium content in foods. Powder Technol. 2021, 378, 237–245. [Google Scholar] [CrossRef]
- Sun, C.; Zhou, X.; Hu, Z.; Lu, W.; Zhao, Y.; Fang, Y. Food and salt structure design for salt reducing. Innov. Food Sci. Emerg. Technol. 2020, 67, 102570. [Google Scholar] [CrossRef]
- Rios-Mera, J.D.; Selani, M.M.; Patinho, I.; Saldana, E.; Contreras-Castillo, C.J. Modification of NaCl structure as a sodium reduction strategy in meat products: An overview. Meat Sci. 2021, 174, 108417. [Google Scholar] [CrossRef]
- Hurst, K.E.; Ayed, Ch.; Derbenev, I.N.; Hewson, L.; Fisk, I.D. Physicochemical design rules for the formulation of novel salt particles with optimised saltiness. Food Chem. 2021, 360, 129990. [Google Scholar] [CrossRef]
- Review of Current Salt Replacing Ingredients. Campden BRI. 2014. Available online: https://www.campdenbri.co.uk/white-papers/salt-replacing.php (accessed on 26 August 2021).
- Reducing Global Sodium Intake: Innovative Ingredient Solutions (TATE&LYLE Corporate Literature). Available online: https://www.tateandlyle.com/ingredient/soda-lo-salt-microspheres (accessed on 26 August 2021).
- Ayyash, M.; Sherkat, F.; Shan, N. Sodium Chloride Substitution of Cheese. In Handbook of Cheese in Health; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 545–566. [Google Scholar]
- Bae, I.; Park, J.H.; Choi, H.Y.; Jung, H.K. Emerging Innovations to Reduce the Salt Content in Cheese; Effects of Salt on Flavor, Texture, and Shelf Life of Cheese; and Current Salt Usage: A Review. Korean J. Food Sci Anim. Resour. 2017, 37, 793–798. [Google Scholar] [CrossRef]
- Loudiyi, M.; Aït-Kaddour, A. Evaluation of the effect of salts on chemical, structural, textural, sensory and heating properties of cheese: Contribution of conventional methods and spectral ones. Crit. Rev. Food Sci. Nutr. 2019, 59, 2442–2457. [Google Scholar] [CrossRef]
- Roginski, H.; Foquay, J.W.; Fox, P.F. Encyclopedia of Dairy Sciences; Academic Press: London, UK, 2002; Volume 3 and 4, p. 2485. [Google Scholar]
- Matz, S.A. Snack Food Technology, 2nd ed.; The AVI Publishing Company, Inc.: Westport, CT, USA, 2012; pp. 63–74. [Google Scholar]
- Šedivý, P.; Dostál, J.; Kovaříková, D.; Martinek, V. Bakery Technology I; Pekar a cukrar [Baker and Confectioner]: Prague, Czech Republic, 2013; pp. 110–114. [Google Scholar]
- Jekle, M.; Beck, M.; Becker, T. Sodium content in baked products. Baking+Biscuit 2014, 6, 44–48. [Google Scholar]
- Diler, G.; Le-Bail, A.; Chevallier, S. Salt reduction in sheeted dough: A successful technological approach. Food Res. Int. 2016, 88, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.R.G.; Nakagawa, A.; Pimentel, T.C.; Sousa, I. Increasing saltiness perception and keeping quality properties of low salt bread using inhomogeneous salt distribution achieved with salt agglomerated by waxy starch. LWT 2021, 146, 111451. [Google Scholar] [CrossRef]
- McCann, T.H.; Day, L. Effect of sodium chloride on gluten network formation, dough microstructure and rheology in relation to breadmaking. J. Cereal Sci. 2013, 57, 444–452. [Google Scholar] [CrossRef]
- Sluimer, P. Principles of Breadmaking. Functionality of Raw Materials and Process Steps; AACC: St. Paul, MN, USA, 2005; p. 224. [Google Scholar]
- Silow, C.; Zannini, E.; Axel, C.; Lynch, K.M.; Arendt, E.K. Effect of salt reduction on wheat-dough properties and quality characteristics of puff pastry with full and reduced fat content. Food Res. Int. 2016, 89, 330–337. [Google Scholar] [CrossRef]
- Belz, M.C.E.; Ryan, L.A.M.; Arendt, E.K. The Impact of Salt Reduction in Bread: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 514–524. [Google Scholar] [CrossRef]
- Salovaara, H. Salt in Bread: Technical, Taste and other Parameters for Healthy Eating; Seminar 21. October 2009 Centre de Conferences Albert Borschette (ccab) 36, B-1040 Brussels; University of Helsinki: Helsinki, Finland, 2009. [Google Scholar]
- Cobos, Á.; Díaz, O. Chemical Composition of Meat and Meat Products. In Handbook of Food Chemistry; Cheung, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Jeong, J.Y. Effects of Short-Term Presalting and Salt Level on the Development of Pink Color in Cooked Chicken Breasts. Korean J. Food Sci. Animal. 2017, 37, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Schivazappa, C.; Virgili, R. Impact of salt levels on the sensory profile and consumer acceptance of Italian dry-cured ham. J. Sci. Food Agric. 2020, 100, 3370–3377. [Google Scholar] [CrossRef]
- Sebranek, J.G. An Overview of Functional Non-Meat Ingredients in Meat Processing: The Current Toolbox. In Proceedings of the American Meat Science Association, 68th Annual Reciprocal Meat Conference, University of Nebraska-Lincoln, Lincoln, NE, USA, 14–17 June 2015; Available online: http://www.meatscience.org/docs/default-source/publications-resources/rmc/2015/09_sebranek_f.pdf (accessed on 5 August 2021).
