EPS-Producing Lactobacillus plantarum MC5 as a Compound Starter Improves Rheology, Texture, and Antioxidant Activity of Yogurt during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Culture and Incubation of LAB
2.3. Production of Coagulated Yogurt
2.4. Determination of EPS in Yogurt
2.5. Analysis of Rheological Properties of Yogurt
2.5.1. Apparent Viscosity
2.5.2. Shear Scan of Yogurt
2.5.3. Determination of Thixotropic Properties (TP) and Viscoelasticity of Yogurt
2.6. Analysis of Texture Properties of Yogurt
2.7. In Vitro Determination of Antioxidant Activity of Yogurt
2.7.1. Determination of DPPH Radical Scavenging Activity (RSA) in Yogurt
2.7.2. Determination of ABTS Radical Scavenging Activity (RSA) in Yogurt
2.7.3. Determination of Hydroxyl (OH) Radical Scavenging Activity (RSA) in Yogurt
2.7.4. Determination of Ferric Iron-Reducing Power (FRP) in Yogurt
2.8. Microbiological Analysis in Yogurt
2.8.1. Streptococcus Thermophilus
2.8.2. L. delbrueckii subsp. bulgaricus
2.8.3. Lactobacillus plantarum MC5
2.9. Analysis of pH, Titratable Acidity (TA), and Water Holding Capacity (WHC) of Yogurt
2.10. Statistical Analysis
3. Results and Discussion
3.1. Content of EPS in Yogurt
3.2. Rheological Properties of Yogurt
3.2.1. Apparent Viscosity
3.2.2. Shear Scan of Yogurt
3.2.3. Determination of Thixotropic Properties and Viscoelasticity of Yogurt
3.3. Texture Properties of Yogurt
3.4. In Vitro Antioxidant Activity (AA) of EPS in Yogurt
3.5. Microbiological and Physicochemical Analysis of Yogurt during Storage
3.5.1. The Number of Survival LAB in Yogurt during Storage
3.5.2. Analysis of pH, TA, and WHC of Four Yogurt Samples during Storage
3.6. Principal Component Analysis (PCA) of All Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EPS | Exopolysaccharide |
LAB | Lactic acid bacteria |
AA | Antioxidant activity |
RSA | Radical scavenging activity |
DPPH | 1,1-Diphenyl-2-picrylhydrazyl, (free radical) |
ABTS | 2,2’-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid ammonium salt) |
OH | Hydroxyl (free radicals) |
FRP | Ferric reducing power |
TA | Titratable acidity |
WHC | Water holding capacity |
PCA | Principal component analysis |
References
- Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented foods as a dietary source of live organisms. Front. Microbiol. 2018, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.; Amir, M.; Sara, S. The starter culture characteristics of probiotic microorganisms in fermented milks. Eng. Life Sci. 2012, 12, 399–409. [Google Scholar] [CrossRef]
- Moria, Y.; Du, Z.F. The history of yogurt development in the United States: 40 years of rapid development, the coexistence of brands and legends. Dairy Humanit. 2020, 6, 39–43. [Google Scholar] [CrossRef]
- Beltrn-Barrientos, L.M.; Hernndez-Mendoza, A.; Torres-Llanez, M.J.; González-Córdova, A.; Vallejo-Córdoba, B. Invited review: Fermented milk as antihypertensive functional food. J. Dairy Sci. 2016, 99, 4099–4110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.N.; Li, S.Y.; Zhang, X. Capsular and slime-polysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut: Potential application in fermented milk products. J. Biosci. Bioeng. 2010, 110, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, M.; López, P.; Strahinic, I. Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. Int. J. Food Microbiol. 2012, 158, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Suryawanshi, N.; Naik, S.; Eswari, J. Extraction and optimization of exopolysaccharide from Lactobacillus sp. using response surface methodology and artificial neural networks. Prep. Biochem. Biotech. 2019, 49, 987–996. [Google Scholar] [CrossRef]
- Dinc, M.; Pecikoza, U.; Djokic, J. Exopolysaccharide produced by probiotic strain Lactobacillus paraplantarum BGCG11 reduces inflammatory hyperalgesia in rats. Front. Pharmacol. 2018, 9, 1. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Wang, X.J.; Pan, W.S.; Shen, X.F.; He, Y.; Yin, H.; Zhou, K.; Zou, L.; Chen, S.; Liu, S. Exopolysaccharides produced by yogurt-texture improving Lactobacillus plantarum RS20D and the immunoregulatory activity. Int. J. Biol. Macromol. 2019, 121, 342–349. [Google Scholar] [CrossRef]
- Wang, W.N.; Li, Y.; Zhang, Y. Comparison on characterization and antioxidant activity of exopolysaccharides from two Porphyridium strains. J. Appl. Phycol. 2021, 33, 2983–2994. [Google Scholar] [CrossRef]
