Application of Five Different Chlorella sp. Microalgal Strains for the Treatment of Vegetation Waters Derived from Unconventional Oil Extractions Enriched with Citrus Byproducts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgal Strains and Growth Conditions
2.2. Citrus Olive Oil Extraction and Wastewater Sample
2.3. Experimental Setup
2.4. Growth Parameters and Total Phenolic Compound Reduction Measure
2.5. Analysis of the Phenolic Content
2.6. HPLC Analysis
2.6.1. Experimental Materials
2.6.2. HPLC Analysis of Phenolic Compounds
2.7. Statistical Analysis
3. Results and Discussion
HPLC Analysis of Phenolic Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiril Mert, B.; Yonar, T.; Yalili Kiliç, M.; Kestioğlu, K. Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes. J. Hazard. Mater. 2010, 174, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Venturi, F.; Sanmartin, C.; Taglieri, I.; Nari, A.; Andrich, G.; Terzuoli, E.; Donnini, S.; Nicolella, C.; Zinnai, A. Development of Phenol-Enriched Olive Oil with Phenolic Compounds Extracted from Wastewater Produced by Physical Refining. Nutrients 2017, 9, 916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettazzi, E.; Morelli, M.; Caffaz, S.; Caretti, C.; Azzari, E.; Lubello, C. Olive mill wastewater treatment: An experimental study. Water Sci. Technol. 2006, 54, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian, N.; Jafari, S.; Galanakis, C. Recovery and Removal of Phenolic Compounds from Olive Mill Wastewater. J. Oil Fat Ind. 2014, 91, 1–18. [Google Scholar] [CrossRef]
- Chiellini, C.; Munz, G.; Petroni, G.; Lubello, C.; Mori, G.; Verni, F.; Vannini, C. Characterization and comparison of bacterial communities selected in conventional activated sludge and membrane bioreactor pilot plants: A focus on Nitrospira and Planctomycetes bacterial phyla. Curr. Microbiol. 2013, 67, 77–90. [Google Scholar] [CrossRef]
- Vannini, C.; Munz, G.; Mori, G.; Lubello, C.; Verni, F.; Petroni, G. Sulphide oxidation to elemental sulphur in a membrane bioreactor: Performance and characterization of the selected microbial sulphur-oxidizing community. Syst. Appl. Microbiol. 2008, 31, 461–473. [Google Scholar] [CrossRef]
- Rout, P.R.; Bhunia, P.; Dash, R.R. Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresour. Technol. 2017, 244, 484–495. [Google Scholar] [CrossRef]
- Siracusa, G.; Yuan, Q.; Chicca, I.; Bardi, A.; Spennati, F.; Becarelli, S.; Levin, D.B.; Munz, G.; Petroni, G.; Di Gregorio, S. Mycoremediation of Old and Intermediate Landfill Leachates with an Ascomycete Fungal Isolate, Lambertella sp. Water 2020, 12, 800. [Google Scholar] [CrossRef] [Green Version]
- Foissner, W. Protists as bioindicators in activated sludge: Identification, ecology and future needs. Eur. J. Protistol. 2016, 55, 75–94. [Google Scholar] [CrossRef]
- Lutzu, G.A.; Ciurli, A.; Chiellini, C.; Di Caprio, F.; Concas, A.; Dunford, N.T. Latest developments in wastewater treatment and biopolymer production by microalgae. J. Environ. Chem. Eng. 2020, 9, 104926. [Google Scholar] [CrossRef]
