Potential Antioxidant and Antiviral Activities of Hydroethanolic Extracts of Selected Lamiaceae Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples
2.3. Conventional Solid–Liquid Extraction
2.4. Analysis by HPLC-QTOF-MS
2.5. Evaluation of Potential Bioactivity
2.5.1. In Vitro Antioxidant Activity
2.5.2. Antiviral Activity
3. Results
3.1. Characterization of Bioactive MAP Extracts by HPLC-QTOF-MS
3.2. In Vitro Antioxidant Activity
3.3. Antiviral Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dorman, H.J.D.; Bachmayer, O.; Kosar, M.; Hiltunen, R. Antioxidant Properties of Aqueous Extracts from Selected Lamiaceae Species Grown in Turkey. J. Agric. Food Chem. 2004, 52, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Embuscado, M.E. Spices and herbs: Natural sources of antioxidants—A mini review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Pateiro, M.; Barba, F.J.; Domínguez, R.; Sant’Ana, A.S.; Mousavi Khaneghah, A.; Gavahian, M.; Gómez, B.; Lorenzo, J.M. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res. Int. 2013, 113, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, S.; Gomes, D.; Costa, P.; Romano, A. The phenolic content and antioxidant activity of infusions from Mediterra-nean medicinal plants. Ind. Crops Prod. 2013, 43, 465–471. [Google Scholar] [CrossRef]
- Pinto, T.; Aires, A.; Cosme, F.; Bacelar, E.; Morais, M.C.; Oliveira, I.; Ferreira-Cardoso, J.; Anjos, R.; Vilela, A.; Gonçalves, B. Bioactive (Poly)phenols, Volatile Compounds from Vegetables, Medicinal and Aromatic Plants. Foods 2021, 10, 106. [Google Scholar] [CrossRef]
- Mahmood, M.S.; Ashraf, A.; Ali, S.; Siddique, A.B.; Asad, F.; Abbas, R.Z.; Siddique, F.; Aslam, A.; Aslam, R.; Rafique, A. Portrayal of Punica granatum L. peel extract through High Performance Liquid Chromatography and antimicrobial activity evaluation. Braz. J. Biol. 2021, 83, e244435. [Google Scholar] [CrossRef]
- The Burden of Foodborne Diseases in the WHO European Region. 2017. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/food-safety/publications/2017/the-burden-of-foodborne-diseases-in-the-who-european-region-2017 (accessed on 1 June 2021).
- Falcó, I.; Díaz-Reolid, A.; Randazzo, W.; Sánchez, G. Green tea extract assisted low-temperature pasteurization to inactivate enteric viruses in juices. Int. J. Food Microbiol. 2020, 334, 108809. [Google Scholar] [CrossRef]
- Milevskaya, V.V.; Prasad, S.; Temerdashev, Z.A. Extraction and chromatographic determination of phenolic compounds from medicinal herbs in the Lamiaceae and Hypericaceae families: A review. Microchem. J. 2019, 145, 1036–1049. [Google Scholar] [CrossRef]
- Gülçin, Ì.; Şat, İ.G.; Beydemir, Ş.; Elmastaş, M.; Küfrevioǧlu, Ö.İ. Comparison of antioxidant activity of clove (Eugenia cary-ophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem. 2004, 87, 393–400. [Google Scholar] [CrossRef]
- Willis, S.; Sunkara, R.; Hester, F.; Shackelford, L.; Walker, L.T.; Verghese, M. Chemopreventive and anti-inflammatory poten-tial of select herbal teas and cinnamon in an in-vitro cell model. Food Nutr. Sci. 2019, 10, 1142–1156. [Google Scholar]
- Aboubakr, H.A.; Nauertz, A.; Luong, N.T.; Agrawal, S.; El-Sohaimy, S.A.; Youssef, M.M.; Goyal, S.M. In vitro antiviral ac-tivity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J. Food Prot. 2016, 79, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic con-stituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive characterization of phe-nolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Res. Int. 2018, 105, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, B.X.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Laporta, O.; Pérez-Fons, L.; Mallavia, R.; Caturla, N.; Micol, V. Isolation, characterization and antioxidant capacity assess-ment of the bioactive compounds derived from Hypoxis rooperi corm extract (African potato). Food Chem. 2007, 4, 1425–1437. [Google Scholar] [CrossRef]
