Production and Shelf-Life Study of Probiotic Caja (Spondias mombin L.) Pulp Using Bifidobacterium animalis ssp. Lactis B94
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Caja Pulp
2.2. Growth Kinetic and Caja Pulp Fermentation
2.3. Determination of the Number of Viable Cells
2.4. Kinetic Parameters
2.5. Physicochemical Characterization of the Whole and Probiotic Caja Pulp
2.6. Total Reactive Antioxidant Potential (TRAP) and Total Antioxidant Reactivity (TAR) of the Whole and Probiotic Pulp
2.7. Probiotic Pulp Stability during Storage
2.8. Statistical Analysis
3. Results and Discussion
3.1. Growth Kinetics of in Caja Pulp
3.2. Physicochemical Characterization of the Whole and the Probiotic Caja Pulp
3.3. Total Reactive Antioxidant Potential (TRAP) and Total Antioxidant Reactivity (TAR) of the Whole and Probiotic Pulp
3.4. Probiotic Pulp Shelf-Life Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oladunjoye, A.O.; Adeboyejo, F.O.; Okekunbi, T.A.; Aderibigbe, O.R. Effect of Thermosonication on Quality Attributes of Hog Plum (Spondias mombin L.) Juice. Ultrason. Sonochem. 2021, 70, 105316. [Google Scholar] [CrossRef] [PubMed]
- Aniceto, A.; Montenegro, J.; Cadena, R.d.S.; Teodoro, A.J. Physicochemical Characterization, Antioxidant Capacity, and Sensory Properties of Murici (Byrsonima crassifolia (L.) Kunth) and Taperebá (Spondias mombin L.) Beverages. Molecules 2021, 26, 332. [Google Scholar] [CrossRef] [PubMed]
- de Assis, R.C.; Soares, R.d.L.G.; Siqueira, A.C.P.; de Rosso, V.V.; de Sousa, P.H.M.; Mendes, A.E.P.; Costa, E.d.A.; Carneiro, A.P.d.G.; Maia, C.S.C. Determination of Water-Soluble Vitamins and Carotenoids in Brazilian Tropical Fruits by High Performance Liquid Chromatography. Heliyon 2020, 6, e05307. [Google Scholar] [CrossRef] [PubMed]
- Oladunjoye, A.O.; Eziama, S.C. Effect of Microwave-Assisted Alkaline Treatment on Physicochemical, Functional and Structural Properties of Hog Plum (Spondias mombin L.) Bagasse. LWT 2020, 132, 109821. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Ren, Y.; Wang, Y.; Yaopeng, R.; Xiaowei, W.; Tianli, Y.; Zhouli, W.; Zhenpeng, G. Preparation, Model Construction and Efficacy Lipid-Lowering Evaluation of Kiwifruit Juice Fermented by Probiotics. Food Biosci. 2022, 47, 101710. [Google Scholar] [CrossRef]
- Pereira, B.L.B.; Rodrigue, A.; Arruda, F.C.d.O.; Bachiega, T.F.; Lourenço, M.A.M.; Correa, C.R.; Azevedo, P.S.; Polegato, B.F.; Okoshi, K.; Fernandes, A.A.H.; et al. Spondias mombin L. Attenuates Ventricular Remodelling after Myocardial Infarction Associated with Oxidative Stress and Inflammatory Modulation. J. Cell. Mol. Med. 2020, 24, 7862–7872. [Google Scholar] [CrossRef]
- Brito, S.A.; Barbosa, I.S.; de Almeida, C.L.F.; de Medeiros, J.W.; Silva Neto, J.C.; Rolim, L.A.; da Silva, T.G.; Ximenes, R.M.; de Menezes, I.R.A.; Caldas, G.F.R.; et al. Evaluation of Gastroprotective and Ulcer Healing Activities of Yellow Mombin Juice from Spondias mombin L. PLoS ONE 2018, 13, e0201561. [Google Scholar] [CrossRef]
- e Silva, T.L.L.; da Silva, E.P.; Asquieri, E.R.; Vieira, E.C.S.; Silva, J.S.; da Silva, F.A.; Damiani, C. Physicochemical Characterization and Behavior of Biocompounds of Caja-Manga Fruit (Spondias mombin L.). Food Sci. Technol. 2018, 38, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Ojediran, J.O.; Okonkwo, C.E.; Olaniran, A.F.; Iranloye, Y.M.; Adewumi, A.D.; Erinle, O.; Afolabi, Y.T.; Adeyi, O.; Adeyi, A. Hot Air Convective Drying of Hog Plum Fruit (Spondias mombin): Effects of Physical and Edible-Oil-Aided Chemical Pretreatments on Drying and Quality Characteristics. Heliyon 2021, 7, e08312. [Google Scholar] [CrossRef]