- Desmond, E. Reducing salt: A challange for the meat industry. Meat Sci. 2006, 74, 188–196. [Google Scholar] [CrossRef]
- Kameník, J. Hurdle Technologies in Fermented Meat Production. In Fermented Meat Products Health Aspects; Zdolec, N., Ed.; Taylor & Francis Group: Boca Raton FL, USA, 2017; pp. 95–126. [Google Scholar]
- Regulation (EC) No 1333/2008 Of the European Parliament and of the Council of 16 December 2008 on Food Additives, Annex II. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R1333&from=en (accessed on 15 April 2021).
- Ghawi, S.K.; Rowland, I.; Methven, L. Enhancing consumer liking of low salt tomato soup over repeated exposure by herb and spice seasonings. Appetite 2014, 81, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohri, T.; Kira, R.; Myojin, C.; Kawanishi, M.; Tomotake, H. Enhancing effects of herbs on the salty taste perception of saline. J. Nutr. Vitaminol. 2020, 66, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Rysová, J.; Houška, M.; Novotná, P.; Laknerová, I.; Strohalm, J. The application of Ocimum sanctum into the foods. Úroda 2020, 68, 573–578. [Google Scholar]
- Rysová, J.; Laknerová, I.; Houška, M.; Novotná, P.; Strohalm, J. The antioxidant activity of herbal homogenate extracts. Úroda 2017, 65, 579–582. [Google Scholar]
- Krofta, K.; Houška, M.; Mikyška, A.; Čermák, P. Changes in the composition of hop secondary metabolites induced by high hydrostatic pressure. J. Inst. Brew. 2018, 124, 158–172. [Google Scholar] [CrossRef]
- Taladrid, D.; Laguna, L.; Bartolome, B.; Moreno-Arribas, V. Plant-derived seasonings as sodium salt replacers in food. Trends Food Sci. Technol. 2020, 99, 194–202. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; da Silva, M.M.; Varela, J.; Custodio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Comp. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Barnett, S.M.; Sablani, S.S.; Tang, J.; Ross, C.F. Utilizing Herbs and Microwave-Assisted Thermal Sterilization to Enhance Saltiness Perception in a Chicken Pasta Meal. J. Food Sci. 2019, 84, 2313–2324. [Google Scholar] [CrossRef]
- Patel, S. Salicornia: Evaluating the halophytic extremophile as a food and a pharmaceutical candidate. Biotech 2016, 6, 104. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Patel, M.K.; Jha, B. Non-targeted metabolomics and scavenginactivity of reactive oxygen species reveal the potential of Salicornia brachiata as a functional food. J. Funct. Foods 2015, 13, 21–31. [Google Scholar] [CrossRef]
- Silybaeva, B.M.; Mussabayeva, B.K.; Zharykbaksova, K.S.; Kydyrmoldina, A.S.; Kaygusuz, O. Biologically Active Agents of Salicornia europaea L. Grown in East Kazakhstan. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2357. [Google Scholar]
- Elsebaie, E.M.; Elsanat, S.Y.A.; Gouda, M.S.; Elnemr, K.M. Studies on antimicrobial and antioxidant efficiency of glasswort (Salicornia fruticosa) herb juice and methanolic extract in minced beef. Int. J. Mod. Agric. 2013, 2, 72–80. [Google Scholar]
- Lim, S.J.; Kim, H.W.; Hwang, K.E.; Song, D.H.; Kim, Y.J.; Ham, Y.K.; Jang, S.J.; Lee, C.H.; He, F.Y.; Choi, Y.S.; et al. Effects of Glasswort (Salicornia herbacea L.) Hydrates on Quality Characteristics of Reduced-salt, Reduced-fat Frankfurters. Korean J. Food Sci. An. 2015, 35, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.; Cavaleiro, C.; Ramos, F. Sodium Reduction in Bread: A Role for Glasswort (Salicornia ramosissima J. Woods). Compr. Rev. Food Sci. Food Saf. 2017, 16, 1056–1071. [Google Scholar] [CrossRef] [Green Version]
- Joo, S.Y.; Choi, H.Y. Antioxidant Activity and Quality Characteristics of Pork Patties Added with Saltwort (Salicornia herbacea L.) Powder. J. Korean Soc. Food Sci. Nutr. 2014, 43, 1189–1196. [Google Scholar] [CrossRef] [Green Version]
- Nayak, B.; Roy, S.; Roy, M.; Mitra, A.; Karak, K. Phytochemical, Antioxidant and Antimicrobial Screening of Suaeda maritima L (Dumort) against Human Pathogens and Multiple Drug Resistant Bacteria. Indian J. Pharm. Sci. 2018, 80, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Serrano, C.; Sapata, M.; Oliveira, M.C.; Gerardo, A.; Viegas, C. Encapsulation of oleoresins for salt reduction in food. Acta Sci. Pol. Technol. Aliment. 2020, 19, 57–71. [Google Scholar] [CrossRef]
- Onipchenko, N.; Doležalová, M.; Procházková, E.; Martinková, I.; Hrabě, J. Změny mikroflóry během výroby pařených sýrů (Changes in the microflora during the production of steamed cheeses). Mlékařské Listy 2012, 132, 1–4. [Google Scholar]
- Taylor, T.M.; Lathrop, A.A. Evaluation of antimicrobials and salt replacers for use in low-sodium dairy products. J. Food Saf. 2015, 35, 32–40. [Google Scholar] [CrossRef]
