Application of a Rapid and Simple Technological Process to Increase Levels and Bioccessibility of Free Phenolic Compounds in Annurca Apple Nutraceutical Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acid Treatment (AT)
2.2. Polyphenolic Extraction
2.3. HPLC-DAD Quantitative Polyphenols Determination
2.4. Method Validation
2.4.1. Linearity and Sensitivity
2.4.2. Precision and Accuracy
2.5. In Vitro Gastrointestinal Digestion
2.6. Statistics
3. Results
3.1. ATLAA Polyphenolic Composition
3.2. ATLAA and LLA Polyphenolic Bioaccessibility
3.3. Precision and Accuracy
3.4. Linearity and Sensitivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sturgeon, M.R.; Kim, S.; Lawrence, K.; Paton, R.S.; Chmely, S.C.; Nimlos, M.; Foust, T.D.; Beckham, G.T. A Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization in Acidic Environments. ACS Sustain. Chem. Eng. 2014, 2, 472–485. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Li, H.; Deng, Z.; Tsao, R. A Review on Insoluble-Bound Phenolics in Plant-Based Food Matrix and Their Contribution to Human Health with Future Perspectives. Trends Food Sci. Technol. 2020, 105, 347–362. [Google Scholar] [CrossRef]
- Kristl, J.; Slekovec, M.; Tojnko, S.; Unuk, T. Extractable Antioxidants and Non-Extractable Phenolics in the Total Antioxidant Activity of Selected Plum Cultivars (Prunus Domestica L.): Evolution during on-Tree Ripening. Food Chem. 2011, 125, 29–34. [Google Scholar] [CrossRef]
- Hellström, J.K.; Mattila, P.H. HPLC Determination of Extractable and Unextractable Proanthocyanidins in Plant Materials. J. Agric. Food Chem. 2008, 56, 7617–7624. [Google Scholar] [CrossRef]
- Ma, Y.; Kosinska-Cagnazzo, A.; Kerr, W.L.; Amarowicz, R.; Swanson, R.B.; Pegg, R.B. Separation and Characterization of Soluble Esterified and Glycoside-Bound Phenolic Compounds in Dry-Blanched Peanut Skins by Liquid Chromatography-Electrospray Ionization Mass Spectrometry. J. Agric. Food Chem. 2014, 62, 11488–11504. [Google Scholar] [CrossRef]
- Nunes, J.C.; Lago, M.G.; Castelo-Branco, V.N.; Oliveira, F.R.; Torres, A.G.; Perrone, D.; Monteiro, M. Effect of Drying Method on Volatile Compounds, Phenolic Profile and Antioxidant Capacity of Guava Powders. Food Chem. 2016, 197, 881–890. [Google Scholar] [CrossRef]
- Pradeep, P.M.; Sreerama, Y.N. Soluble and Bound Phenolics of Two Different Millet Genera and Their Milled Fractions: Comparative Evaluation of Antioxidant Properties and Inhibitory Effects on Starch Hydrolysing Enzyme Activities. J. Funct. Foods 2017, 35, 682–693. [Google Scholar] [CrossRef]
- Ayoub, M.; de Camargo, A.C.; Shahidi, F. Antioxidants and Bioactivities of Free, Esterified and Insoluble-Bound Phenolics from Berry Seed Meals. Food Chem. 2016, 197, 221–232. [Google Scholar] [CrossRef]
- Ćetković, G.; Čanadanović-Brunet, J.; Djilas, S.; Savatović, S.; Mandić, A.; Tumbas, V. Assessment of Polyphenolic Content and in Vitro Antiradical Characteristics of Apple Pomace. Food Chem. 2008, 109, 340–347. [Google Scholar] [CrossRef]