- Yuan, P.C.; Fang, F.; Shao, T.L. Structure and anti-tumor activities of exopolysaccharides from alternaria mali roberts. Molecules 2019, 24, 1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, B.; Bajaj, B.K. Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1 isolated from kalarei. Bioresour. Technol. 2018, 254, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liang, Q.; Wang, X.Z.; Liu, Y. Comparison of bacterial diversity in traditional yak fermented dairy products in Tibetan areas of Gansu based on Illumina MiSeq highthroughput technology. J. Chin. Inst. Food Sci. Technol. 2021, 21, 336–344. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.; Tian, Z. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir. Carbohyd. Polym. 2015, 125, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gu, Y.C.; Zheng, X.Y. Analysis of physicochemical properties of exopolysaccharide from Leuconostoc mesenteroides strain XR1 and its application in fermented milk. LWT 2021, 146, 111449–111461. [Google Scholar] [CrossRef]
- Sarah, L.; Bijender, K.B.; Ingmar, J.C.; Konika, R. Physico-chemical characterization of exopolysaccharides of potential probiotic Enterococcus faecium isolates from infants’gut. Curr. Biochem. Eng. 2015, 2, 90–100. [Google Scholar] [CrossRef]
- Fontana, C.; Li, S.; Yang, Z.; Widmalm, G. Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER. Carbohydr. Res. 2015, 402, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Luo, T.Q.; Zhao, X.; Hao, X.; Yang, Z. Interaction of exopolysaccharide produced by Lactobacillus plantarum YW11 with whey proteins and functionalities of the polymer complex. J. Food Sci. 2020, 85, 4141–4151. [Google Scholar] [CrossRef]
- Racheal, O.F.; Bukola, A.T.; Jadesola, S. Optimization of extracellular polysaccharide substances from lactic acid bacteria isolated from fermented dairy products. Microbiol. J. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Heena, S.; Ranjith, R. Gas chromatography-mass spectrometry based metabolomic approach to investigate the changes in goat milk yoghurt during storage. Food Res. Int. 2021, 140, 110072–110085. [Google Scholar] [CrossRef]
- Charchoghlyan, H.; Jung-Eun, B.; Heejun, K. Rheological properties and volatile composition of fermented milk prepared by exopolysaccharide-producing Lactobacillus acidophilus n.v. Er2 317/402 strain Narine. Biotechnol. Bioprocess Eng. 2017, 22, 327–338. [Google Scholar] [CrossRef]
- Panthavee, W.C.; Masafumi, N.; Narandalai, D. Characterization of exopolysaccharides produced by thermophilic lactic acid bacteria isolated from tropical fruits of thailand. Biol. Pharm. Bull. 2017, 40, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, C.; Mende, S.; Jaros, D. Fermented milk products: Effects of lactose hydrolysis and fermentation conditions on the rheological properties. Dairy Sci. Technol. 2016, 96, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, E.; Ozcan, T. Functional and textural properties of vegetable-fibre enriched yoghurt. Int. J. Dairy Technol. 2019, 72, 199–207. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Santiago-López, L.; Peres, C.M. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J. Dairy Sci. 2017, 100, 65–75. [Google Scholar] [CrossRef]
- Kosti, A.; Milini, D.D.; Stanisavljevi, N.S.; Gašić, U.M.; Lević, S.; Kojić, M.O.; Tešić, L.; Nedović, V.; Barać, M.B.; Pešić, M.B. Polyphenol bioaccessibility and antioxidant properties of in vitro digested spray-dried thermally-treated skimmed goat milk enriched with pollen. Food Chem. 2021, 351, 129310–129321. [Google Scholar] [CrossRef]
- Du, R.P.; Qiao, X.X.; Zhao, F.K. Purification, characterization and antioxidant activity of dextran produced by Leuconostoc pseudomesenteroides from homemade wine. Carbohydr. Polym. 2018, 198, 529–536. [Google Scholar] [CrossRef]
- Wang, X.; Shao, C.G.; Liu, L. Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int. J. Biol. Macromol. 2017, 103, 1173–1184. [Google Scholar] [CrossRef]
- Ashraf, R.; Shah, N.P. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt—A review. Int. J. Food Microbiol. 2011, 149, 194–208. [Google Scholar] [CrossRef]
- China National Standard. GB 5009.239-2016; Fermented Milk-Phenolphthalein Indicator Method. China Natl. Stand: Beijing, China, 2016. Available online: https://www.doc88.com/p-6019778275152.html (accessed on 31 August 2016).