- Rastogi, Y.R.; Thakur, R.; Thakur, P.; Mittal, A.; Chakrabarti, S.; Siwal, S.S.; Thakur, V.K.; Saini, R.v.; Saini, A.K. Food Fermentation—Significance to Public Health and Sustainability Challenges of Modern Diet and Food Systems. Int. J. Food Microbiol. 2022, 371, 109666. [Google Scholar] [CrossRef]
- Paramithiotis, S.; Das, G.; Shin, H.-S.; Patra, J.K. Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables. Foods 2022, 11, 733. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, H.C.; Melo, D.d.S.; Ramos, C.L.; Menezes, A.G.T.; Dias, D.R.; Schwan, R.F. Sensory and Flavor-Aroma Profiles of Passion Fruit Juice Fermented by Potentially Probiotic Lactiplantibacillus plantarum CCMA 0743 Strain. Food Res. Int. 2021, 152, 110710. [Google Scholar] [CrossRef] [PubMed]
- Paredes, J.L.; Escudero-Gilete, M.L.; Vicario, I.M. A New Functional Kefir Fermented Beverage Obtained from Fruit and Vegetable Juice: Development and Characterization. LWT 2022, 154, 112728. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Giri, S.K. Probiotic Functional Foods: Survival of Probiotics during Processing and Storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Yerlikaya, O.; Saygili, D.; Akpinar, A. An Application of Selected Enterococci Using Bifidobacterium animalis Subsp. Lactis BB-12 in Set-Style Probiotic Yoghurt-like Products. Food Biosci. 2021, 41, 101096. [Google Scholar] [CrossRef]
- Morais, S.G.G.; da Silva Campelo Borges, G.; dos Santos Lima, M.; Martín-Belloso, O.; Magnani, M. Effects of Probiotics on the Content and Bioaccessibility of Phenolic Compounds in Red Pitaya Pulp. Food Res. Int. 2019, 126, 108681. [Google Scholar] [CrossRef] [PubMed]
- Hidróxido de Sódio—INS 524 2007; Informe Técnico No. 33. Agência Nacional de Vigilância Sanitária (ANVISA): Brasilia, Brazil, 2007.
- Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2016.
- ISO 20128:2006; Milk Products—Enumeration of Presumptive Lactobacillus Acidophilus on a Selective Medium—Colony-Count Technique at 37 °C. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- de Man, J.C.; Rogosa, M.; Sharpe, M.E. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Keller, T.; Schwager, H. Air Pollution and Ascorbic Acid. For. Pathol. 1977, 7, 338–350. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Lichtenthaler, H.K. [34] Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- GraphPad Prisma Version 8.0.0 for Windows, San Diego, CA, USA. Available online: www.graphpad.com (accessed on 1 August 2021).
- Moresco, K.; Silveira, A.; Schnorr, C.; Zeidán-Chuliá, F.; Bortolin, R.; Bittencourt, L.; Mingori, M.; Heimfarth, L.; Rabelo, T.; Morrone, M.; et al. Supplementation with Achyrocline Satureioides Inflorescence Extracts to Pregnant and Breastfeeding Rats Induces Tissue-Specific Changes in Enzymatic Activity and Lower Neonatal Survival. Biomedicines 2017, 5, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivares, A.; Soto, C.; Caballero, E.; Altamirano, C. Survival of Microencapsulated Lactobacillus casei (Prepared by Vibration Technology) in Fruit Juice during Cold Storage. Electron. J. Biotechnol. 2019, 42, 42–48. [Google Scholar] [CrossRef]
- Andrade, R.; Santos, E.; Azoubel, P.; Ribeiro, E. Increased Survival of Lactobacillus Rhamnosus ATCC 7469 in Guava Juices with Simulated Gastrointestinal Conditions during Refrigerated Storage. Food Biosci. 2019, 32, 100470. [Google Scholar] [CrossRef]
- Minitab Satatistical Software; Minitab, Inc.: State College, PA, USA, 1972.