- Rawat, I.; Kumar, R.R.; Mutanda, T.; Bux, F. Dual role of microalgae: Phytoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy 2011, 88, 3411–3424. [Google Scholar] [CrossRef]
- Ajayan, K.V.; Selvaraju, M.; Unnikannan, P.; Sruthi, P. Phycoremediation of tannery wastewater using microalgae Scenedesmus species. Int. J. Phytoremediat. 2015, 17, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Barsanti, L.; Gualtieri, P. Algae: Anatomy, Biochemistry, and Biotechnology; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Emparan, Q.; Harun, R.; Danquah, M.K. Role of phycoremediation for nutrient removal from wastewaters: A review. Appl. Ecol. Environ. Res. 2019, 17, 889–915. [Google Scholar] [CrossRef]
- Flori, L.; Macaluso, M.; Taglieri, I.; Sanmartin, C.; Sgherri, C.; De Leo, M.; Ciccone, V.; Donnini, S.; Venturi, F.; Pistelli, L.; et al. Development of Fortified Citrus Olive Oils: From Their Production to Their Nutraceutical Properties on the Cardiovascular System. Nutrients 2020, 12, 1557. [Google Scholar] [CrossRef] [PubMed]
- Chiellini, C.; Guglielminetti, L.; Pistelli, L.; Ciurli, A. Screening of Trace Metal Elements for Pollution Tolerance of Freshwater and Marine Microalgal Strains: Overview and Perspectives. Algal Res. 2020, 45, 101751. [Google Scholar] [CrossRef]
- Ciurli, A.; Modeo, L.; Pardossi, A.; Chiellini, C. Multidisciplinary integrated characterization of a native Chlorella-like microalgal strain isolated from a municipal landfill leachate. Algal Res. 2021, 54, 102202. [Google Scholar] [CrossRef]
- Chiellini, C.; Guglielminetti, L.; Sarrocco, S.; Ciurli, A. Isolation of four microalgal strains from the Lake Massaciuccoli: Screening of common pollutants tolerance pattern and perspectives for their use in biotechnological applications. Front. Plant Sci. 2020, 11, 1954. [Google Scholar] [CrossRef]
- Gorman, D.S.; Levine, R.P. Cytochrome f and plastocyanin: Their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. USA 1965, 54, 1665–1669. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Abelson, J., Simon, M., Verdine, G., Pyle, A., Eds.; Academic Press: Cambridge, MA, USA, 1987; pp. 350–382. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Pinto, G.; Pollio, A.; Previtera, L.; Temussi, F. Biodegradation of phenols by microalgae. Biotechnol. Lett. 2002, 24, 2047–2051. [Google Scholar] [CrossRef]
- Lindner, A.V.; Pleissner, D. Removal of Phenolic Compounds from Olive Mill Wastewater by Microalgae Grown Under Dark and Light Conditions. Waste Biomass Valorizat. 2021, 13, 525–534. [Google Scholar] [CrossRef]
- Sabatini, S.E.; Juárez, Á.B.; Eppis, M.R.; Bianchi, L.; Luquet, C.M.; de Molina, M.D.C.R. Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotox. Environ. Safe 2009, 72, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, X.; Zhou, B.; Hu, S.; Wang, Y. Effect of enhanced UV-B radiation on photosynthetic characteristics of marine microalgae Dunaliella salina (Chlorophyta, Chlorophyceae). J. Exp. Mar. Biol. Ecol. 2015, 469, 27–35. [Google Scholar] [CrossRef]