- Casagrande, M.; Zanela, J.; Wagner, A.; Busso, C.; Wouk, J.; Iurckevicz, G.; Montanher, P.F.; Yamashita, F.; Malfatti, C.R.M. Influence of Time, Temperature and Solvent on the Extraction of Bioactive Compounds of Baccharis Dracunculifolia: In Vitro Antioxidant Activity, Antimicrobial Potential, and Phenolic Compound Quantification. Ind. Crops Prod. 2018, 125, 207–219. [Google Scholar] [CrossRef]
- Sørensen, H.R.; Pedersen, S.; Viksø-Nielsen, A.; Meyer, A.S. Efficiencies of Designed Enzyme Combinations in Releasing Arabinose and Xylose from Wheat Arabinoxylan in an Industrial Ethanol Fermentation Residue. Enzym. Microb. Technol. 2005, 36, 773–784. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Guyot, S.; Renard, C.M.G.C. Interactions between Apple (Malus x Domestica Borkh.) Polyphenols and Cell Walls Modulate the Extractability of Polysaccharides. Carbohydr. Polym. 2009, 75, 251–261. [Google Scholar] [CrossRef]
- Lee, J.; Chan, B.L.S.; Mitchell, A.E. Identification/Quantification of Free and Bound Phenolic Acids in Peel and Pulp of Apples (Malus Domestica) Using High Resolution Mass Spectrometry (HRMS). Food Chem. 2017, 215, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic Acid Profiles and Antioxidant Activities of Wheat Bran Extracts and the Effect of Hydrolysis Conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Ross, K.A.; Beta, T.; Arntfield, S.D. A Comparative Study on the Phenolic Acids Identified and Quantified in Dry Beans Using HPLC as Affected by Different Extraction and Hydrolysis Methods. Food Chem. 2009, 113, 336–344. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. The Effect of Apple Pomace on the Texture, Rheology and Microstructure of Set Type Yogurt. Food Hydrocoll. 2019, 91, 83–91. [Google Scholar] [CrossRef]
- Li, W.; Yang, R.; Ying, D.; Yu, J.; Sanguansri, L.; Augustin, M.A. Analysis of Polyphenols in Apple Pomace: A Comparative Study of Different Extraction and Hydrolysis Procedures. Ind. Crops Prod. 2020, 147, 112250. [Google Scholar] [CrossRef]
- Wikiera, A.; Mika, M.; Starzyńska-Janiszewska, A.; Stodolak, B. Development of Complete Hydrolysis of Pectins from Apple Pomace. Food Chem. 2015, 172, 675–680. [Google Scholar] [CrossRef]
- Canteri-Schemin, M.H.; Cristina, H.; Fertonani, R.; Waszczynskyj, N.; Wosiacki, G. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY Extraction of Pectin from Apple Pomace. Braz. Arch. Biol. Technol. 2005, 48, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Tenore, G.C.; Caruso, D.; Buonomo, G.; Urso, E.D.; Avino, M.D.; Campiglia, P.; Marinelli, L.; Novellino, E. Annurca (Malus Pumila Miller Cv. Annurca) Apple as a Functional Food for the Contribution to a Healthy Balance of Plasma Cholesterol Levels: Results of a Randomized Clinical Trial. J. Sci. Food Agric. 2017, 97, 2107–2115. [Google Scholar] [CrossRef]
