Antioxidant Activities of Aqueous Extracts and Protein Hydrolysates from Marine Worm Hechong (Tylorrhynchus heterochaeta)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mateirals
2.2. Chemicals and Reagents
2.3. Preparation of Different Extracts of Hechong
2.4. Preparation of Protein Hydrolysates
2.5. Determination of DPPH Free Radical Scavenging Activity
2.6. Determination of ABTS Free Radical Scavenging Activity
2.7. Determination of Ferric Ion Reducing Antioxidant Power
2.8. Determination of Molecular Weight Distribution
2.9. Extraction and Purification of Glycoprotein from Hechong
2.10. Morphology Measurement of Glycoprotein from HECHONG
2.11. Statistical Analysis
3. Results
3.1. DPPH Free Radical Scavenging Capacity of the Extracts and Protein Hydrolysates from Hechong Mateirals
3.2. ABTS Free Radical Scavenging Capacity of the Extracts and Protein Hydrolysates from Hechong
3.3. FRAP Values of the Extracts and Protein Hydrolysates from Hechong
3.4. Characterization of Protein Hydrolysates from Hechong Grown in China
3.5. Extraction and Purification of Glycoprotein from Hechong
3.6. Analysis of Glycoprotein by SEM, and AFM
4. Discussion
4.1. Antioxidant Activities of Extracts
4.2. Antioxidant Activities of Protein Hydrolysates
4.3. Purification of Glycoprotein from Hechong
4.4. Purity Identification of Extracted Glycoprotein from Hechong
4.5. Limitations and Future Direction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.; Sunil, C.; Jayachandran, M.; Zheng, X.; Cui, K.; Su, Y.; Xu, B. Anti-fatigue effect of aqueous extract of Hechong (Tylorrhynchus heterochaetus) via AMPK linked pathway. Food Chem. Toxicol. 2020, 135, 111043. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.P.; Huang, Q.; Cui, K.P. Present situation of Hechong industry and analysis of increased breeding benefits in Pearl River Estuary Area. Ocean. Fish. 2016, 10, 64–67. [Google Scholar]
- Wu, Y.G.; Pang, C.F.; Wen, S.H.; Li, H.Y. Analysis and evaluation of nutritional components of Hechong (Tylorrhynchus heterochaeta). J. Hydroecology 2006, 26, 86–88. [Google Scholar]
- Sun, H.; Yu, J.; Liang, K.; An, R.; You, L.; Wang, X. Analysis of aliphatic acids in three kinds of nereid and determination of five unsaturated aliphatic acids. Chin. Tradit. Pat. Med. 2016, 38, 1298–1302. [Google Scholar]
- Jia, Y.L.; Yan, H.; Ding, G. Research progress about Nereis succinea’s biological activity. J. Zhejiang Ocean. Univ. Nat. Sci. 2016, 35, 253–256. [Google Scholar]
- Deng, Z.; Wang, S.; Li, Q.; Ji, X.; Zhang, L.; Hong, M. Purification and characterization of a novel fibrinolytic enzyme from the polychaete, Neanthes japonica (Iznka). Bioresour. Technol. 2010, 101, 1954–1960. [Google Scholar] [CrossRef]
- Chen, X.H.; Yang, S.; Yang, W.; Si, Y.Y.; Xu, R.W.; Fan, B.; Wang, L.; Meng, Z.N. First genetic assessment of brackish water polychaete Tylorrhynchus heterochaetus: Mitochondrial COI sequences reveal strong genetic differentiation and population expansion in samples collected from southeast China and north Vietnam. Zool. Res. 2020, 41, 61–69. [Google Scholar]
- Ma, D.C.; Ye, L.H.; Xu, A.Y.; Pan, G.; Long, C. A histological study of Tylorrhynchus heterochaetus. South China Fish. Sci. 2014, 10, 58–63. [Google Scholar]