- Paulina, B.; Dorota, C.S.; Asli, Y. Storage stability of texture and sensory properties of yogurt with the addition of polymerized whey proteins. Foods 2019, 8, 548. [Google Scholar] [CrossRef] [Green Version]
- Caggianiello, G.; Kleerebezem, M.; Spano, G. Exopolysaccharides produced by lactic acid bacteria: From health-promoting benefits to stress tolerance mechanisms. Appl. Microbiol. Biotechnol. 2016, 100, 3877–3886. [Google Scholar] [CrossRef] [PubMed]
- Ozer, B.H.; Robinson, R.K.; Grandison, A.S. Gelation properties of milk concentrated by different techniques. Int. Dairy J. 1998, 8, 793–799. [Google Scholar] [CrossRef]
- Chaudhary, G.V.; Prajapati, J.B. Evaluation of exopolysaccharides (EPS) and nonexopolysaccharides (NON EPS) producing strains of lactic acid bacteria to select the best combinations of cultures for Dahi preparation. Int. J. Environ. Sci. Technol. 2016, 5, 3486–3493. Available online: https://www.ijset.net/journal/1332.pdf (accessed on 26 May 2016).
- Zannini, E.; Waters, D.; Coffey, A. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. App. Microbiol. Biotechnol. 2016, 100, 1121–1135. [Google Scholar] [CrossRef] [PubMed]
- Hagi, T.; Kobayashi, M.; Nomura, M. Metabolome analysis of milk fermented by γ-aminobutyric acid-producing Lactococcus lactis. J. Dairy Sci. 2016, 99, 994–1001. [Google Scholar] [CrossRef] [Green Version]
- Pachekrepapo, U.; Lucey, J.A.; Gong, Y. Characterization of the chemical structures and physical properties of exopolysaccharides produced by various Streptococcus thermophilus strains. J. Dairy Sci. 2017, 100, 3424–3435. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, N.Q. Effect of exopolysaccharide produced by Lactobacillus casei HS4 on microstructure and rheological properties of fermented milk. Food Sci. 2019, 40, 145–152. [Google Scholar] [CrossRef]
- Lu, X.; Su, H.; Guo, J.J. Rheological properties and structural features of coconut milk emulsions stabilized with maize kernels and starch. Food Hydrocoll. 2019, 96, 385–395. [Google Scholar] [CrossRef]
- Khalifa, M.I.; Zakaria, A.M. Physiochemical, sensory characteristics and acceptability of a new set yogurt developed from camel and goat milk mixed with buffalo milk. Adv. Anim. Vet. Sci. 2019, 7, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Doleyres, Y.; Schaub, L.; Lacroix, C. Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yogurt properties. J. Dairy Sci. 2005, 88, 4146–4156. [Google Scholar] [CrossRef]
- Guénard, L.V.; St, G.D.; Villeneuve, S.; Turgeon, S.L. Individual and sequential effects of stirring, smoothing, and cooling on the rheological properties of nonfat yogurts stirred with a technical scale unit. J. Dairy Sci. 2019, 102, 190–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, S.; Yang, B.; Stanton, C. Ropy exopolysaccharid-producing Bifidobacterium longum YS108R as a starter culture for fermented milk. Int. J. Food Sci. Technol. 2019, 54, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sasmal, S. Rheological and physico-chemical properties of milk gel using isolate of pumpkin (cucurbita moschata) seeds: A new source of milk clotting peptidase. Food Hydrocoll. 2020, 106, 105866–105874. [Google Scholar] [CrossRef]