- Tenore, G.C.; Caruso, D.; Buonomo, G.; D’Avino, M.; Campiglia, P.; Marinelli, L.; Novellino, E. A Healthy Balance of Plasma Cholesterol by a Novel Annurca Apple-Based Nutraceutical Formulation: Results of a Randomized Trial. J. Med. Food 2017, 20, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Annunziata, G.; Jiménez-García, M.; Capó, X.; Moranta, D.; Arnone, A.; Tenore, G.C.; Sureda, A.; Tejada, S. Microencapsulation as a Tool to Counteract the Typical Low Bioavailability of Polyphenols in the Management of Diabetes. Food Chem. Toxicol. 2020, 139, 111248. [Google Scholar] [CrossRef]
- Phan, A.D.T.; Flanagan, B.M.; D’Arcy, B.R.; Gidley, M.J. Binding Selectivity of Dietary Polyphenols to Different Plant Cell Wall Components: Quantification and Mechanism. Food Chem. 2017, 233, 216–227. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Li, Y.; Wei, Q.; Liu, C.; Nie, M.; Li, D.; Xiao, Y.; Liu, C.; Xu, L.; et al. Evaluation of the Impact of Food Matrix Change on the: In Vitro Bioaccessibility of Carotenoids in Pumpkin (Cucurbita Moschata) Slices during Two Drying Processes. Food Funct. 2017, 8, 4693–4702. [Google Scholar] [CrossRef]
- Zafra-Rojas, Q.Y.; González-Martínez, B.E.; Cruz-Cansino, N.d.S.; López-Cabanillas, M.; Suárez-Jacobo, Á.; Cervantes-Elizarrarás, A.; Ramírez-Moreno, E. Effect of Ultrasound on In Vitro Bioaccessibility of Phenolic Compounds and Antioxidant Capacity of Blackberry (Rubus Fruticosus) Residues Cv. Tupy. Plant Foods Hum. Nutr. 2020, 75, 608–613. [Google Scholar] [CrossRef]
- Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Narciso, V.; Hassan, S.T.S.; Tenore, G.C.; Novellino, E. Effect of Grape Pomace Polyphenols with or without Pectin on TMAO Serum Levels Assessed by LC/MS-Based Assay: A Preliminary Clinical Study on Overweight/Obese Subjects. Front. Pharmacol. 2019, 10, 575. [Google Scholar] [CrossRef] [Green Version]
- Tenore, G.C.; Pagano, E.; Lama, S.; Vanacore, D.; di Maro, S.; Maisto, M.; Capasso, R.; Merlino, F.; Borrelli, F.; Stiuso, P.; et al. Intestinal Anti-Inflammatory Effect of a Peptide Derived from Gastrointestinal Digestion of Buffalo (Bubalus Bubalis) Mozzarella Cheese. Nutrients 2019, 11, 610. [Google Scholar] [CrossRef] [Green Version]
- Le Bourvellec, C.; Guyot, S.; Renard, C.M.G.C. Non-Covalent Interaction between Procyanidins and Apple Cell Wall Material: Part I. Effect of Some Environmental Parameters. Biochim. Biophys. Acta 2004, 1672, 192–202. [Google Scholar] [CrossRef]
- Christiaens, S.; van Buggenhout, S.; Houben, K.; Jamsazzadeh Kermani, Z.; Moelants, K.R.N.; Ngouémazong, E.D.; van Loey, A.; Hendrickx, M.E.G. Process–Structure–Function Relations of Pectin in Food. Crit. Rev. Food Sci. Nutr. 2016, 56, 1021–1042. [Google Scholar] [CrossRef]
- Fraeye, I.; de Roeck, A.; Duvetter, T.; Verlent, I.; Hendrickx, M.; van Loey, A. Influence of Pectin Properties and Processing Conditions on Thermal Pectin Degradation. Food Chem. 2007, 105, 555–563. [Google Scholar] [CrossRef]
- Liu, X.; le Bourvellec, C.; Renard, C.M.G.C. Interactions between Cell Wall Polysaccharides and Polyphenols: Effect of Molecular Internal Structure. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3574–3617. [Google Scholar] [CrossRef] [PubMed]
