Egg Yolk Protein Water Extracts Modulate the Immune Response in BALB/c Mice with Immune Dysfunction Caused by Forced Swimming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Egg Yolk Protein Extract
2.2. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
2.3. Animals and Treatments (Experimental Animals)
2.4. Forced Swimming Test (FST)
2.5. Isolation of Primary Splenocytes from BALB/c Mice
2.6. T-Cell and B-Cell Proliferation Assay
2.7. Th1- and Th2-Type Cytokine Production Assay
2.8. Analysis of Immunoglobulins (IgA, IgE, and IgG) in Serum
2.9. NK Cell Cytotoxic Activity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Preparation of EYW
3.2. Effect of EYW on Primary Splenocyte Proliferation
3.3. Effect of EYW on Cytokine Secretion by Primary Splenocytes from BALB/c Mice
3.4. Effect of EYW on Immunoglobulin Production
3.5. Effects of EYW on the Activity of Murine NK Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, S.H.; Ku, J.M.; Kim, H.I.; Ahn, C.-W.; Park, S.-H.; Seo, H.S.; Shin, Y.C.; Ko, S.-G. The immune-enhancing activity of Cervus nippon mantchuricus extract (NGE) in RAW264.7 macrophage cells and immunosuppressed mice. Food Res. Int. 2017, 99, 623–629. [Google Scholar] [CrossRef]
- Heise, E.R. Diseases associated with immunosuppression. Environ. Health Perspect. 1982, 43, 9–19. [Google Scholar] [CrossRef]
- Cui, H.-Y.; Chang, C.-L.; Wang, Y.-R.; Li, Z.-J.; Chen, M.-H.; Li, F.-J.; Sun, Y.-P. Pleurotus nebrodensis polysaccharide (PN-S) enhances the immunity of immunosuppressed mice. Chin. J. Nat. Med. 2015, 13, 760–766. [Google Scholar] [CrossRef]
- Han, H.-S.; Shin, J.-S.; Song, Y.-R.; Rhee, Y.K.; Cho, C.-W.; Ryu, J.H.; Inn, K.-S.; Hong, H.-D.; Lee, K.-T. Immunostimulatory effects of polysaccharides isolated from young barley leaves (Hordeum vulgare L.) with dual activation of Th1 and Th2 in splenic T cells and cyclophosphamide-induced immunosuppressed mice. Int. J. Biol. Macromol. 2020, 147, 954–964. [Google Scholar] [CrossRef]
- Yu, F.; He, K.; Dong, X.; Zhang, Z.; Wang, F.; Tang, Y.; Chen, Y.; Ding, G. Immunomodulatory activity of low molecular-weight peptides from Nivea japonica skin in cyclophosphamide-induced immunosuppressed mice. J. Funct. Food. 2020, 68, 103888. [Google Scholar] [CrossRef]
- Segeren, C.M.; Sonneveld, P.; van der Holt, B.; Barrs, J.W.; Biesma, D.H.; Cornellissen, J.J.; Croockewit, A.J.; Dekker, A.W.; Fibbe, W.E.; Lowenberg, B.; et al. Vincristine, doxorubicin and dexamethasone (VAD) administered as rapid intravenous infusion for first-line treatment in untreated multiple myeloma. Br. J. Haematol. 1999, 105, 127–130. [Google Scholar] [CrossRef]
- Veltkamp, F.; Khan, D.H.; Reefman, C.; Veissi, S.; van Oers, H.A.; Levtchenko, E.; Mathot, R.A.A.; Florquin, S.; van Wijk, J.A.E.; Schreuder, M.F.; et al. Prevention of relapses with levamisole as adjuvant therapy in children with a first episode of idiopathic nephrotic syndrome: Study protocol for a double blind, randomised placebo-controlled trial (the LEARNS study). BMJ Open 2019, 9, e027011. [Google Scholar] [CrossRef] [Green Version]