- McCarthy, C.M.; Wilkinson, M.G.; Kelly, P.M.; Guinee, T.P. Effect of salt and fat reduction on proteolysis, rheology and cooking properties of Cheddar cheese. Int. Dairy J. 2016, 56, 74–86. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, C.M.; Wilkinson, M.G.; Kelly, P.M.; Guinee, T.P. Effect of salt and fat reduction on the composition, lactose metabolism, water activity and microbiology of Cheddar cheese. Dairy Sci. Technol. 2015, 95, 587–611. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Mc Mahon, D.J. Effects of sodium chloride salting and substitution with potassium chloride on whey expulsion of Cheddar cheese. J. Dairy Sci. 2015, 98, 78–88. [Google Scholar] [CrossRef]
- Murtaza, M.A.; Huma, N.; Sameen, A.; Murtaza, M.S.; Mahmood, S.; Mueen-ud-Din, G.; Meraj, A. Texture, flavor, and sensory quality of buffalo milk Cheddar cheese as influenced by reducing sodium salt content. J. Dairy Sci. 2014, 97, 6700–6707. [Google Scholar] [CrossRef]
- McMahon, D.J.; Oberg, C.J.; Drake, M.A.; Farkye, N.; Moyes, L.V.; Arnold, M.R.; Ganesan, B.; Steele, J.; Broadbent, J.R. Effect of sodium, potassium, magnesium, and calcium salt cations on pH, proteolysis, organic acids, and microbial populations during storage of full-fat Cheddar cheese. J. Dairy Sci. 2014, 97, 4780–4798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khetra, Y.; Kanawjia, S.K.; Puri, R. Selection and optimization of salt replacer, flavour enhancer and bitter blocker for manufacturing low sodium Cheddar cheese using response surface methodology. LWT Food Sci. Technol. 2016, 72, 99–106. [Google Scholar] [CrossRef]
- Ganesan, B.; Brown, K.; Irish, D.A.; Brothersen, C.; McMahon, D.J. Manufacture and sensory analysis of reduced- and low-sodium Cheddar and Mozzarella cheeses. J. Dairy Sci. 2014, 97, 1970–1982. [Google Scholar] [CrossRef]
- Jesus, A.L.T.; Fernandes, M.S.; Kamimura, B.A.; Silva, L.; Silva, R.; Esmerino, E.A.; Cruz, A.G.; Sant´Ana, A.S. Growth potential of Listeria monocytogenes in probiotic cottage cheese formulations with reduced sodium content. Food Res. Int. 2016, 81, 180–187. [Google Scholar] [CrossRef]
- Justia Patents. Reduced-Salt Dairy Product with Improved Taste. Inventors: Frank Richard Meijer, Catharina Houdijk, Cornelis Muijlwijk, Neeltje Corine Oorschot Van: NIXON & VANDERHYE, PC Assignees: Origin: ARLINGTON, VA US IPC8. Class: AA23C1512FI. USPC Class: 426 37. U.S. Patent 20100047391, 25 February 2010. Available online: https://www.patentsencyclopedia.com/app/20100047391, https://patents.justia.com/patent/20100047391 (accessed on 28 June 2021).
- Soltani, M.; Guzeler, N.; Hayloglu, A.A. The influence of salt concentration on the chemical, ripening and sensory characteristics of Iranian white cheese manufactured by UF-Treated milk. J. Dairy Res. 2015, 82, 365–374. [Google Scholar] [CrossRef]
- Kamleh, R.; Olabi, A.; Toufeili, I.; Daroub, H.; Younis, T.; Ajib, R. The effect of partial substitution of NaCl with KCl on the physicochemical, microbiological and sensory properties of Akkawi cheese. J. Sci. Food Agric. 2015, 95, 1940–1948. [Google Scholar] [CrossRef]
- Gandhi, A.; Shah, N.P. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells. J. Food Sci. 2016, 81, 991–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arboatti, A.S.; Olivares, M.L.; Sabbag, N.G.; Costa, S.C.; Zorrilla, S.E.; Sihufe, G.A. The influence of sodium chloride reduction on physicochemical, biochemical, rheological and sensory characteristics of Mozzarella cheese. Dairy Sci. Technol. 2014, 94, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Henneberry, S.; O’Sulivan, M.G.; Kilcawley, K.N.; Kelly, P.M.; Wilkinson, M.G.; Guinee, T.P. Sensory quality of unheated and heated Mozzarella-style cheeses with different fat, salt and calcium levels. Int. J. Dairy Technol. 2016, 69, 38–50. [Google Scholar] [CrossRef]
- Henneberry, S.; Wikinson, M.G.; Kilcawley, K.N.; Kelly, P.M.; Guinee, T.P. Interactive effects of salt and fat reduction on composition, rheology and functional properties of mozzarella-style cheese. Dairy Sci. Technol. 2015, 95, 613–638. [Google Scholar] [CrossRef]
- Soares, C.; Fernando, A.L.; Alvarenga, N.; Martins, A.P.L. Substitution of sodium chloride by potassium chloride in So Joo cheese of Pico Island. Dairy Sci. Technol. 2016, 96, 637–655. [Google Scholar] [CrossRef] [Green Version]
- Dugat-Bony, E.; Sarthou, A.S.; Perello, M.C.; de Revel, G.; Bonnarme, P.; Helinck, S. The effect of reduced sodium chloride content on the microbiological and biochemical properties of a soft surface-ripened cheese. J. Dairy Sci. 2016, 99, 2502–2511. [Google Scholar] [CrossRef] [PubMed]
- Dugat-Bony, E.; Bonnarme, P.; Fraud, S.; Catelotte, J.; Sarthou, A.S.; Loux, V.; Rué, O.; Bel, N.; Chuzeville, S.; Helinck, S. Effect of sodium chloride reduction or partial substitution with potassium chloride on the microbiological, biochemical and sensory characteristics of semi-hard and soft cheeses. Food Res. Int. 2019, 125, 108643. [Google Scholar] [CrossRef] [PubMed]
- Luzzi, G.; Brinks, E.; Fritsche, J.; Franz, C.M.A.P. Effect of reduction of sodium content on the microbial ecology of Edam cheese samples. AMB Express 2021, 11, 28. [Google Scholar] [CrossRef]