- Suzuki, T.; Gotoh, T. The complete amino acid sequence of giant multisubunit hemoglobin from the polychaete Tylorrhynchus heterochaetus. J. Biol. Chem. 1986, 261, 9257–9267. [Google Scholar] [CrossRef]
- Green, B.N.; Suzuki, T.; Gotoh, T.; Kuchumov, A.R.; Vinogradov, S.N. Electrospray ionization mass spectrometric determination of the complete polypeptide chain composition of Tylorrhynchus heterochaelus hemoglobin. J. Biol. Chem. 1995, 270, 18209–18211. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Ding, G.; Yang, Z.; Yu, F.; Jia, Y.; Wu, Z.; Chen, R. Enzymatic preparation and antithrombotic activity of anticoagulant peptides from Perinereis aibuhitensis (PAAP). Food Sci. 2017, 38, 171–177. [Google Scholar]
- Liu, X.; Liu, L.; Zhao, X.; Li, G.; Cai, C.; Yu, G. Structure characterization and anticoagulant activities of a sulfated polysaccharide from Perinereis aibuhitensis. Chin. J. Mar. Drugs 2016, 35, 1–6. [Google Scholar]
- Zhang, R.; Feng, L.; Lei, L.; Zheng, Y.; Guo, Y. Separation of the active components from Nereis Virens and the mechanism of action against A375 cell. Pharm. Biotechnol. 2014, 21, 402–405. [Google Scholar]
- Day, L.; Seymour, R.B.; Pitts, K.F.; Konczak, I.; Lundin, L. Incorporation of functional ingredients into foods. Trends Food Sci. Technol. 2009, 20, 388–395. [Google Scholar] [CrossRef]
- Halim, N.R.A.; Azlan, A.; Yusof, H.M.; Sarbon, N.M. Antioxidant and anticancer activities of enzymatic eel (Monopterus sp.) protein hydrolysate as influenced by different molecular weight. Biocatal. Agric. Biotechnol. 2018, 16, 10–16. [Google Scholar]
- Firmansyah, M.; Abduh, M.Y. Production of protein hydrolysate containing antioxidant activity from Hemetia illucens. Heliyon 2019, 5, e02005. [Google Scholar] [CrossRef] [Green Version]
- Putra, S.N.K.M.; Ishak, N.H.; Sarbon, N.M. Preparation and characterization of physicochemical properties of golden apple anail (Pomacea canaliculata) protein hydrolysate as affected by different proteases. Biocatal. Agric. Biotechnol. 2018, 13, 123–128. [Google Scholar] [CrossRef]
- Oliveira, S.R.M.; Nascimento, A.E.; Lima, M.E.; Leite, Y.F.; Benevides, N.M. Purification and characterisation of a lectin from the red marine alga Pterocladiella capillacea (S.G. Gmel.) Santel. & Hommers. Braz. J. Bot. 2002, 25, 397–403. [Google Scholar]
- Guo, H.; Deng, W.X.; Zhang, Y. Research progression of glycoprotein. Biotechnol. Bull. 2009, 10, 16–19. [Google Scholar]
- Chen, J.; Jayachandran, M.; Xu, B.; Yu, Z. Sea bass (Lateolabrax maculatus) accelerates wound healing: A transition from inflammation to proliferation. J. Ethnopharmacol. 2019, 236, 263–276. [Google Scholar] [CrossRef]
- Altinelataman, C.; Koroleva, O.; Fedorova, T.; Torkova, A.; Lisitskaya, K.; Tsentalovich, M.; Kononikhin, A.; Popov, I.; Vasina, D.; Kovalyov, L.; et al. An in vitro and in silico study on the antioxidant and cell culture-based study on the chemoprotective activities of fish muscle protein hydrolysates obtained from European seabass and gilthead seabream. Food Chem. 2019, 271, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Qi, L.; Fan, F.; Guo, Z.; Wang, Z.; Song, W.; Du, M. Analysis of volatile compounds and nutritional properties of enzymatic hydrolysate of protein from cod bone. Food Chem. 2018, 264, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Kirk, P.L. Kjedahl method for total nitrogen. Anal. Chem. 1950, 22, 354–358. [Google Scholar] [CrossRef]