- Piermaria, J.A.; Abraham, A.G.; Hamet, M.E. Selection of EPS-producing Lactobacillus strains isolated from kefir grains and rheological characterization of the fermented milks. LWT 2015, 63, 129–135. [Google Scholar] [CrossRef]
- Zhang, M.; Tiantian, L.; Mengke, Y. Interaction of the exopolysaccharide from Lactobacillus plantarum YW11 with casein and bioactivities of the polymer complex. Foods 2021, 10, 1153. [Google Scholar] [CrossRef]
- Ibrahim, A.H. Effects of exopolysaccharide-producing starter cultures on physicochemical, rheological and sensory properties of fermented camel’s milk. Emir. J. Food Agric. 2015, 27, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhang, L.W. Effect of exopolysaccharide producing lactic acid bacterial on the gelation and texture properties of yogurt. Adv. Matetials Res. 2012, 430–432, 890–893. [Google Scholar] [CrossRef]
- Bancalari, E.; Alinovi, M.; Bottari, B.; Caligiani, A.; Mucchetti, G.; Gatti, M. Ability of a wild Weissella strain to modify viscosity of fermented milk. Front. Microbiol. 2020, 10, 3086–3094. [Google Scholar] [CrossRef]
- Zhao, J.L.; Ma, C.M.; Zhao, X.H. Effects of yam (Dioscorea opposita Thunb.) juice on fermentation and textural attributes of set-style skimmed yoghurt. J. Food Meas. Charact. 2021, 15, 2220–2230. [Google Scholar] [CrossRef]
- Titapiccolo, G.I.; Corredig, M.; Alexander, M. Acid coagulation behavior of homogenized milk: Effect of interacting and non-interacting droplets observed by rheology and diffusing wave spectroscopy. Dairy Sci. Technol. 2011, 91, 185–201. [Google Scholar] [CrossRef] [Green Version]
- Abid, Y.; Casillo, A.; Gharsallah, H. Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. Int. J. Biol. Macromol. 2018, 108, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Delikanli, B.; Ozcan, T. Effects of various whey proteins on the physicochemical and textural properties of set type nonfat yoghurt. Int. J. Dairy Technol. 2015, 67, 495–503. [Google Scholar] [CrossRef]
- Khanal, S.N.; Lucey, J.A. Effect of fermentation temperature on the properties of exopolysaccharides and the acid gelation behavior for milk fermented by Streptococcus thermophilus strains DGCC7785 and St-143. J. Dairy Sci. 2018, 101, 3799–3811. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, I.; Ktari, N.; Ben, S.S. Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp.Ca6. Int. J. Biol. Macromol. 2017, 103, 194–201. [Google Scholar] [CrossRef]
- Segura, A.G.D.; Alcalde, M.; Plou, F.J. Encapsulation in lentikats of dextransucrase from Leuconostoc mesenteroides NRRL B1299, and its effect on product selectivity. Biocatal. Biotransform. 2003, 21, 325–331. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.M.; Cao, C.G. Extraction and biological activity of exopolysaccharide produced by Leuconostoc mesenteroides SN-8. Int. J. Biol. Macromol. 2020, 157, 36–44. [Google Scholar] [CrossRef]
- Li, W.; Ji, J.; Rui, X.; Yu, J.; Tang, W.; Chen, X.; Jiang, M.; Dong, M. Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro. LWT 2014, 59, 732–739. [Google Scholar] [CrossRef]
- Naoki, Y.; Momoka, S.; Hiroki, H. Antioxidant capacity of soymilk yogurt and exopolysaccharides produced by lactic acid bacteria. Biosci. Microbiota Food Heal. 2019, 38, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liu, C.H.; Li, D. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 2013, 54, 270–275. [Google Scholar] [CrossRef]