- Maier, R.M.; Pepper, I.L. Bacterial Growth. In Environmental Microbiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 37–56. [Google Scholar]
- Baranyi, J.; Roberts, T.A. A Dynamic Approach to Predicting Bacterial Growth in Food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Mustafa, S.M.; Chua, L.S.; El-Enshasy, H.A.; Abd Majid, F.A.; Hanapi, S.Z. Kinetic Profile and Anti-Diabetic Potential of Fermented Punica Granatum Juice Using Lactobacillus casei. Process Biochem. 2020, 92, 224–231. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Abu-Ghannam, N. Kinetic Studies for the Preparation of Probiotic Cabbage Juice: Impact on Phytochemicals and Bioactivity. Ind. Crops Prod. 2013, 50, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Solval, K.M.; Chouljenko, A.; Chotiko, A.; Sathivel, S. Growth Kinetics and Lactic Acid Production of Lactobacillus plantarum NRRL B-4496, L. acidophilus NRRL B-4495, and L. reuteri B-14171 in Media Containing Egg White Hydrolysates. LWT 2019, 105, 393–399. [Google Scholar] [CrossRef]
- Markkinen, N.; Laaksonen, O.; Nahku, R.; Kuldjärv, R.; Yang, B. Impact of Lactic Acid Fermentation on Acids, Sugars, and Phenolic Compounds in Black Chokeberry and Sea Buckthorn Juices. Food Chem. 2019, 286, 204–215. [Google Scholar] [CrossRef]
- Panghal, A.; Janghu, S.; Virkar, K.; Gat, Y.; Kumar, V.; Chhikara, N. Potential Non-Dairy Probiotic Products—A Healthy Approach. Food Biosci. 2018, 21, 80–89. [Google Scholar] [CrossRef]
- Hernández, N.B.S. Evaluación de Leche de Cabra Como Sustrato Para El Desarrollo de Un Probiótico Fermentado Con Bifidobacterium Infantis y Bacterias Ácido Lácticas e Implementación de Un Método Para Identificar, B. Infantis Mediante Reacción En Cadena de La Polimerasa (PCR); Instituto Tecnológico y de Estudios Superiores de Monterrey: Monterrey, Mexico, 2004. [Google Scholar]
- Zeybek, N.; Rastall, R.A.; Buyukkileci, A.O. Utilization of Xylan-Type Polysaccharides in Co-Culture Fermentations of Bifidobacterium and Bacteroides Species. Carbohydr. Polym. 2020, 236, 116076. [Google Scholar] [CrossRef] [PubMed]
- Usta-Gorgun, B.; Yilmaz-Ersan, L. Short-Chain Fatty Acids Production by Bifidobacterium Species in the Presence of Salep. Electron. J. Biotechnol. 2020, 47, 29–35. [Google Scholar] [CrossRef]
- Asad, J.; Jacobson, A.F.; Estabrook, A.; Smith, S.R.; Boolbol, S.K.; Feldman, S.M.; Osborne, M.P.; Boachie-Adjei, K.; Twardzik, W.; Tartter, P.I. Does Oncotype DX Recurrence Score Affect the Management of Patients with Early-Stage Breast Cancer? Am. J. Surg. 2008, 196, 527–529. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Y.; Yang, N.; Jiang, T.; Xu, H.; Lei, H. Fermentation of Kiwifruit Juice from Two Cultivars by Probiotic Bacteria: Bioactive Phenolics, Antioxidant Activities and Flavor Volatiles. Food Chem. 2022, 373, 131455. [Google Scholar] [CrossRef] [PubMed]
- Filannino, P.; Cavoski, I.; Thligene, N.; Vincentini, O.; de Angelis, M.; Silano, M.; Gobbetti, M.; di Cagno, R. Correction: Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties. PLoS ONE 2016, 11, e0155156. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, S.M.B.; Jafarpour, D. Fermentation of Bergamot Juice with Lactobacillus Plantarum Strains in Pure and Mixed Fermentations: Chemical Composition, Antioxidant Activity and Sensorial Properties. LWT 2020, 131, 109803. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Tao, Y.; Li, D.; Han, Y.; Show, P.L.; Wen, G.; Zhou, J. Fermentation of Blueberry and Blackberry Juices Using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: Growth of Probiotics, Metabolism of Phenolics, Antioxidant Capacity in Vitro and Sensory Evaluation. Food Chem. 2021, 348, 129083. [Google Scholar] [CrossRef]