- Luo, J.; Cai, W.; Wu, T.; Xu, B. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem. 2016, 201, 350–360. [Google Scholar]
- Ismail, A.; Azlan, A.; Khoo, H.E.; Prasad, K.N.; Kong, K.W. Antioxidant Assays: Principles, Methods and Analysis; Universiti Putra Malaysia Press: Serdang, Malaysia, 2013. [Google Scholar]
- Chen, J.; Jayachandran, M.; Zhang, W.; Chen, L.; Du, B.; Yu, Z.; Xu, B. Dietary supplementation with Sea Bass (Lateolabrax maculatus) ameliorates ulcerative colitis and inflammation in macrophages through inhibiting Toll-like receptor 4-linked pathways. Int. J. Mol. Sci. 2019, 20, 2907. [Google Scholar] [CrossRef] [Green Version]
- Beeley, J.G. Glocoprotein and Proteoglycan Techniques; Elsevier: Amsterdam, The Netherlands, 1986; Volume 202, p. 161. [Google Scholar]
- Sun, L.; He, W.; Xin, G.; Cai, P.; Zhang, Y.; Zhang, Z.; Wei, Y.; Sun, B.; Wen, X. Volatile components, total phenolic compounds, and antioxidant capacities of worm-infected Gomphidius rutilus. Food Sci. Hum. Wellness 2018, 7, 148–155. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Xu, B.J.; Chang, S.K.C. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 2007, 72, 159–166. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. A critical review on polyphenols and health benefits of black soybeans. Nutrients 2017, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Letha, N.; Ganesan, K.; Nair, S.K.P.; Gani, S.B. Studies on phytochemical screening and in vitro antioxidant activity of Ethiopian indigenous medicinal plants, Artemisia abyssinica Sch. Bip. Ex A.Rich. World J. Pharma. Res. 2016, 5, 1048–1058. [Google Scholar]
- Xu, B.; Ganesan, K.; Mickymaray, S.; Alfaiz, F.A.; Thatchinamoorthi, R.; Al Aboody, M.S. Immunomodulatory and antineoplastic efficacy of common spices and their connection with phenolic antioxidants. Bioact. Compd. Health Dis. 2020, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Tokusoglu, O.; Hall, C. Fruit and Cereal Bioactives (Sources, Chemistry, and Applications); CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Puwastien, P.; Judprasong, K.; Kettwan, E.; Vasanachitt, K.; Nakngamanong, Y.; Bhattacharjee, L. Proximate composition of raw and cooked Thai freshwater and marine fish. J. Food Compos. Anal. 1999, 12, 9–16. [Google Scholar] [CrossRef]
- Zhou, K.; Yu, L. Effects of extraction solvent on wheat bran antioxidant activity estimation. LWT Food Sci. Technol. 2004, 37, 717–721. [Google Scholar] [CrossRef]
- Lin, J.; Hong, H.; Zhang, L.; Zhang, C.; Luo, Y. Antioxidant and cryoprotective effects of hydrolysate from gill protein of bighead carp (Hypophthalmichthys nobilis) in preventing denaturation of frozen surimi. Food Chem. 2019, 298, 124868. [Google Scholar] [CrossRef]
- Tkaczewska, J.; Borawska-Dziadkiewicz, J.; Kulawik, P.; Duda, I.; Morawska, M.; Mickowska, B. The effects of hydrolysis condition on the antioxidant activity of protein hydrolysat from Cyprinus carpio skin gelatin. LWT Food Sci. Technol. 2019, 117, 108686. [Google Scholar]