- Connor, T.J.; Kelly, J.P.; Leonard, B.E. Forced swim test-induced neurochemical, endocrine, and immune changes in the rat. Pharmacol. Biochem. Behav. 1997, 58, 961–967. [Google Scholar] [CrossRef]
- Lee, S.-J.; Rim, H.-K.; Jung, J.-Y.; An, H.-J.; Shin, J.-S.; Cho, C.-W.; Rhee, Y.K.; Hong, H.-D.; Lee, K.-T. Immunostimulatory activity of polysaccharides from Cheonggukjang. Food Chem. Toxicol. 2013, 59, 476–484. [Google Scholar] [CrossRef]
- Kumar, A.; Garg, R. Protective effects of antidepressants against chronic fatigue syndrome-induced behavioral changes and biochemical alterations. Fundam. Clin. Pharmacol. 2008, 23, 89–95. [Google Scholar] [CrossRef]
- Kubera, M.; Basta-Kaim, A.; Budziszewska, B.; Rogoz, Z.; Skuza, G.; Leskiewicz, M.; Tetich, M.; Jaworska-Feil, L.; Maes, M.; Lason, W. Effect of amantadine and imipramine on immunological parameters of rats subjected to a forced swimming test. Int. J. Neuropsychopharmacol. 2006, 9, 297–305. [Google Scholar] [CrossRef]
- Guan, X.; Shao, F.; Xie, X.; Chen, L.; Wang, W. Effects of aspirin on immobile behavior and endocrine and immune changes in the forced swimming test: Comparison to fluoxetine and imipramine. Pharmacol. Biochem. Behav. 2014, 124, 361–366. [Google Scholar] [CrossRef]
- Lesnierowski, G.; Stangierski, J. What’s new in chicken egg research and technology for human health promotion?—A review. Trends Food Sci. Technol. 2018, 71, 46–51. [Google Scholar] [CrossRef]
- Lee, J.H.; Paik, H.-D. Anticancer and immunomodulatory activity of egg proteins and peptides: A review. Poult. Sci. 2019, 98, 6505–6516. [Google Scholar] [CrossRef]
- Xu, X.; Katayama, S.; Mine, Y. Antioxidant activity of tryptic digests of hen egg yolk phosvitin. J. Sci. Food Agric. 2007, 87, 2604–2608. [Google Scholar] [CrossRef]
- Moon, S.H.; Lee, J.H.; Lee, M.; Park, E.; Ahn, D.U.; Paik, H.-D. Cytotoxic and antigenotoxic activities of phosvitin from egg yolk. Poult. Sci. 2014, 93, 2103–2107. [Google Scholar] [CrossRef]
- Meram, C.; Wu, J. Anti-inflammatory effects of egg yolk livetins (α, β, and γ-livetin) fraction and its enzymatic hydrolysates in lipopolysaccharide-induced RAW 264.7 macrophages. Food Res. Int. 2017, 100, 449–459. [Google Scholar] [CrossRef]
- Lee, J.H.; Moon, S.H.; Kim, H.S.; Park, E.; Ahn, D.U.; Paik, H.-D. Immune-enhancing activity of phosvitin by stimulating the production of pro-inflammatory mediator. Poult. Sci. 2017, 96, 3872–3878. [Google Scholar] [CrossRef]
- Eckert, E.; Zambrowicz, A.; Pokora, M.; Setner, B.; Dabrowska, A.; Szoltysik, M.; Szewczuk, Z.; Polanowski, A.; Trziszka, T.; Chrzanowska, J. Egg-yolk protein by-product as a source of ACE-inhibitory peptides obtained with using unconventional proteinase from Asian pumpkin (Cucurbita ficifolia). J. Proteom. 2014, 110, 107–116. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Moreno, M.I.N.; Isla, M.I.; Sampietro, A.R.; Vattuone, M.A. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 2000, 71, 109–114. [Google Scholar] [CrossRef]
- Mishell, B.B.; Shigi, S.M. Selected Methods in Cellular Immunology. Immunology 1980, 42, 351–372. [Google Scholar]