- Paseephol, T.; Sherkat, F. Probiotic stability of yoghurts containing Jerusalem artichoke inulins during refrigerated storage. J. Funct. Foods 2009, 1, 311–318. [Google Scholar] [CrossRef]
- Zhang, L.J.; Folkenberg, D.M.; Amigo, J.M. Effect of exopolysaccharide-producing starter cultures and post-fermentation mechanical treatment on textural properties and microstructure of low fat yoghurt. Int. Dairy J. 2016, 53, 10–19. [Google Scholar] [CrossRef]
- Wang, X.Y.; Kristo, E.; LaPointe, G. Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocoll. 2020, 100, 105453–105504. [Google Scholar] [CrossRef]
- Akhtar, M.; Dickinson, E. Emulsifying properties of whey protein-dextran conjugates at low pH and different salt concentrations. Colloids Surf. B Biointerfaces 2003, 31, 125–132. [Google Scholar] [CrossRef]
- Anna, L.; Rossana, C.; Marco, M. Use of selected lactic acid bacteria and quinoa flour for manufacturing novel yogurt-like beverages. Foods 2018, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Yang, Z.; Jing, X.P. Improvement of the texture of yogurt by use of exopolysaccharide producing lactic acid bacteria. BioMed Res. Int. 2016, 2016, 7945675–7945681. [Google Scholar] [CrossRef]
- Hassan, A.N.; Corredig, M.; Frank, J.F. Capsule formation by nonropy starter cultures affect the viscoelastic properties of yogurt during structure formation. J. Dairy Sci. 2002, 85, 716–720. [Google Scholar] [CrossRef]
Composition of Cow Milk | Fat | SNF | Protein | Lactose | Ash Content | Total Solids |
---|---|---|---|---|---|---|
Percentage (%) | 3.28 | 10.01 | 3.82 | 5.43 | 0.73 | 13.29 |
Types of Yogurt | L. plantarum MC5 (%) | Starters S (%) |
---|---|---|
Control group S | - | 3 |
MC5:S = 1:1 | 1.5 | 1.5 |
MC5:S = 2:1 | 2 | 1 |
MC5:S = 1:2 | 1 | 2 |
Group | Storage Time (d) | σo (Pa) | K (Pa.sn) | n | R2 |
---|---|---|---|---|---|
1:1 | 1d | 3.26 ± 0.02 d | 2.51 ± 0.04 d | 0.18 | 0.9999 |
7d | 11.20 ± 0.09 c | 7.64 ± 0.01 c | 0.23 | 0.9993 | |
14d | 46.70 ± 0.27 b | 16.2 ± 0.04 b | 0.18 | 0.9997 | |
21d | 66.90 ± 1.19 a | 18.79 ± 0.03 a | 0.60 | 0.9929 | |
2:1 | 1d | 16.56 ± 0.14 d | 4.70 ± 0.02 c | 0.05 | 0.9983 |
7d | 25.99 ± 0.18 c | 3.17 ± 0.03 d | 0.17 | 0.9966 | |
14d | 34.01 ± 0.13 b | 21.1 ± 0.06 b | 0.17 | 0.9998 | |
21d | 54.79 ± 0.58 a | 49.09 ± 0.16 a | 0.28 | 0.9963 | |
1:2 | 1d | 17.73 ± 0.17 d | 5.00 ± 0.02 d | 0.59 | 0.9958 |
7d | 24.39 ± 0.19 c | 6.36 ± 0.04 c | 0.22 | 0.9962 | |
14d | 27.75 ± 0.11 b | 12.93 ± 0.03 b | 0.01 | 0.9982 | |
21d | 46.01 ± 0.27 a | 19.34 ± 0.02 a | 0.47 | 0.9978 | |
S | 1d | 3.15 ± 0.02 d | 2.08 ± 0.02 d | 0.67 | 0.9956 |
7d | 10.28 ± 0.06 c | 3.22 ± 0.03 c | 0.18 | 0.9992 | |
14d | 23.87 ± 0.09 b | 10.67 ± 0.06 b | 0.89 | 0.9903 | |
21d | 49.41 ± 1.25 a | 54.45 ± 0.21 a | 0.05 | 0.9918 | |
Treatment | p | <0.01 | <0.01 | <0.01 | - |
Time | <0.01 | <0.01 | <0.01 | - | |
Treatment × Time | <0.01 | <0.01 | 0.07 | - |
The Type of LAB | Time (d) | Control S | 1:1 | 2:1 | 1:2 | Treatment | Time | Treatment × Time |
---|---|---|---|---|---|---|---|---|