- George, B.; Pancha, I.; Desai, C.; Chokshi, K.; Paliwal, C.; Ghosh, T.; Mishra, S. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus–A potential strain for bio-fuel production. Bioresour. Technol. 2014, 171, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Chiellini, C.; Serra, V.; Gammuto, L.; Ciurli, A.; Longo, V.; Gabriele, M. Evaluation of Nutraceutical Properties of Eleven Microalgal Strains Isolated from Different Freshwater Aquatic Environments: Perspectives for Their Application as Nutraceuticals. Foods 2022, 11, 654. [Google Scholar] [CrossRef] [PubMed]
- Bell, W.; Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 1972, 143, 265–277. [Google Scholar] [CrossRef]
- Ramanan, R.; Kang, Z.; Kim, B.H.; Cho, D.H.; Jin, L.; Oh, H.M.; Kim, H.S. Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats. Algal Res. 2015, 8, 140–144. [Google Scholar] [CrossRef]
- Pinto, G.; Pollio, A.; Previtera, L.; Stanzione, M.; Temussi, F. Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol. Lett. 2003, 25, 1657–1659. [Google Scholar] [CrossRef]
- Di Caprio, F.; Altimari, P.; Pagnanelli, F. Integrated microalgae biomass production and olive mill wastewater biodegradation: Optimization of the wastewater supply strategy. Chem. Eng. J. 2018, 349, 539–546. [Google Scholar] [CrossRef]
- Dahmen-Ben Moussa, I.; Maalej, A.; Masmoudi, M.A.; Feki, F.; Choura, S.; Baccar, N.; Jelail, L.; Karray, F.; Chamkha, M.; Sayadi, S. Effect of olive mill wastewaters on Scenedesmus sp. growth, metabolism and polyphenols removal. J. Sci. Food Agric. 2021, 101, 5508–5519. [Google Scholar] [CrossRef]
T (min) | A% | B% |
---|---|---|
0 | 90 | 10 |
25 | 70 | 30 |
55 | 5 | 95 |
60 | 90 | 10 |
OMWW Sample | Total Phenols at the Starting Time (g/L Gallic Acid) | % Reduction | |
---|---|---|---|
SEC_LI_ChL_1 | 10% CONTROL | 0.39 ± 0.05 f | 5.3 ± 1.1 h |
10% ORANGE | 0.58 ± 0.02 e | 1.3 ± 1.0 i | |
10% LEMON | 0.35 ± 0.01 f | 2.5 ± 1.3 i | |
25% CONTROL | 0.82 ± 0.05 c | 21.0 ± 1.1 e | |
CL_Sc | 10% CONTROL | 0.39 ± 0.04 f | 18.7 ± 1.0 f |
10% ORANGE | 0.58 ± 0.02 e | 9.9 ± 1.0 g | |
10% LEMON | 0.35 ± 0.01 f | 24.0 ± 1.3 d | |
25% CONTROL | 0.82 ± 0.06 c | 27.0 ± 1.0 d | |
25% LEMON | 0.73 ± 0.03 d | 28.2 ± 1.0 d | |
50% CONTROL | 1.54 ± 0.05 a | 30.3 ± 1.2 c | |
CL_Ch | 10% CONTROL | 0.39 ± 0.03 f | 13.9 ± 1.0 g |
10% ORANGE | 0.58 ± 0.02 e | 21.8 ± 1.1 e | |
10% LEMON | 0.35 ± 0.06 f | 26.5 ± 1.1 d | |
25% ORANGE | 1.31 ± 0.03 b | 11.8 ± 1.0 g | |
25% LEMON | 0.73 ± 0.02 d | 10.4 ± 1.0 g | |
50% LEMON | 1.36 ± 0.04 b | 4.0 ± 1.2 h | |
Idr | 10% CONTROL | 0.39 ± 0.02 f | 45.8 ± 1.0 b |
10% LEMON | 0.58 ± 0.01 e | 53.9 ± 1.3 a | |
FB | 10% CONTROL | 0.39 ± 0.06 f | 32.4 ± 1.0 c |
10% ORANGE | 0.58 ± 0.03 e | 16.5 ± 1.3 f | |
10% LEMON | 0.35 ± 0.02 f | 33.5 ± 1.2 c | |
25% CONTROL | 0.82 ± 0.01 c | 17.5 ± 1.0 d | |