- Tidona, F.; Bernardi, M.; Francolino, S.; Ghiglietti, R.; Hogenboom, J.A.; Locci, F.; Zambrini, V; Carminati, D; Giraffa, G. The impact of sodium chloride reduction on Grana-type cheese production and quality. J. Dairy Res. 2019, 86, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Moatsou, G.; Zoidou, E.; Choundala, E.; Koutsaris, K.; Kopsia, O.; Thergiaki, K.; Sakkas, L. Development of Reduced-Fat, Reduced-Sodium Semi-Hard Sheep Milk Cheese. Foods 2019, 8, 204. [Google Scholar] [CrossRef] [Green Version]
- Silva, H.L.A.; Balthazar, C.F.; Silva, R.; Vieira, A.H.; Costa, R.G.B.; Esmerino, E.A.; Freitas, M.Q.; Cruz, A.G. Sodium reduction and flavor enhancer addition in probiotic prato cheese: Contributions of quantitative descriptive analysis and temporal dominance of sensations for sensory profiling. J. Dairy Sci. 2018, 101, 8837–8846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehsannia, S.; Sanjabi, M.R. Physicochemical, microbiological and spoilage analysis of probiotic processed cheese analogues with reduced emulsifying salts during refrigerated storage. J. Food Sci. Technol. 2016, 53, 996–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasqualone, A.; Caponio, F.; Pagani, M.A.; Summo, C.; Paradiso, V.M. Effect of salt reduction on quality and acceptability of durum wheat bread. Food Chem. 2019, 289, 575–581. [Google Scholar] [CrossRef]
- Sun, X.; Scanlon, M.G.; Guillermic, R.M.; Belev, G.S.; Webb, M.A.; Aritan, S.; Nickerson, M.T.; Koksel, F. The effects of sodium reduction on the gas phase of bread doughs using synchrotron X-ray microtomography. Food Res. Int. 2020, 130, 108919. [Google Scholar] [CrossRef]
- Pflaum, T.; Konitzer, K.; Hofmann, T.; Koehler, P. Influence of Texture on the Perception of Saltiness in Wheat Bread. J. Agric. Food Chem. 2013, 61, 10649–10658. [Google Scholar] [CrossRef]
- Lobo, C.P.; Ferreira, T.A.P.C. Hedonic thresholds and ideal sodium content reduction of bread loaves. Food Res. Int. 2021, 140, 110090. [Google Scholar] [CrossRef]
- El Ati, J.; Doggui, R.; El Ati-Hellal, M. A Successful Pilot Experiment of Salt Reduction in Tunisian Bread: 35% Gradual Decrease of Salt Content without Detection by Consumers. Int. J. Environ. Res. Public Health 2021, 18, 1590. [Google Scholar] [CrossRef]
- Israr, T.R.A.; Sohail, M.; Rashid, S.; Shehzad, A. Salt reduction in baked products: Strategies and constraints. Trends Food Sci. Technol. 2016, 51, 98–105. [Google Scholar] [CrossRef]
- Miller, R.; Jeong, J. Sodium Reduction in Bread Using Low-Sodium Sea Salt. Cereal Chem. 2014, 21, 41–44. [Google Scholar] [CrossRef]
- Kovac, B.; Knific, M. The perception of low-salt bread among preschool children and the role of educational personnel in creating a positive attitude towards reformulated food. Zdr. Varst. 2016, 56, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Sinesio, F.; Raffo, A.; Peparaio, M.; Moneta, E.; Saggia Civitelli, E.; Narducci, V.; Turfani, V.; Ferrari Nicoli, S.; Carcea, M. Impact of sodium reduction strategies on volatile compounds, sensory properties and consumer perception in commercial wheat bread. Food Chem. 2019, 301, 125252. [Google Scholar] [CrossRef]
- Quilez, J.; Salas-Salvado, J. Salt in bread in Europe: Potential benefits of reduction. Nutr. Rev. 2012, 70, 666–678. [Google Scholar] [CrossRef]
- La Croix, K.W.; Fiala, S.C.; Colonna, A.E.; Durham, C.A.; Morrissey, M.T.; Drum, D.K.; Kohn, M.A. Consumer detection and acceptability of reduced-sodium bread. Public Health Nutr. 2015, 18, 1218–1412. [Google Scholar] [CrossRef] [Green Version]
- Sayar, S.; Erdoglu, F.; Eydemir, G.; Nayman, E. Partial substitution of sodium chloride by potassium chloride in bread: Effect on dough and bread properties. Qual. Assur. Saf. Crop. Foods 2016, 8, 609–615. [Google Scholar] [CrossRef]
- Spina, A.; Brighina, S.; Muccilli, S.; Mazzaglia, A.; Rapisarda, P.; Fallico, B.; Arena, E. Partial Replacement of NaCl in Bread from Durum Wheat (Triticum turgidum L. subsp. durum Desf.) with KCl and Yeast Extract: Evaluation of Quality Parameters During Long Storage. Food Bioprocess Technol. 2015, 8, 1089–1101. [Google Scholar] [CrossRef]
- Bassett, M.N.; Perez-Palacios, T.; Cipriano, I.; Cardoso, P.; Ferreira, I.; Samman, N.; Pinho, O. Development of bread with nacl reduction and calcium fortification: Study of its quality characteristics. J. Food Qual. 2014, 37, 107–116. [Google Scholar] [CrossRef]
- Kaur, A.; Bala, R.; Singh, B.; Rehal, J. Effect of Replacement of Sodium Chloride with Mineral salts on Rhoelogical characteristics of Wheat Flour. Am. J. Food Technol. 2011, 6, 674–684. [Google Scholar] [CrossRef]