- Pinto, R.M.; Diez, J.M.; Bosch, A. Use of the colonic carcinoma cell line CaCo-2 for in vivo amplification and detection of enteric viruses. J. Med. Virol. 1994, 44, 310–315. [Google Scholar] [CrossRef]
- Falcó, I.; Randazzo, W.; Gómez-Mascaraque, L.; Aznar, R.; López-Rubio, A.; Sánchez, G. Fostering the antiviral activity of green tea extract for sanitizing purposes through controlled storage conditions. Food Control 2018, 84 (Suppl. C), 485–492. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; Martínez-Huélamo, M.; Rinaldi Alvarenga, J.F.; Leal, L.N.; Lamuela-Raventos, R.M. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem. 2014, 154, 299–307. [Google Scholar] [CrossRef]
- Taamalli, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, I.; Fernández-Gutiérrez, A.; Zarrouk, M.; Segura-Carretero, A. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal. 2015, 26, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, M.; Ceylan, O.; Locatelli, M.; Tartaglia, A.; Ferrone, V.; Sarikurkcu, C. Ziziphora taurica subsp. taurica: Analytical Characterization and Biological Activities. Biomolecules 2019, 9, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimiza-tion of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.R.; Zhang, H.M.; Ye, T.X.; Xiang, Z.J.; Yuan, Y.J.; Guo, Z.X.; Zhao, L. Bin. Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem. Toxicol. 2008, 46, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; D’Souza, D.H. Grape seed extract for foodborne virus reduction on produce. Food Microbiol. 2013, 34, 1–6. [Google Scholar] [CrossRef]
- Horwath, A.B.; Grayer, R.J.; Keith-Lucas, D.M.; Simmonds, M.S.J. Chemical characterisation of wild populations of Thymus from different climatic regions in southeast Spain. Biochem. Syst. Ecol. 2008, 36, 117–133. [Google Scholar] [CrossRef]
- Desta, K.T.; Kim, G.S.; El-Aty, A.M.A.; Raha, S.; Kim, M.B.; Jeong, J.H.; Warda, M.; Hacımüftüoğlu, A.; Shin, H.C.; Shim, J.H.; et al. Flavone polyphenols dominate in Thymus schimperi Ronniger: LC–ESI–MS/MS characterization and study of anti-proliferative effects of plant extract on AGS and HepG2 cancer cells. J. Chromatogr. B 2017, 1053, 1–8. [Google Scholar] [CrossRef]
- Ali, M.S.; Ahmed, Z.; Ali, M.I.; Ngoupayo, J. Two new aromatic acids from Clerodendrum formicarum Gürke (Lamiaceae) of Cameroon. J. Asian Nat. Prod. Res. 2010, 12, 894–898. [Google Scholar] [CrossRef]
- Zhang, X.L.; Guo, Y.S.; Wang, C.H.; Li, G.Q.; Xu, J.J.; Chung, H.Y.; Ye, W.C.; Li, Y.L.; Wang, G.C. Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chem. 2014, 152, 300–306. [Google Scholar] [CrossRef]
- Aguilar, F.; Autrup, H.; Barlow, S.; Castle, L.; Crebelli, R.; Dekant, W.; Tobback, P.; Rietjens, I.; Pratt, I.; Toldrá, F.; et al. EF-SA AFC Panel. Use of rosemary extracts as a food additive—Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food. EFSA J. 2008, 721, 1–29. [Google Scholar] [CrossRef]
- European Parliament and the Council of the European Union. Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Aditives. Off. J. Eur. Union. 2008, 354, 16–33. [Google Scholar]