- Kim, J.; Kim, H.-Y.; Hong, S.; Shin, S.; Kim, Y.A.; Kim, N.S.; Bang, O.-S. A new herbal formula BP10A exerted an antitumor effect and enhanced anticancer effect of irinotecan and oxaliplatin in the colon cancer PDTX model. Biomed. Pharmacother. 2019, 116, 108987. [Google Scholar] [CrossRef]
- Rico, D.; Villaverde, A.; Martinez-Villaluenga, C.; Gutierrez, A.L.; Caballero, P.A.; Ronda, F.; Peñas, E.; Frias, J.; Martin Diana, A.B. Application of autoclave treatment for development of a natural wheat bran antioxidant ingredient. Foods 2020, 9, 781. [Google Scholar] [CrossRef]
- Plaza, M.; Turner, C. Pressurized hot water extraction of bioactives. TrAC Trends Analyt. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Ku, C.-M.; Lin, J.-Y. Anti-inflammatory effects of 27 selected terpenoid compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes. Food Chem. 2013, 14, 1104–1113. [Google Scholar] [CrossRef]
- Han, L.; Lei, H.; Tian, Z.; Wang, X.; Cheng, D.; Wang, C. The immunomodulatory activity and mechanism of docosahexenoic acid (DHA) on immunosuppressive mice models. Food Funct. 2018, 9, 3254–3263. [Google Scholar] [CrossRef]
- Park, H.-E.; Lee, W.-K. Immune enhancing effects of Weissella cibaria JW15 on BALB/c mice immunosuppressed by cyclophosphamide. J. Funct. Food. 2018, 49, 518–525. [Google Scholar] [CrossRef]
- Wong, C.W.; Watson, D.L. Immunomodulatory effects of dietary whey proteins in mice. J. Dairy Res. 1995, 62, 359–368. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, Z.; Pei, X.; Han, X.; Wang, J.; Wang, L.; Long, Z.; Shen, X.; Li, Y. Immunomodulatory effects of marine oligopeptide preparation from Chum Salmon (Oncorhynchus keta) in mice. Food Chem. 2009, 113, 464–470. [Google Scholar] [CrossRef]
- Liu, C.-J.; Lin, J.-Y. Anti-inflammatory effects of phenolic extracts from strawberry and mulberry fruits on cytokine secretion profiles using mouse primary splenocytes and peritoneal macrophages. Int. Immunopharmacol. 2013, 16, 165–170. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, D.; Lee, M.; Jang, A. Anti-inflammatory effect of dietary pork extract on proliferation and cytokine secretion using mouse primary splenocytes. Food Res. Int. 2017, 102, 710–716. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, C.; Zhang, Y.; Li, Y.; Sun, J. Immunomodulatory and antioxidant effects of pomegranate peel polysaccharides on immunosuppressed mice. Int. J. Biol. Macromol. 2019, 137, 504–511. [Google Scholar] [CrossRef]
- Yoo, J.-H.; Lee, Y.-S.; Ku, S.; Lee, H.-J. Phellinus baumii enhances the immune response in cyclophosphamide-induced immunosuppressed mice. Nutr. Res. 2020, 75, 15–31. [Google Scholar] [CrossRef]
- Hirja, A.R.; Voroneanu, L.; Siriopol, D.; Nistor, I.; Hogas, S.; Apetrii, M.; Volovat, C.; Veisa, G.; Mititiuc, I.L.; Florea, L.; et al. Evaluation of low-dose glucocorticoid regimen in association with cyclophosphamide in patients with glomerulonephritis. Int. Urol. Nephrol. 2019, 51, 1805–1813. [Google Scholar] [CrossRef]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Bachiega, T.F.; Orsatti, C.L.; Pagliarone, A.C.; Missima, F.; Sousa, J.P.B.; Bastos, J.K.; Sforcin, J.M. Th1/Th2 cytokine production by clove-treated mice. Nat. Prod. Res. 2009, 23, 1552–1558. [Google Scholar] [CrossRef]