- Arena, E.; Muccilli, S; Mazzaglia, A.; Giannone, V.; Brighina, S.; Rapisarda, P.; Fallico, B.; Allegra, M.; Spina, A. Development of Durum Wheat Breads Low in Sodium Using a Natural Low-Sodium Sea Salt. Foods 2020, 9, 752. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Han, K.N.; Feng, G.X.; Wan, Z.L.; Wang, G.S.; Yang, X.Q. Salt reduction in bread via enrichment of dietary fiber containing sodium and calcium. Food Funct. 2021, 12, 2660–2671. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, A.D.; Kussano, J.T.; Steel, C.J. Sourdough reduces sodium in wheat flour doughs. Int. J. Food Sci. Technol. 2015, 50, 2621–2629. [Google Scholar] [CrossRef]
- Voinea, A.; Stroe, S.G.; Codină, G.G. The Effect of Sodium Reduction by Sea Salt and Dry Sourdough Addition on the Wheat Flour Dough Rheological Properties. Foods 2020, 9, 610. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel insights on the functional/nutritional features of the sourdough fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Valerio, F.; Conte, A.; Di Biase, M.; Lattanzio, V.M.T.; Lonigro, S.L.; Padalini, L.; Pontonio, E.; Lavermiococca, P. Formulation of yeast-leavened bread with reduced salt content by using a Lactobacillus plantarum fermentation product. Food Chem. 2017, 221, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Penas, E.; Diana, M.; Frias, J.; Quilez, J.; Martinez-Villaluenga, C.E. A multistrategic approach in the development of sourdough bread targeted towards blood pressure reduction. Plant Foods Human Nutr. 2015, 70, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Noguieira, A.D.; Steel, C.J. Process Parameters and Technological Quality of French Rolls Produced with Dry Sourdough to Reduce Sodium. Cereal Chem. 2016, 93, 138–144. [Google Scholar] [CrossRef]
- Zhao, C.J.; Kinner, M.; Wismer, W.; Ganzle, M.G. Effect of Glutamate Accumulation During Sourdough Fermentation with Lactobacillus reuteri on the Taste of Bread and Sodium-Reduced Bread. Cereal Chem. 2015, 92, 224–230. [Google Scholar] [CrossRef]
- Jimenez-Maroto, L.A.; Sato, T.; Rankin, S.A. Saltiness potentiation in white bread by substituting sodium chloride with a fermented soy ingredient. J. Cereal Sci. 2013, 58, 313–317. [Google Scholar] [CrossRef]
- Ambrisewicz-Walacik, M.; Tanska, M.; Rotkiewicz, D.; Pietak, A. Effect of Various Sodium Chloride Mass Fractions on Wheat and Rye Bread Using Different Dough Preparation Techniques. Food Technol. 2016, 54, 172–179. [Google Scholar]
- Rodrigues, I.; Gonçalves, L.A.; Carvalho, F.A.; Pires, M.; Rocha, Y.J.; Barros, J.C.; Carvalho, L.T.; Trindade, M.A. Understanding salt reduction in fat-reduced hot dog sausages: Network structure, emulsion stability and consumer acceptance. Food Sci. Technol. Int. 2020, 26, 123–131. [Google Scholar] [CrossRef]
- Delgado-Pando, G.; Fischer, E.; Allen, P.; Kerry, J.P.; O’Sullivan, M.G.; Hamill, R.M. Salt content and minimum acceptable levels in whole-muscle cured meat products. Meat Sci. 2018, 139, 179–186. [Google Scholar] [CrossRef]
- Carkcioglu, E.; Rosenthal, A.J.; Candogan, K. Rheological and Textural Properties of Sodium Reduced Salt Soluble Myofibrillar Protein Gels Containing Sodium Tri-Polyphosphate. J. Texture Stud. 2016, 47, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, Y.; Zhou, R.Y.; Liu, Z.M.; Lu, F.Z.; Lin, H.; Xu, X.L.; Zhou, G.H. L-histidine improves water retention of heat-induced gel of chicken breast myofibrillar proteins in low ionic strength solution. Int. J. Food Sci. Technol. 2016, 51, 1195–1203. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Yang, Y.L.; Tang, Y.Z.; Chen, Y.J.; You, Y.Y. Chemical forces study of heat-induced myofibrillar protein gel as affected by partial substitution of NaCl with KCl, MgCl2 and CaCl2. CYTA J. Food 2016, 14, 139–247. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.M.; Dornelles, R.C.P.; Vidal, A.R.; Fontoura, A.; Kubota, E.H.; Mello, R.O.; Kempka, A.P.; Demiate, I.M. Development of cooked and smoked chicken sausage with reduced sodium and fat. J.Appl. Poult. Res. 2017, 26, 130–144. [Google Scholar] [CrossRef]
- Yotsuyanagi, S.E.; Contreras-Castillo, C.J.; Haguiwara, M.M.H.; Cipolli, K.M.V.A.B.; Lemos, A.L.S.C.; Morgano, M.A.; Yamada, E.A. Technological, sensory and microbiological impacts of sodium reduction in frankfurters. Meat Sci. 2016, 115, 50–59. [Google Scholar] [CrossRef]
- Cluff, M.; Steyn, H.; Charmba, G.; Bothma, C.; Hugo, C.J.; Hugo, A. The chemical, microbial, sensory and technological effects of intermediate salt levels as a sodium reduction strategy in fresh pork sausages. J. Sci. Food Agric. 2016, 96, 4048–4055. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.C.; Gois, T.S.; Pires, M.A.; Rodrigues, I.; Trindade, M.A. Sodium reduction in enrobed restructured chicken nuggets through replacement of NaCl with CaCl2. J. Food Sci. Technol. 2019, 56, 3587–3596. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Nasiru, M.M.; Zhuang, H.; Zhou, G.; Zhang, J. Effects of partial NaCl substitution with high-temperature ripening on proteolysis and volatile compounds during process of Chinese dry-cured lamb ham. Food Res. Int. 2021, 140, 110001. [Google Scholar] [CrossRef] [PubMed]