- Saura-Calixto, F.; Serrano, J.; Goñi, I. Intake and Bioaccessibility of Total Polyphenols in a Whole Diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef] [Green Version]
Phenolic Compound | mg/g ± SD | CV% vs. Control |
---|---|---|
Gallic acid | 0.032 ± 0.008 * | 707.78 |
Procyanidin B1 + B3 | 0.072 ± 0.002 *** | 42.97 |
Catechin | 0.008 ± 0.001 ** | 512.49 |
Chlorogenic acid | 0.521 ± 0.051 * | 32.57 |
Procyanidin B2 | 0.088 ± 0.003 ** | 168.26 |
Epicatechin | 0.111 ± 0.005 ** | 77.47 |
Procyanidin C1 | 0.025 ± 0.008 ** | 156.99 |
Rutin | 0.161 ± 0.003 | 3.40 |
Quercetin-3-O-glucoside | 0.059 ± 0.002 | 6.11 |
Esperidin | 0.024 ± 0.001 | −2.20 |
Kampherol-3-O-glucoside | 0.026 ± 0.001 | 0.57 |
Apigenin-7-O-glucoside | 0.006 ± 0.001 * | 29.04 |
Kampherol-3-rhamnoside | 0.003 ± 0.0001 | −5.10 |
Naringenin | 0.013 ± 0.002 *** | 134.33 |
Phlorizin | 0.383 ± 0.011 *** | 90.18 |
Quercetin | ND | ND |
Total | 1.483 ± 0.05 ** | 49.51 |
Phenolic Compound | mg/g of ATLAA ± SD | CV% vs. LAA |
---|---|---|
Gallic acid | 0.037 ± 0.001 *** | 38.19 |
Procyanidin B1 + B3 | 0.050 ± 0.007 ** | 52.63 |
Catechin | 0.012 ± 0.0003 ** | 16.99 |
Chlorogenic acid | 0.155 ± 0.006 | −7.75 |
Procyanidin B2 | 0.017 ± 0.003 * | 36.91 |
Epicatechin | ND | ND |
Procyanidin C1 | 0.036 ± 0.008 | 18.42 |
Rutin | 0.065 ± 0.003 * | 9.44 |
Quercetin-3-O-glucoside | 0.019 ± 0.001 | 8.33 |
Esperidin | 0.0013 ± 0.001 ** | 128.29 |
Kampherol-3-O-glucoside | 0.014 ± 0.001 ** | 51.38 |
Apigenin-7-O-glucoside | 0.006 ± 0.001 * | 29.91 |
Narigenin | 0.008 ± 0.001 ** | 96.45 |
Kampherol-3-rhamnoside | ND | ND |
Phlorizin | 0.250 ± 0.021 ** | 24.28 |
Quercetin | ND | ND |
Total | 0.684 ± 0.02 ** | 17.36 |
Compound | Concentration (mg/mL) | Intra-Day Precision (%CV, n = 3) | Inter-Day Precision (%CV, n = 3) |
---|---|---|---|
Gallic acid | 0.01 | 0.896 | 0.547 |
0.05 | 1.682 | 1.300 | |
0.1 | 2.620 | 3.172 | |
Procyanidin B3 | 0.01 | 2.109 | 6.177 |
0.05 | 2.054 | 4.933 | |
0.1 | 3.027 | 1.114 | |
Catechin | 0.01 | 8.860 | 7.974 |
0.05 | 1.463 | 1.867 | |
0.1 | 0.611 | 0.122 | |
Chlorogenic acid | 0.01 | 2.952 | 4.876 |
0.05 | 2.285 | 2.931 | |
0.1 | 0.657 | 1.491 | |
Procyanidin B2 | 0.01 | 4.049 | 10.747 |
0.05 | 2.667 | 7.420 | |
0.1 | 1.587 | 6.484 | |
Epicatechin | 0.01 | 7.613 | 7.319 |
0.05 | 7.913 | 1.800 | |
0.1 | 2.350 | 2.296 | |
Procyanidin C1 | 0.01 | 2.185 | 7.715 |
0.05 | 0.387 | 10.393 | |
0.1 | 3.957 | 4.701 | |
Rutin | 0.01 | 1.922 | 2.920 |
0.05 | 0.126 | 2.913 | |
0.1 | 1.354 | 1.378 | |
Phloridzin | 0.01 | 2.339 | 1.868 |
0.05 | 0.530 | 1.032 | |
0.1 | 0.165 | 1.242 | |
Quercetin | 0.01 | 2.276 | 4.260 |
0.05 | 1.375 | 6.975 | |
0.1 | 0.360 | 4.637 |
Compound | Concentration (mg/mL) | Intra-Day Accuracy (% bias, n = 3) | Inter-Day Accuracy (% bias, n = 3) |
---|---|---|---|
Gallic acid | 0.01 | 0.368 | 0.394 |
0.05 | 1.272 | 1.506 | |
0.1 | 3.508 | 3.926 | |
Procyanidin B3 | 0.01 | 0.377 | 0.292 |
0.05 | 1.079 | 0.947 | |
0.1 | 2.737 | 2.797 | |
Catechin | 0.01 | −0.564 | −0.509 |