25% LEMON | 0.73 ± 0.04 d | 18.4 ± 1.1 f |
OMWW Sample | Total Phenols at the Starting Time (g/L Gallic Acid) | % Reduction | |
---|---|---|---|
CL_Sc | 10% CONVENTIONAL | 0.39 ± 0.03 d | 24.4 ± 1.0 d |
10% LEMON | 0.35 ± 0.04 d | 35.3 ± 1.1 c | |
25% CONVENTIONAL | 0.82 ± 0.01 b | 32.0 ± 1.1 c | |
25% LEMON | 0.73 ± 0.05 c | 34.9 ± 1.0 c | |
50% CONVENTIONAL | 1.54 ± 0.06 a | 52.9 ± 1.0 a | |
Idr | 10% CONVENTIONAL | 0.39 ± 0.02 d | 45.7 ± 1.3 b |
10% LEMON | 0.35 ± 0.04 d | 44.8 ± 1.0 b | |
FB | 10% CONVENTIONAL | 0.39 ± 0.03 d | 26.7 ± 1.0 d |
10% LEMON | 0.35 ± 0.02 d | 34.0 ± 1.3 c | |
25% CONVENTIONAL | 0.82 ± 0.03 b | 45.1 ± 1.2 b | |
25% LEMON | 0.73 ± 0.05 c | 50.3 ± 1.0 a |
OMWW Sample | Tyrosol | Hydroxityrosol | 4-Coumaric Acid | 2-Coumaric Acid | |
---|---|---|---|---|---|
T = 0 | CONVENTIONAL | 0.40 | 2.10 | - | - |
LEMON | 0.30 | 1.00 | 0.06 | 0.04 | |
ORANGE | 0.50 | 2.30 | 0.03 | - | |
CL-Sc | 10% CONVENTIONAL | - | - | - | - |
10% LEMON | - | - | - | - | |
25% CONVENTIONAL | 0.01 | 0.01 | - | - | |
25% LEMON | - | - | - | - | |
50% CONVENTIONAL | 0.03 | 0.05 | - | - | |
Idr | 10% CONVENTIONAL | 0.04 | - | - | - |
10% LEMON | 0.03 | - | - | - | |
FB | 10% CONVENTIONAL | 0.06 | - | - | - |
10% LEMON | 0.01 | - | - | - | |
25% CONVENTIONAL | - | - | - | - | |
25% LEMON | 0.03 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macaluso, M.; Chiellini, C.; Ciurli, A.; Guglielminetti, L.; Najar, B.; Taglieri, I.; Sanmartin, C.; Bianchi, A.; Venturi, F.; Zinnai, A. Application of Five Different Chlorella sp. Microalgal Strains for the Treatment of Vegetation Waters Derived from Unconventional Oil Extractions Enriched with Citrus Byproducts. Foods 2022, 11, 1398. https://doi.org/10.3390/foods11101398
Macaluso M, Chiellini C, Ciurli A, Guglielminetti L, Najar B, Taglieri I, Sanmartin C, Bianchi A, Venturi F, Zinnai A. Application of Five Different Chlorella sp. Microalgal Strains for the Treatment of Vegetation Waters Derived from Unconventional Oil Extractions Enriched with Citrus Byproducts. Foods. 2022; 11(10):1398. https://doi.org/10.3390/foods11101398
Chicago/Turabian StyleMacaluso, Monica, Carolina Chiellini, Adriana Ciurli, Lorenzo Guglielminetti, Basma Najar, Isabella Taglieri, Chiara Sanmartin, Alessandro Bianchi, Francesca Venturi, and Angela Zinnai. 2022. "Application of Five Different Chlorella sp. Microalgal Strains for the Treatment of Vegetation Waters Derived from Unconventional Oil Extractions Enriched with Citrus Byproducts" Foods 11, no. 10: 1398. https://doi.org/10.3390/foods11101398
APA StyleMacaluso, M., Chiellini, C., Ciurli, A., Guglielminetti, L., Najar, B., Taglieri, I., Sanmartin, C., Bianchi, A., Venturi, F., & Zinnai, A. (2022). Application of Five Different Chlorella sp. Microalgal Strains for the Treatment of Vegetation Waters Derived from Unconventional Oil Extractions Enriched with Citrus Byproducts. Foods, 11(10), 1398. https://doi.org/10.3390/foods11101398