- Proestos, C.; Komaitis, M. Ultrasonically assisted extraction of phenolic compounds from aromatic plants: Comparison with conventional extraction technics. J. Food Qual. 2006, 29, 567–582. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.H.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic com-pounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Alcántara, C.; Žugčić, T.; Abdelkebir, R.; Collado, M.C.; García-Pérez, J.V.; Lorenzo, J.M. Impact of ultra-sound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Res. Int. 2020, 134, 109242. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some algerian medici-nal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Miron, T.L.; Plaza, M.; Bahrim, G.; Ibáñez, E.; Herrero, M. Chemical composition of bioactive pressurized extracts of Roma-nian aromatic plants. J. Chromatogr. A 2011, 1218, 4918–4927. [Google Scholar] [CrossRef] [Green Version]
- Nabet, N.; Gilbert-López, B.; Madani, K.; Herrero, M.; Ibáñez, E.; Mendiola, J.A. Optimization of microwave-assisted extrac-tion recovery of bioactive compounds from Origanum glandulosum and Thymus fontanesii. Ind. Crops Prod. 2019, 129, 395–404. [Google Scholar] [CrossRef]
- Celiktas, O.Y.; Bedir, E.; Sukan, F.V. In vitro antioxidant activities of Rosmarinus officinalis extracts treated with supercritical carbon dioxide. Food Chem. 2007, 101, 1457–1464. [Google Scholar] [CrossRef]
- Saini, A.; Pandey, A.; Sharma, S.; Suradkar, U.S.; Ambedkar, Y.R.; Meena, P.; Raman, R.; Gurjar, A.S. Assessment of antiox-idant activity of rosemary (Rosmarinus officinalis) leaves extract. J. Pharmacogn. Phytochem. 2020, 9, 14–17. [Google Scholar]
- Li, D.; Baert, L.; Zhang, D.; Xia, M.; Zhong, W.; Van Coillie, E.; Jiang, X.; Uyttendaele, M. Effect of grape seed extract on human norovirus GII.4 and murine norovirus 1 in viral suspensions, on stainless steel discs, and in lettuce wash water. Appl. Environ. Microbiol. 2012, 78, 7572–7578. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.M.; Abo-Shady, A.; Eldeen, H.A.S.; Soror, H.A.; Shousha, W.G.; Abdel-Barry, O.A.; Saleh, A.M. Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds. Chem. Cent. J. 2013, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hy-droxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef]
- Farvin, K.H.; Jacobsen, C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013, 138, 1670–1681. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, D.; Naik, T.N. Antivirals of ethnomedicinal origin: Structure-activity relationship and scope. Mini-Rev. Med. Chem. 2007, 7, 275–301. [Google Scholar] [CrossRef] [PubMed]
- Falcó, I.; Randazzo, W.; Gómez-Mascaraque, L.; Aznar, R.; López-Rubio, A.; Sánchez, G. Effect of (−)-epigallocatechin gallate at different pH conditions on enteric viruses. LWT 2017, 81, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Blank, D.E.; Hübner, S.D.O.; Alves, G.H.; Cardoso, C.A.L.; Freitag, R.A.; Cleff, M.B. Chemical Composition and Antiviral Effect of Extracts of Origanum vulgare. Adv. Biosci. Biotechnol. 2019, 10, 188–196. [Google Scholar] [CrossRef] [Green Version]
- So-Hee, K.; Jihye, L.; Lin, J.Y.; Aerum, H.; Sang-Jip, N.; Byung-Kwan, L. Salvianolic Acid B Inhibits Hand-Foot-Mouth Disease Enterovirus 71 Replication through Enhancement of AKT Signaling Pathway. J. Microbiol. Biotechnol. 2020, 30, 38–43. [Google Scholar] [CrossRef]
- Pan, Y.; Deng, Z.; Shahidi, F. Natural bioactive substances for the control of food-borne viruses and contaminants in food. Food Prod. Process. Nutr. 2020, 2, 27. [Google Scholar] [CrossRef]