0.05 | 0.076 | −0.080 | |
0.1 | 1.312 | 1.284 | |
Chlorogenic acid | 0.01 | −0.184 | −0.196 |
0.05 | −1.483 | −1.574 | |
0.1 | −2.960 | −2.980 | |
Procyanidin B2 | 0.01 | 0.450 | 0.337 |
0.05 | 1.578 | 1.152 | |
0.1 | 3.105 | 2.504 | |
Epicatechin | 0.01 | −0.011 | 0.144 |
0.05 | 0.620 | 1.250 | |
0.1 | 0.894 | 0.882 | |
Procyanidin C1 | 0.01 | 4.326 | 4.011 |
0.05 | 2.858 | 2.160 | |
0.1 | 4.235 | 3.988 | |
Rutin | 0.01 | 0.034 | 0.020 |
0.05 | 0.100 | 0.001 | |
0.1 | 0.601 | 0.643 | |
Phloridzin | 0.01 | 1.883 | 1.921 |
0.05 | 11.190 | 11.428 | |
0.1 | 19.048 | 19.408 | |
Quercetin | 0.01 | −0.261 | −0.265 |
0.05 | −1.561 | −1.709 | |
0.1 | −2.765 | −2.788 |
Poliphenolic Standards | Linearity | Correlation Coefficient (r2) | LOQ (mg/mL) | LOD (mg/mL) | Monitoring Channel |
---|---|---|---|---|---|
Gallic Acid | Y = 2 × 107 × −28,492 | 0.999 | 0.001 | 0.0005 | 280 nm |
Procyanidin B3 | Y = 2 × 107 × −24,093 | 0.999 | 0.0025 | 0.001 | 280 nm |
Catechin | Y = 9 × 106 × −11,907 | 0.999 | 0.005 | 0.001 | 280 nm |
Chlorogenic Acid | Y = 3 × 107 × −30,148 | 0.999 | 0.0020 | 0.001 | 280 nm |
Procyanidin B2 | Y = 1 × 107 × −35,836 | 0.999 | 0.0025 | 0.0020 | 280 nm |
Epicatechin | Y = 1 × 107 × −4563.5 | 0.999 | 0.0025 | 0.0020 | 280 nm |
Procyanidin C1 | Y = 5 × 106 × −14,717 | 0.999 | 0.005 | 0.0025 | 280 nm |
Rutin | Y = 2 × 107 × −1076.9 | 0.999 | 0.001 | 0.0005 | 360 nm |
Phloridzin | Y = 1 × 107 × +8099 | 0.998 | 0.002 | 0.001 | 280 nm |
Quercetin | Y = 5 × 107 × −41,742 | 0.999 | 0.0005 | 0.0001 | 360 nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maisto, M.; Schiano, E.; Novellino, E.; Piccolo, V.; Iannuzzo, F.; Salviati, E.; Summa, V.; Annunziata, G.; Tenore, G.C. Application of a Rapid and Simple Technological Process to Increase Levels and Bioccessibility of Free Phenolic Compounds in Annurca Apple Nutraceutical Product. Foods 2022, 11, 1453. https://doi.org/10.3390/foods11101453
Maisto M, Schiano E, Novellino E, Piccolo V, Iannuzzo F, Salviati E, Summa V, Annunziata G, Tenore GC. Application of a Rapid and Simple Technological Process to Increase Levels and Bioccessibility of Free Phenolic Compounds in Annurca Apple Nutraceutical Product. Foods. 2022; 11(10):1453. https://doi.org/10.3390/foods11101453
Chicago/Turabian StyleMaisto, Maria, Elisabetta Schiano, Ettore Novellino, Vincenzo Piccolo, Fortuna Iannuzzo, Emanuela Salviati, Vincenzo Summa, Giuseppe Annunziata, and Gian Carlo Tenore. 2022. "Application of a Rapid and Simple Technological Process to Increase Levels and Bioccessibility of Free Phenolic Compounds in Annurca Apple Nutraceutical Product" Foods 11, no. 10: 1453. https://doi.org/10.3390/foods11101453
APA StyleMaisto, M., Schiano, E., Novellino, E., Piccolo, V., Iannuzzo, F., Salviati, E., Summa, V., Annunziata, G., & Tenore, G. C. (2022). Application of a Rapid and Simple Technological Process to Increase Levels and Bioccessibility of Free Phenolic Compounds in Annurca Apple Nutraceutical Product. Foods, 11(10), 1453. https://doi.org/10.3390/foods11101453