- Pinna, A.; Saccani, G.; Schivazappa, C.; Simoncini, N.; Virgili, R. Revision of the cold processing phases to obtain a targeted salt reduction in typical Italian dry-cured ham. Meat Sci. 2020, 161, 107994. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Pan, Q.; Wang, X.X.; Li, P.J.; Cai, K.Z.; Chen, C.G. Effect of salt mixture on flavor of reduced-sodium restructured bacon with ultrasound treatment. Food Sci. Nutr. 2020, 8, 3857–3871. [Google Scholar] [CrossRef] [PubMed]
- Nachtigall, F.M.; Vidal, V.A.S.; Pyarasani, R.D.; Domínguez, R.; Lorenzo, J.M.; Pollonio, M.A.R.; Santos, L.S. Substitution effects of NaCl by KCl and CaCl2 on Lipolysis of Salted Meat. Foods 2019, 8, 595. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Bermudez, R.; Dominguez, R.; Guiotto, A.; Franco, D.; Purrinos, L. Physicochemical and microbial changes during the manufacturing process of dry-cured lacon salted with potassium, calcium and magnesium chloride as a partial replacement for sodium chloride. Food Control 2015, 50, 763–769. [Google Scholar] [CrossRef]
- Greif, K.; Staurem, C.J.; Nordvi, B.; Rustad, T. Novel utilization of milk-based ingredients in salt reduced fish pudding. LWT Food Sci. Technol. 2015, 63, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, T.; Mihnea, M.; Båth, K.; Cunha, S.C.; Fereira, R.; Fernandes, J.O.; Gonçalves, A.; Nunes, M.L.; Oliveira, H. New formulation for producing salmon pâté with reduced sodium content. Food Chem. Toxicol. 2020, 143, 111546. [Google Scholar] [CrossRef] [PubMed]
- Horita, C.N.; Messias, V.C.; Morgano, M.A.; Hayakawa, F.M.; Pollonio, M.A.R. Textural, microstructural and sensory properties of reduced sodium frankfurter sausages containing mechanically deboned poultry meat and blends of chloride salts. Food Res. Int. 2014, 66, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Rios-Mera, J.D.; Saldaña, E.; Cruzado-Bravo, M.L.M.; Patinho, I.; Selani, M.M.; Valentin, D.; Contreras-Castillo, C.J. Reducing the sodium content without modifying the quality of beef burgers by adding micronized salt. Food Res. Int. 2019, 121, 288–295. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, G.; Zou, Y.; Zhao, Y.; Ge, C.; Liao, G. Evaluation of small molecular metabolites and sensory properties of Xuanwei ham salted with partial replacement of NaCl by KCl. Meat Sci. 2021, 175, 108465. [Google Scholar] [CrossRef]
- Vidal, V.A.S.; Santana, J.B.; Paglarini, C.S.; da Silva, M.A.A.P.; Freitas, M.Q.; Esmerino, E.A.; Cruz, A.G.; Pollonio, M.A.R. Adding lysine and yeast extract improves sensory properties of low sodium salted meat. Meat Sci. 2020, 159, 107911. [Google Scholar] [CrossRef] [PubMed]
- Gaudette, N.J.; Pietrasik, Z. The sensory impact of salt replacers and flavor enhancer in reduced sodium processed meats is matrix dependent. J. Sens. Stud. 2017, 32, 12247. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, I.; Guàrdia, M.D.; Arnau, J.; Dalgaard, P.; Bover, S.; Fernandes, J.O.; Monteiro, C.; Cunha, S.C.; Gonçalves, A.; Nunes, M.L.; et al. Effect of the sodium reduction and smoking system on quality and safety of smoked salmon (Salmo salar). Food Chem. Toxicol. 2020, 143, 111554. [Google Scholar] [CrossRef]
- Vilar, E.G.; Ouyang, H.; O’Sullivan, M.G.; Kerry, J.P.; Hamill, R.M.; O’Grady, M.N.; Mohammed, H.O.; Kilcawley, K.N. Effect of salt reduction and inclusion of 1% edible seaweeds on the chemical, sensory and volatile component profile of reformulated frankfurters. Meat Sci. 2020, 161, 108001. [Google Scholar] [CrossRef]
- Guinard, J.X.; Miller, A.M.; Mills, K.; Wong, T.; Lee, S.M.; Sirimuangmoon, C.; Schaefer, S.E.; Drescher, G. Consumer acceptance of dishes in which beef has been partially substituted with mushrooms and sodium has been reduced. Appetite 2016, 105, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Cerón-Guevara, M.I.; Rangel-Vargas, E.; Lorenzo, J.M.; Bermúdez, R.; Pateiro, M.; Rodríguez, J.A.; Sánchez-Ortega, I.; Santos, E.M. Reduction of Salt and Fat in Frankfurter Sausages by Addition of Agaricus bisporus and Pleurotus ostreatus Flour. Foods 2020, 9, 760. [Google Scholar] [CrossRef]
- Horita, C.N.; Farias-Campomanes, A.M.; Barbosa, T.S.; Esmerino, E.A.; da Cruz, A.G.; Bolini, H.M.A.; Meireles, M.A.A.; Pollonio, M.A.R. The antimicrobial, antioxidant and sensory properties of garlic and its derivatives in Brazilian low-sodium frankfurters along shelf-life. Food Res. Int. 2016, 84, 1–8. [Google Scholar] [CrossRef]
- Alves, L.A.A.D.; Lorenzo, J.M.; Goncalves, C.A.A.; dos Santos, B.A.; Heck, R.T.; Cichoski, A.J.; Campagnol, P.B.C. Impact of lysine and liquid smoke as flavor enhancers on the quality of low-fat Bologna-type sausages with 50% replacement of NaCl by KCl. Meat Sci. 2017, 123, 50–56. [Google Scholar] [CrossRef]