- Woof, J.M.; Kerr, M.A. The function of immunoglobulin A in immunity. J. Pathol. 2006, 208, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Thomson, C.A. IgG structure and function. In Encyclopedia of Immunobiology; Ratcliffe, M.J.H., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 2, pp. 15–22. [Google Scholar]
- Ko, J.-H.; Castaneda, R.; Joo, S.-W.; Kim, H.-G.; Lee, Y.-G.; Lee, Y.-H.; Kang, T.H.; Baek, N.-I. Glycerides isolated from the aerial parts of Malva verticillata cause immunomodulation effects via splenocyte function and NK antitumor activity. Food Sci. Biotechnol. 2018, 27, 1023–1030. [Google Scholar] [CrossRef]
- Vivier, E.; Nunes, J.A.; Vely, F. Natural killer cell signaling pathways. Science 2004, 306, 1517–1519. [Google Scholar] [CrossRef]
- Malhotra, A.; Shanker, A. NK cells: Immune cross-talk and therapeutic implications. Immunotherapy 2011, 3, 1143–1166. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-Y.; Oh, M.-J.; Kim, Y.; Choi, I. Immunomodulatory activities of Corchorus olitorius leaf extract: Beneficial effects in macrophage and NK cell activation immunosuppressed mice. J. Funct. Food. 2018, 46, 220–226. [Google Scholar] [CrossRef]
- Shin, M.-S.; Hwang, S.-H.; Yoon, T.-J.; Kim, S.H.; Shin, K.-S. Polysaccharides from ginseng leaves inhibit tumor metastasis via macrophage and NK cell activation. Int. J. Biol. Macromol. 2017, 103, 1327–1333. [Google Scholar] [CrossRef]
- Henney, C.S.; Kuribayashi, K.; Kern, D.E.; Gillis, S. Interleukin-2 augments natural killer cell activity. Nature 1981, 291, 335–338. [Google Scholar] [CrossRef]
Protein Contents (Protein mg/g) | Total Phenolic Contents (TPC, GAE mg/100 g) | Total Flavonoid Contents (TFC, QE mg/100 g) | |
---|---|---|---|
EYW | 28.9 ± 0.2 | 79.9 ± 0.9 | 5.8 ± 0.0 |
NC | PC | EYW | |
---|---|---|---|
IgA (μg/mL) | 31.9 ± 0.6 a | 42.4 ± 0.4 b | 34.7 ± 0.2 a |
IgE (ng/mL) | 81.3 ± 4.6 ns | 96.7 ± 5.4 | 89.0 ± 6.8 |
IgG (μg/mL) | 583.6 ± 32.3 a | 1459.8 ± 317.7 b | 660.5 ± 26.6 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, M.; Lee, J.-H.; Lee, Y.-J.; Paik, H.-D.; Park, E. Egg Yolk Protein Water Extracts Modulate the Immune Response in BALB/c Mice with Immune Dysfunction Caused by Forced Swimming. Foods 2022, 11, 121. https://doi.org/10.3390/foods11010121
Choi M, Lee J-H, Lee Y-J, Paik H-D, Park E. Egg Yolk Protein Water Extracts Modulate the Immune Response in BALB/c Mice with Immune Dysfunction Caused by Forced Swimming. Foods. 2022; 11(1):121. https://doi.org/10.3390/foods11010121
Chicago/Turabian StyleChoi, Mijoo, Jae-Hoon Lee, Yun-Jung Lee, Hyun-Dong Paik, and Eunju Park. 2022. "Egg Yolk Protein Water Extracts Modulate the Immune Response in BALB/c Mice with Immune Dysfunction Caused by Forced Swimming" Foods 11, no. 1: 121. https://doi.org/10.3390/foods11010121
APA StyleChoi, M., Lee, J.-H., Lee, Y.-J., Paik, H.-D., & Park, E. (2022). Egg Yolk Protein Water Extracts Modulate the Immune Response in BALB/c Mice with Immune Dysfunction Caused by Forced Swimming. Foods, 11(1), 121. https://doi.org/10.3390/foods11010121