L. plantarum MC5 | 1 | - | 3.95 ± 0.07 Aa | 3.80 ± 0.09 Aa | 3.69 ± 0.08 Aa | p | p | p |
7 | - | 3.61 ± 0.09 Bb | 3.68 ± 0.09 Ab | 3.46 ± 0.08 Bb | <0.01 | <0.01 | <0.01 | |
14 | - | 3.24 ±0.09 Ca | 3.17 ± 0.09 Ba | 3.19 ± 0.09 Ca | ||||
21 | - | 3.12 ±0.09 Ca | 2.75 ± 0.09 Cb | 2.96 ± 0.08 Da | ||||
S. thermophilus | 1 | 3.70 ± 0.07 Aa | 3.89 ± 0.08 Aa | 3.95 ± 0.07 Aa | 3.54 ± 0.02 Ab | p | p | |
7 | 3.44 ± 0.03 Bb | 3.53 ± 0.04 Bb | 3.82 ± 0.03 Ba | 3.40 ± 0.01 Bb | <0.01 | <0.01 | <0.01 | |
14 | 2.98 ± 0.07Cb | 3.15 ± 0.09 Ca | 3.34 ± 0.09 Ca | 3.10 ± 0.02 Cb | ||||
21 | 1.10 ± 0.03 Dd | 3.16 ± 0.08 Ca | 2.55 ± 0.08 Db | 2.47 ± 0.04 Db | ||||
L. delbrueckii subsp. bulgaricus | 1 | 3.46 ± 0.06 Ab | 3.28 ± 0.07 Ac | 3.53 ± 0.04 Ab | 3.25 ± 0.09 Ac | p | p | |
7 | 3.01 ± 0.05 Bc | 2.89 ± 0.03 Bd | 3.09 ± 0.08 Bc | 2.72 ± 0.04 Bd | <0.01 | <0.01 | 0.63 | |
14 | 2.96 ± 0.05 Bb | 2.84 ± 0.03 Bc | 2.94 ± 0.04 Bd | 2.72 ± 0.08 Bd | ||||
21 | 1.02 ± 0.02 Cd | 1.11 ± 0.02 Cd | 1.58 ± 0.08 Dc | 1.70 ± 0.07 Cc |
Index | Time (d) | Control S | 1:1 | 2:1 | 1:2 | Treatment | Time | Treatment × Time |
---|---|---|---|---|---|---|---|---|
pH | 1 | 4.54 ± 0.06 a | 4.55 ± 0.06 a | 4.53 ±0.02 a | 4.52 ±0.02 a | p | p | p |
7 | 4.27 ± 0.01 b | 4.22 ± 0.03 b | 4.50 ± 0.01 a | 4.49 ± 0.02 a | <0.01 | <0.01 | <0.01 | |
14 | 3.84 ± 0.06 c | 4.13 ± 0.06 b | 4.41 ± 0.02 a | 3.96 ± 0.06 c | ||||
21 | 3.51 ± 0.03 d | 4.09 ± 0.07 b | 4.31 ± 0.06 b | 3.62 ± 0.06 d | ||||
range | 1.03 | 0.46 | 0.22 | 0.90 | ||||
TA (°T) | 1 | 74.57 ± 0.88 a | 75.00 ± 1.02 a | 72.17 ± 0.72 a | 74.46 ± 0.76 a | p | p | p |
7 | 90.33 ± 1.53 c | 84.97 ± 1.55 b | 85.27 ± 0.73 b | 91.53 ± 0.95 c | <0.01 | <0.01 | 0.072 | |
14 | 99.50 ± 1.05 de | 95.07 ± 0.57 cd | 92.43 ± 1.27 c | 98.80 ± 0.58 d | ||||
21 | 103.28 ± 1.70 e | 97.57 ± 0.68 d | 93.90 ± 1.80 c | 101.83 ± 1.01 e | ||||
range | 28.71 | 22.57 | 21.73 | 27.37 | ||||
WHC (%) | 1 | 71.22 ± 1.71 b | 82.36 ± 0.68 a | 84.17 ± 2.41 a | 81.62 ± 2.26 a | p | p | p |
7 | 63.38 ± 1.79 c | 71.18 ± 1.99 b | 82.65 ± 1.79 a | 74.52 ± 1.89 ab | <0.01 | <0.01 | <0.01 | |
14 | 57.19 ± 0.34 d | 70.22 ± 1.84 b | 75.65 ± 1.81 a | 66.24 ± 0.95 c | ||||
21 | 50.61 ± 0.72 e | 67.80 ± 1.73 b | 60.59 ± 0.93 c | 53.74 ± 1.08 e | ||||
range | 20.61 | 14.56 | 23.58 | 27.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Liang, Q. EPS-Producing Lactobacillus plantarum MC5 as a Compound Starter Improves Rheology, Texture, and Antioxidant Activity of Yogurt during Storage. Foods 2022, 11, 1660. https://doi.org/10.3390/foods11111660
Zhao X, Liang Q. EPS-Producing Lactobacillus plantarum MC5 as a Compound Starter Improves Rheology, Texture, and Antioxidant Activity of Yogurt during Storage. Foods. 2022; 11(11):1660. https://doi.org/10.3390/foods11111660
Chicago/Turabian StyleZhao, Xuefang, and Qi Liang. 2022. "EPS-Producing Lactobacillus plantarum MC5 as a Compound Starter Improves Rheology, Texture, and Antioxidant Activity of Yogurt during Storage" Foods 11, no. 11: 1660. https://doi.org/10.3390/foods11111660
APA StyleZhao, X., & Liang, Q. (2022). EPS-Producing Lactobacillus plantarum MC5 as a Compound Starter Improves Rheology, Texture, and Antioxidant Activity of Yogurt during Storage. Foods, 11(11), 1660. https://doi.org/10.3390/foods11111660