- Da Silva, S.L.; Lorenzo, J.M.; Machado, J.M.; Manfio, M.; Cichoski, A.J.; Fries, L.L.M.; Morgano, M.A.; Campagnol, P.C.B. Application of arginine and histidine to improve the technological and sensory properties of low-fat and low-sodium Bologna-type sausages produced with high levels of KCl. Meat Sci. 2020, 159, 107939. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, G.; Barbieri, Ge.; Bergamaschi, M.; Francheschini, M.; Berizi, E. Reduction of NaCl in cooked ham by modification of the cooking process and addition of seaweed extract (Palmaria palmata). LWT Food Sci Technol. 2016, 73, 700–706. [Google Scholar] [CrossRef]
- Fellendorf, S.; O’Sullivan, M.G.; Kerry, J.P. Impact of varying salt and fat levels on the physicochemical properties and sensory quality of white pudding. Meat Sci. 2015, 103, 75–82. [Google Scholar] [CrossRef] [PubMed]
- García-Lomillo, J; González-SanJosé, M.A.; Del Pino-García, R.; Rivero-Pérez, M.A.; Muñiz-Rodríguez, P. Alternative natural seasoning to improve the microbial stability of low-salt beef patties. Food Chem. 2017, 227, 122–128. [Google Scholar] [CrossRef]
- De Almeida, M.A.; Villanueva, N.D.M.; Pinto, J.S.D.; Saldana, E.; Contreras-Castillo, C.J. Sensory and physicochemical characteristics of low sodium salami. Sci. Agric. 2016, 73, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Pietrasik, Z.; Gaudette, N.J. The effect of salt replacers and flavor enhancer on the processing characteristics and consumer acceptance of turkey sausages. J. Sci. Food Agric. 2015, 95, 1845–1851. [Google Scholar] [CrossRef]
- Lobo, F.; Ventanas, S.; Morcuende, D.; Estevez, M. Underlying chemical mechanisms of the contradictory effects of NaCl reduction on the redox-state of meat proteins in fermented sausages. LWT Food Sci. Technol. 2016, 69, 110–116. [Google Scholar] [CrossRef]
- Laranjo, M.; Gomes, A.; Agulheiro-Santos, A.C.; Potes, M.E.; Cabrita, M.J.; Garcia, R.; Rocha, J.M.; Roseiro, L.C.; Fernandes, M.J.; Fernandes, M.H.; et al. Characterisation of “Catalao” and “Salsichao” Portuguese traditional sausages with salt reduction. Meat Sci. 2016, 116, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Laranjo, M.; Gomes, A.; Agulheiro-Santos, A.C.; Potes, M.E.; Cabrita, M.J.; Garcia, R.; Rocha, J.M.; Roseiro, L.C.; Fernandes, M.J.; Fragueza, M.J.; et al. Impact of salt reduction on biogenic amines, fatty acids, microbiota, texture and sensory profile in traditional blood dry-cured sausages. Food Chem. 2017, 218, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Corral, S.; Cano-Garcia, L.; Salvador, A.; Belloch, C. Yeast strains as potential aroma enhancers in dry fermented sausages. Int. J. Food Microbiol. 2015, 212, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corral, S.; Salvador, A.; Belloch, C.; Flores, M. Improvement the aroma of reduced fat and salt fermented sausages by Debaromyces hansenii inoculation. Food Control 2015, 47, 526–536. [Google Scholar] [CrossRef] [Green Version]
- Mora-Gallego, H.; Guardia, M.D.; Serra, X.; Gou, P.; Arnau, J. Sensory characterisation and consumer acceptability of potassium chloride and sunflower oil addition in small-caliber non-acid fermented sausages with a reduced content of sodium chloride and fat. Meat Sci. 2016, 112, 9–15. [Google Scholar] [CrossRef]
- Muchaamba, F.; Stoffers, H.; Blase, R.; Ah, U.V.; Tasara, T. Potassium Lactate as a Strategy for Sodium Content Reduction without Compromising Salt-Associated Antimicrobial Activity in Salami. Foods 2021, 10, 114. [Google Scholar] [CrossRef]
- Karolenko, C.; Muriana, P. Quantification of Process Lethality (5-Log Reduction) of Salmonella and Salt Concentration during Sodium Replacement in Biltong Marinade. Foods 2020, 9, 1570. [Google Scholar] [CrossRef]
- Fougy, L.; Desmonts, M.H.; Coeuret, G.; Fassel, C.; Hamon, E.; Hezard, B.; Champomier-Verges, M.C.; Chaillou, S. Reducing Salt in Raw Pork Sausages Increases Spoilage and Correlates with Reduced Bacterial Diversity. Appl. Environ. Microbiol. 2016, 82, 3928–3939. [Google Scholar] [CrossRef] [Green Version]
- García-Díez, J.; Patarata, L. Influence of salt level, starter culture, fermentable carbohydrates, and temperature on the behaviour of L. monocytogenes in sliced chouriço during storage. Acta Alim. 2017, 46, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, F.M.; Rosenthal, A.; Tiburski, J.H.; da Cruz, A.G. Alternatives to reduce sodium in processed foods and the potential of high pressure technology. Food Sci. Technol. 2016, 36, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, I.; Trindade, M.A.; Caramit, F.R.; Candogan, K.; Pokhrel, P.R.; Barbosa-Canovas, G.V. Effect of high pressure processing on physicochemical and microbiological properties of marinated beef with reduced sodium content. Innov. Food Sci. Emerg. Technol. 2016, 38, 328–333. [Google Scholar] [CrossRef]
- Yang, H.J.; Han, M.Y.; Wang, X.; Han, Y.Q.; Wu, J.Q.; Xu, X.L.; Zhou, G.H. Effect of high pressure on cooking losses and functional properties of reduced-fat and reduced-salt pork sausage emulsions. Innov. Food Sci. Emerg. Technol. 2015, 29, 125–133. [Google Scholar] [CrossRef]