- Zielińska, E.; Baraniak, B.; Karaś, M. Antioxidant and anti-Inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients 2017, 9, 970. [Google Scholar] [CrossRef] [Green Version]
- Matheswaran, P.; Raja, L.; Gani, S.B. Antioxidant and anti-inflammatory efficacy of functional proteins obtained from seven edible insects. Int. J. Entomol. Res. 2019, 4, 24–31. [Google Scholar]
- Matheswaran, P.; Raja, L.; Gani, S.B. Anti-Hypertensive and Anti-microbial activity of protein hydrolysate obtained from seven edible insects. Bull. Pure Appl. Sci. 2020, 39, 206–216. [Google Scholar] [CrossRef]
- Karaś, M.; Baraniak, B.; Rybczyńska-Tkaczyk, K.; Gmiński, J.; Gaweł-Bęben, K.; Jakubczyk, A. The influence of heat treatment of chickpea seeds on antioxidant and fibroblast growth-stimulating activity of peptide fractions obtained from proteins digested under simulated gastrointestinal conditions. Int. J. Food Sci. Technol. 2015, 50, 2097–2103. [Google Scholar] [CrossRef]
- Chen, H.; Muramoto, K.; Yamauchi, F.; Nokihara, K. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 1996, 44, 2619–2623. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, J.; Tang, X.; Xiong, Y.L. Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. J. Agric. Food Chem. 2008, 56, 2714–2721. [Google Scholar] [CrossRef]
- Saadi, S.; Saari, N.; Anwar, F.; Hamid, A.A.; Ghazali, H.M. Recent advances in food biopeptides: Production, biological functionalities therapeutic applications. Biotechnol. Adv. 2015, 33, 80–116. [Google Scholar] [CrossRef]
- Yang, J.-T.; Wu, C.-E.; Li, Y.-Y.; Jia, S.-Q.; Fan, G.-J.; Peng, F.-R. Identification and purification of an allergic glycoprotein from Ginkgo biloba Kernel. Agric. Sci. China 2011, 10, 631–641. [Google Scholar] [CrossRef]
- Kumar, G.; Murugesan, A.G. Influence of Helicteres isora bark extracts on plasma and tissue glycoprotein components in streptozotocin diabetic rats. J. Clin. Diagn. Res. 2007, 4, 330–338. [Google Scholar]
- Zeng, H.-j.; Liu, Z.; Wang, Y.-P.; Yang, D.; Yang, R.; Qu, L.-B. Studies on the anti-aging activity of a glycoprotein isolated from Fupenzi (Rubus chingii Hu.) and its regulation on klotho gene expression in mice kidney. Int. J. Biol. Macromol. 2018, 119, 470–476. [Google Scholar]
- Zheng, W.; Zhao, T.; Feng, W.; Wang, W.; Zou, Y.; Zheng, D.; Takase, M.; Li, Q.; Wu, H.; Yang, L.; et al. Purification, characterization and immunomodulating activity of a polysaccharide from flowers of Abelmoschus esculentus. Carbohydr. Polym. 2014, 106, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.J.; Chen, Y.; Song, Z.-Y.; Zhou, D.-W. Purification and analysis of Cimicifuga foetida glycoprotein (CF-I). Zhong Yao Cai 2007, 30, 155–157. [Google Scholar] [PubMed]
- Familiari, G.; Heyn, R.; Petruzziello, L.; Relucenti, M. A Method to Visualize the Microarchitecture of Glycoprotein Matrices with Scanning Electron Microscopy, in Scanning Electron Microscopy for the Life Sciences; Schatten, H., Ed.; Cambridge University Press: Cambridge, UK, 2012; pp. 165–178. [Google Scholar]