- de la Fuente, B.; Luz, C.; Puchol, C.; Meca, G.; Barba, F.J. Evaluation of Fermentation Assisted by Lactobacillus Brevis POM, and Lactobacillus Plantarum (TR-7, TR-71, TR-14) on Antioxidant Compounds and Organic Acids of an Orange Juice-Milk Based Beverage. Food Chem. 2021, 343, 128414. [Google Scholar] [CrossRef]
- Maldonado-Astudillo, Y.I.; Alia-Tejacal, I.; Núñez-Colín, C.A.; Jiménez-Hernández, J.; Pelayo-Zaldívar, C.; López-Martínez, V.; Andrade-Rodríguez, M.; Bautista-Baños, S.; Valle-Guadarrama, S. Postharvest Physiology and Technology of Spondias purpurea L. and S. mombin L. Sci. Hortic. 2014, 174, 193–206. [Google Scholar] [CrossRef]
- Peng, W.; Meng, D.; Yue, T.; Wang, Z.; Gao, Z. Effect of the Apple Cultivar on Cloudy Apple Juice Fermented by a Mixture of Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus fermentum. Food Chem. 2021, 340, 127922. [Google Scholar] [CrossRef]
- Bernini, L.J.; Simão, A.N.C.; de Souza, C.H.B.; Alfieri, D.F.; Segura, L.G.; Costa, G.N.; Dichi, I. Effect of Bifidobacterium lactis HN019 on Inflammatory Markers and Oxidative Stress in Subjects with and without the Metabolic Syndrome. Br. J. Nutr. 2018, 120, 645–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, A.N.A.; Pasquali, M.A.d.B.; Schnorr, C.E.; Martins, J.J.A.; de Araújo, G.T.; Rocha, A.P.T. Development and Characterization of Blends Formulated with Banana Peel and Banana Pulp for the Production of Blends Powders Rich in Antioxidant Properties. J. Food Sci. Technol. 2019, 56, 5289–5297. [Google Scholar] [CrossRef] [PubMed]
- Mattietto, R.A.; Matta, V.M. Cajá (Spondias mombin L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Elsevier: Amsterdam, The Netherlands, 2011; pp. 330e–353e. [Google Scholar]
- Pereira, A.L.F.; Maciel, T.C.; Rodrigues, S. Probiotic Beverage from Cashew Apple Juice Fermented with Lactobacillus Casei. Food Res. Int. 2011, 44, 1276–1283. [Google Scholar] [CrossRef]
- da Silva, T.M.; de Deus, C.; de Souza Fonseca, B.; Lopes, E.J.; Cichoski, A.J.; Esmerino, E.A.; de Bona da Silva, C.; Muller, E.I.; Moraes Flores, E.M.; de Menezes, C.R. The Effect of Enzymatic Crosslinking on the Viability of Probiotic Bacteria (Lactobacillus acidophilus) Encapsulated by Complex Coacervation. Food Res. Int. 2019, 125, 108577. [Google Scholar] [CrossRef]
- Barat, A.; Ozcan, T. Growth of Probiotic Bacteria and Characteristics of Fermented Milk Containing Fruit Matrices. Int. J. Dairy Technol. 2018, 71, 120–129. [Google Scholar] [CrossRef]
- Shori, A.B. The Potential Applications of Probiotics on Dairy and Non-Dairy Foods Focusing on Viability during Storage. Biocatal. Agric. Biotechnol. 2015, 4, 423–431. [Google Scholar] [CrossRef]
- Favaro-Trindade, C.S.; Bernardi, S.; Bodini, R.B.; Balieiro, J.C.D.C.; de Almeida, E. Sensory Acceptability and Stability of Probiotic Microorganisms and Vitamin C in Fermented Acerola (Malpighia emarginata DC.) Ice Cream. J. Food Sci. 2006, 71, S492–S495. [Google Scholar] [CrossRef]