- Ros-Polski, V.; Koutchma, T.; Xue, J.; Defelice, C.; Balamurubam, S. Effects of high hydrostatic pressure processing parameters and NaCl concentration on the physical properties, texture and quality of white chicken meat. Innov. Food Sci Emerg. Technol. 2015, 30, 31–42. [Google Scholar] [CrossRef]
- Tamm, A.; Bolumar, T.; Bajovic, B.; Toepfl, S. Salt (NaCl) reduction in cooked ham by a combined approach of high pressure treatment and the salt replacer KCl. Innov. Food Sci. Emerg. Technol. 2016, 36, 294–302. [Google Scholar] [CrossRef]
- Balamurugan, S.; Ahmed, R.; Chibeu, A.; Gao, A.L.; Koutchma, T.; Strange, P. Effect of salt types and concentrations on the high-pressure inactivation of Listeria monocytogenes in ground chicken. Int. J. Food Microbiol. 2016, 218, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Salazar, J.A.; Galván-Navaro, A.; Lorenzo, J.M.; Sosa-Moráles, M.E. Ultrasound effect on salt reduction in meat products: A review. Curr. Opin. Food Sci. 2021, 38, 71–78. [Google Scholar] [CrossRef]
- Ojha, K.S.; Keenan, D.F.; Bright, A.; Kerry, J.P.; Tiwary, B.K. Ultrasound assisted diffusion of sodium salt replacer and effect on physicochemical properties of pork meat. Int. J. Food Sci. Technol. 2016, 51, 37–45. [Google Scholar] [CrossRef]
- Barretto, T.L.; Pollonio, M.A.R.; Telis-Romero, J.; da Silva Barretto, A.C. Improving sensory acceptance and physicochemical properties by ultrasound application to restructured cooked ham with salt (NaCl) reduction. Meat Sci. 2018, 145, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Rizo, A.; Fuentes, A.; Barat, J.M.; Fernández-Segovia, I. Development of a novel smoke-flavoured salmon product by sodium replacement using water vapour permeable bags. J. Sci. Food Agric. 2018, 98, 2721–2728. [Google Scholar] [CrossRef] [PubMed]
- Vaz Leães, S.Y.; Basso Pinton, M.; de Aguiar Rosa, T.C.; Robalo, S.S.; Wagner, R.; de Menezes, R.C.; Barin, S.J.; Campagnol, C.B.P.; Cichoski, A.J. Ultrasound and basic electrolyzed water: A green approach to reduce the technological defects caused by NaCl reduction in meat emulsions. Ultrason. Sonochem. 2020, 61, 104830. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.A. The application of pulsed electric field as a sodium reducing strategy for meat products. Food Chem. 2020, 306, 125622. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-K.; Yong, H.-I.; Jung, S.; Kim, H.-W.; Choi, Y.-S. Technologies for the production of meat products with a low sodium chloride content and improved quality characteristics—A review. Foods 2021, 10, 957. [Google Scholar] [CrossRef] [PubMed]
- Bonfim, R.C.; Machado, J.D.; Mathias, S.P.; Rosenthal, A. Application of microbial transglutaminase in processed meat products with reduced content of sodium. Cienc. Rural 2015, 45, 1133–1138. [Google Scholar] [CrossRef] [Green Version]
- Martelo-Vidal, M.J.; Guerra-Rodriguez, E.; Pita-Calvo, C.; Vazquez, M. Reduced-salt restructured European hake (Merluccius merluccius) obtained using microbial transglutaminase. Innov. Food Sci. Emerg. Technol. 2016, 38, 182–188. [Google Scholar] [CrossRef]
Nutrition Claims | g Na/100 g | g NaCl/100 g |
---|---|---|
Low sodium/salt | 0.12 | 0.305 |
Very low sodium/salt | 0.04 | 0.102 |
Sodium-free or salt-free | 0.005 | 0.013 |
Salt Taste Sources | Salt Taste Enhancers |
---|---|
modified sodium chloride | plants as a salty taste enhancer |
micronized salt | herbs and spices |
encapsulated salt with lipids | extracts of herbs or spices |
modified shape of salt crystals | seaweed |
crystal aggregates | |
hollow salt crystals | |
salt nanoparticles on polysaccharide carriers | |
organic and inorganic salts | amino acids and peptides |
potassium chloride | glycine |
magnesium chloride | lysine |
ammonium chloride | arginine |
calcium chloride, calcium carbonate | ornithine |
potassium citrate and diphosphate | histidine |
magnesium and sodium sulphate | plant protein hydrolysate |
yeast extracts | |
plants as a salt substitutes | other enhancers |
seaweed | trehalose |
halophytes | lactic acid salts |
glutamates | |
adenosine-5’-monophosphate | |
milk permeate | |
sourdough | |
edible mushrooms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rysová, J.; Šmídová, Z. Effect of Salt Content Reduction on Food Processing Technology. Foods 2021, 10, 2237. https://doi.org/10.3390/foods10092237
Rysová J, Šmídová Z. Effect of Salt Content Reduction on Food Processing Technology. Foods. 2021; 10(9):2237. https://doi.org/10.3390/foods10092237
Chicago/Turabian StyleRysová, Jana, and Zuzana Šmídová. 2021. "Effect of Salt Content Reduction on Food Processing Technology" Foods 10, no. 9: 2237. https://doi.org/10.3390/foods10092237
APA StyleRysová, J., & Šmídová, Z. (2021). Effect of Salt Content Reduction on Food Processing Technology. Foods, 10(9), 2237. https://doi.org/10.3390/foods10092237