- Bjugn, R.; Flood, P.R. Scanning electron microscopy of human urine and purified Tamm-Horsfall’s glycoprotein. Scand. J. Urol. Nephrol. 1988, 22, 313–315. [Google Scholar] [CrossRef] [PubMed]
- Mistri, A.; Kumari, U.; Mittal, S.; Mittal, A.K. Modifications in the gills of hill stream Moth catfish, Hara hara (Erethistidae, Siluriformes): A light and scanning electron microscope investigation. Tissue Cell 2020, 62, 101317. [Google Scholar]
- Akkermans, C.; Van der Goot, A.J.; Venema, P.; Gruppen, H.; Vereijken, J.M.; Van der Linden, E.; Boom, R.M. Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate. J. Agric. Food Chem. 2007, 55, 9877–9882. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.L.; Guerardel, Y.; Loubière, P.; Mercier-Bonin, M.; Dague, E. Measuring kinetic dissociation/association constants between. Biophys. J. 2011, 101, 2843–2853. [Google Scholar] [CrossRef] [Green Version]
- Klinov, D.V.; Protopopova, A.D.; Andrianov, D.S.; Litvinov, R.I.; Weisel, J.W. An improved substrate for superior imaging of individual biomacromolecules with atomic force microscopy. Colloids Surf. B Biointerfaces 2020, 196, 111321. [Google Scholar] [CrossRef]
Treatments | China | Vietnam | ||||
---|---|---|---|---|---|---|
DPPH (μmol TE/g) | ABTS (μmol TE/g) | FRAP (mmol Fe2+/100 g) | DPPH (μmol TE/g) | ABTS (μmol TE/g) | FRAP (mmol Fe2+/100 g) | |
Raw Hechong freeze-dried powder | 7.38 ± 0.29 d | 43.53 ± 0.86 d | 1.82 ± 0.10 e | 8.83 ± 0.84 e | 53.24 ± 2.16 d | 2.23 ± 0.21 e |
70% Acetone extracts of raw Hechong freeze-dried powder | 4.21 ± 0.06 e | 11.04 ± 0.59 e | 1.18 ± 0.01 f | 2.62 ± 0.07 f | 6.14 ± 0.24 e | 0.64 ± 0.02 f |
Raw Hechong aqueous extracts | 52.07 ± 2.01 b | 114.39 ± 1.84 b | 6.77 ± 0.03 a | 60.68 ± 2.12 b | 135.00 ± 1.48 b | 9.93 ± 0.22 b |
70% Acetone extracts of raw Hechong aqueous extracts | 19.75 ± 0.96 c | 54.00 ± 2.00 cd | 5.59 ± 0.16 c | 19.79 ± 0.26 d | 58.25 ± 0.80 d | 4.94 ± 0.08 d |
Steamed Hechong aqueous extracts | 64.15 ± 3.56 a | 184.75 ± 15.77 a | 6.44 ± 0.07 b | 76.29 ± 1.43 a | 181.04 ± 6.69 a | 10.40 ± 0.36 a |
70% Acetone extracts of steamed Hechong aqueous extracts | 19.00 ± 0.78 c | 61.76 ± 3.42 c | 5.42 ± 0.10 d | 23.05 ± 0.59 c | 71.01 ± 3.89 c | 5.40 ± 0.13 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wang, Z.; Ganesan, K.; Yuan, Y.; Xu, B. Antioxidant Activities of Aqueous Extracts and Protein Hydrolysates from Marine Worm Hechong (Tylorrhynchus heterochaeta). Foods 2022, 11, 1837. https://doi.org/10.3390/foods11131837
Zhang W, Wang Z, Ganesan K, Yuan Y, Xu B. Antioxidant Activities of Aqueous Extracts and Protein Hydrolysates from Marine Worm Hechong (Tylorrhynchus heterochaeta). Foods. 2022; 11(13):1837. https://doi.org/10.3390/foods11131837
Chicago/Turabian StyleZhang, Wenxia, Zexiong Wang, Kumar Ganesan, Yingzhi Yuan, and Baojun Xu. 2022. "Antioxidant Activities of Aqueous Extracts and Protein Hydrolysates from Marine Worm Hechong (Tylorrhynchus heterochaeta)" Foods 11, no. 13: 1837. https://doi.org/10.3390/foods11131837
APA StyleZhang, W., Wang, Z., Ganesan, K., Yuan, Y., & Xu, B. (2022). Antioxidant Activities of Aqueous Extracts and Protein Hydrolysates from Marine Worm Hechong (Tylorrhynchus heterochaeta). Foods, 11(13), 1837. https://doi.org/10.3390/foods11131837