Parameters | Probiotic caja Pulp | Control Medium |
---|---|---|
Número inicial de bactérias (LogCFU/mL) | 10.00 | 10.00 |
Maximum number of bacteria (LogCFU/mL) | 10.79 | 10.62 |
Maximum growth rate (1/h) | 0.12 | 0.12 |
lag phase (h) | 15 | 15 |
Generation time (h) | 5.78 | 5.90 |
Parameter | Whole Caja Pulp | Probiotic Caja Pulp ** |
---|---|---|
pH | 2.91 ± 0.03 | 6.03 ± 0.05 * |
Acidity (g citric acid/100 mL) | 1.72 ± 0.09 | 0.12 ± 0.02 * |
Total soluble solids (°Brix) | 11.83 ± 0.11 | 11.33 ± 0.28 |
Water content (%) | 86.29 ± 0.13 | 87.53 ± 0.15 |
Total solids (%) | 13.70 ± 0.13 | 12.46 ± 0.15 |
Ascorbic acid (mg/g) | 15.84 ± 0.15 | 15.55 ± 0.05 * |
Total phenolics (mg/g) | 185.00 ± 6.14 | 185.26 ± 0.55 |
Carotenoids (mg/100 g) | 0.023 ± 0.01 | 0.036 ± 0.01 |
Reducing carbohydrates (μg/mg) | 3.63 ± 0.08 | 3.20 ± 0.01 |
Time (days) | pH | Acidity (g Lactic Acid/100 mL) | Total Soluble Solids (°Brix) | Number of Viable Cells (Log CFU/mL) | |
---|---|---|---|---|---|
Probiotic caja pulp | 1 | 6.03 ± 0.05 * | 0.12 ± 0.01 * | 11.83 ± 0.28 * | 10.80 ± 0.05 |
7 | 6.15 ± 0.05 * | 0.18 ± 0.01 * | 11.26 ±0.05 * | 10.75 ± 0.02 | |
14 | 6.06 ± 0.05 * | 0.17 ± 0.001 * | 10.26 ± 0.11 * | 10.37 ± 0.03 * | |
21 | 5.76 ± 0.05 * | 0.15 ± 0.01 * | 10.23 ± 0.15 * | 10.19 ± 0.01 * | |
28 | 5.80 ± 0.10 * | 0.13 ± 0.01 * | 10.20 ±0.10 * | 10.13 ± 0.02 * | |
Control medium | 1 | 5.03 ± 0.05 | 0.53 ± 0.03 | 6.06 ± 0.11 | 10.71 ± 0.06 |
7 | 4.76 ± 0.05 * | 0.57 ± 0.01 | 5.96 ± 0.05 | 10.65 ± 0.08 | |
14 | 5.00 ± 0.01 | 0.54 ± 0.04 | 5.86 ± 0.11 | 10.41 ± 0.05 * | |
21 | 5.10 ± 0.10 | 0.64 ± 0.01 * | 5.86 ± 0.05 | 10.11 ± 0.03 * | |
28 | 5.23 ± 0.05 | 0.43 ± 0.01 * | 5.03 ± 0.05 * | 10.04 ± 0.12 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, T.J.A.; Albuquerque, A.P.; Azevedo, A.V.S.d.; Silva, L.R.d.; Pasquali, M.A.d.B.; Araújo, G.T.d.; Monteiro, S.S.; Lima, W.D.L.; Rocha, A.P.T. Production and Shelf-Life Study of Probiotic Caja (Spondias mombin L.) Pulp Using Bifidobacterium animalis ssp. Lactis B94. Foods 2022, 11, 1838. https://doi.org/10.3390/foods11131838
Rodrigues TJA, Albuquerque AP, Azevedo AVSd, Silva LRd, Pasquali MAdB, Araújo GTd, Monteiro SS, Lima WDL, Rocha APT. Production and Shelf-Life Study of Probiotic Caja (Spondias mombin L.) Pulp Using Bifidobacterium animalis ssp. Lactis B94. Foods. 2022; 11(13):1838. https://doi.org/10.3390/foods11131838
Chicago/Turabian StyleRodrigues, Thais Jaciane Araujo, Aline Pacheco Albuquerque, Antônio Vinícius Silva de Azevedo, Layanne Rodrigues da Silva, Matheus Augusto de Bittencourt Pasquali, Gilmar Trindade de Araújo, Shênia Santos Monteiro, Wanessa Dayane Leite Lima, and Ana Paula Trindade Rocha. 2022. "Production and Shelf-Life Study of Probiotic Caja (Spondias mombin L.) Pulp Using Bifidobacterium animalis ssp. Lactis B94" Foods 11, no. 13: 1838. https://doi.org/10.3390/foods11131838
APA StyleRodrigues, T. J. A., Albuquerque, A. P., Azevedo, A. V. S. d., Silva, L. R. d., Pasquali, M. A. d. B., Araújo, G. T. d., Monteiro, S. S., Lima, W. D. L., & Rocha, A. P. T. (2022). Production and Shelf-Life Study of Probiotic Caja (Spondias mombin L.) Pulp Using Bifidobacterium animalis ssp. Lactis B94. Foods, 11(13), 1838. https://doi.org/10.3390/foods11131838