- Falcó, I.; Randazzo, W.; Rodríguez-Díaz, J.; Gozalbo-Rovira, R.; Luque, D.; Aznar, R.; Sánchez, G. Antiviral activity of aged green tea extract in model food systems and under gastric conditions. Int. J. Food Microbiol. 2019, 292, 101–106. [Google Scholar] [CrossRef]
RT (min) | m/z | Mass | Score (%) | Error (ppm) | Molecular Formula | Proposed Compound | MAP Extract |
---|---|---|---|---|---|---|---|
Phenolic acids and derivatives | |||||||
8.834 | 315.0728 | 316.0794 | 98.62 | −1.66 | C13H16O9 | Protocatechuic acid hexoside | TL |
9.227 | 197.0466 | 198.0528 | 94.18 | −5.11 | C9H10O5 | Syringic acid | TG, TM, TL, Z |
10.259 | 353.0866 | 354.0951 | 94.37 | 3.7 | C16H18O9 | Chlorogenic acid isomer | Z |
10.571 | 359.0989 | 360.1061 | 83.34 | −1.21 | C15H20O10 | Syringic acid glucoside | OG |
11.89 | 337.0943 | 338.1009 | 88.54 | −2.02 | C16H18O8 | Coumaroylquinic acid isomer I | Z |
13.922 | 337.0947 | 338.1019 | 90.66 | −5.04 | C16H18O8 | Coumaroylquinic acid isomer II | Z |
14.47 | 367.1046 | 368.1107 | 96.75 | −2.77 | C17H20O9 | Feruloylquinic acid | TG, TM, TL |
14.493 | 135.0459 | 136.0531 | 84.48 | −5.23 | C8H8O2 | Piceol | Z |
19.093 | 359.0763 | 360.0845 | 96.48 | 2.83 | C18H16O8 | Rosmarinic acid isomer I | TL, Z |
27.498 | 359.0789 | 360.0845 | 92.64 | −4.4 | C18H16O8 | Rosmarinic acid isomer II | TG, TM, TL |
31.462 | 373.0964 | 374.1002 | 75.93 | −9.08 | C19H18O8 | Rosmarinic acid methyl esther isomer I | TG, TM |
31.625 | 373.0944 | 374.1002 | 93.94 | −3.78 | C19H18O8 | Rosmarinic acid methyl esther isomer II | TG, TM, TL |
Flavonoids | |||||||
12.727 | 593.1517 | 594.1588 | 75.5 | −0.59 | C27H30O15 | Luteolin rutinoside isomer I | All |
12.929 | 305.0722 | 306.0798 | 89.04 | 2.2 | C15H14O7 | Gallocatechin | TL, Z |
12.965 | 593.1543 | 594.1585 | 86.01 | −5.24 | C27H30O15 | Luteolin rutinoside isomer II | All |
13.148 | 305.0721 | 306.0791 | 87.21 | 2.51 | C15H14O7 | Epigallocatechin | TG, TM |
14.207 | 449.1109 | 450.1162 | 92.11 | −4.15 | C21H22O11 | Eriodictyol glucoside | TG, TM, TL |
14.818 | 447.0967 | 448.1006 | 79.62 | −7.44 | C21H20O11 | Luteolin glucoside isomer I | TG, TM, TL |
15.289 | 593.1537 | 594.1585 | 91.13 | −3.87 | C27H30O15 | Luteolin rutinoside isomer III | TM |
16.096 | 447.097 | 448.1006 | 77.34 | −8.03 | C21H20O11 | Luteolin glucoside isomer II | TM, TL |
17.063 | 607.1682 | 608.1753 | 72.37 | −1.93 | C28H32O15 | Barosmin | Z |
17.831 | 303.0541 | 304.0583 | 77.05 | −9.62 | C15H12O7 | Taxifolin | TG, TM |
17.906 | 445.0785 | 446.0849 | 97.64 | −1.47 | C21H18O11 | Apigenin glucuronide | TL |
20.305 | 287.0571 | 288.0634 | 96.91 | −3.17 | C15H12O6 | Eriodictyol isomer I | TM, TL |
22.323 | 285.0432 | 286.0477 | 79.16 | −9.46 | C15H10O6 | Luteolin | TG, TM, TL, Z |
22.428 | 287.0595 | 288.0634 | 72.47 | −11.56 | C15H12O6 | Eriodictyol isomer II | OG, TG |
24.173 | 313.0726 | 314.0798 | 83.17 | −2.52 | C17H14O6 | Cirsimaritin isomer I | OG, TG, TM, TL |
24.532 | 329.0676 | 330.074 | 96.57 | −2.53 | C17H14O7 | Cirsiliol | TM, TL |
25.034 | 269.0458 | 270.0528 | 99.41 | −0.76 | C15H10O5 | Apigenin | TM, TL |
25.231 | 271.0628 | 272.0685 | 91.37 | −5.61 | C15H12O5 | Naringenin | TG |
25.384 | 313.074 | 314.079 | 86.1 | −6.94 | C17H14O6 | Cirsimaritin isomer II | OG, TM, TL |
25.752 | 329.0685 | 330.074 | 91.18 | −5.16 | C17H14O7 | Thymusin | TG, TM |
28.401 | 299.0578 | 300.0634 | 91.45 | −5.38 | C16H12O6 | Hispidulin | TM |
28.932 | 313.073 | 314.079 | 94.39 | −3.35 | C17H14O6 | Cirsimaritin isomer III | TM, TL |
29.414 | 343.0847 | 344.0896 | 85.87 | −6.56 | C18H16O7 | Cirsilineol isomer I | TG, TM, TL |
29.97 | 313.0723 | 314.079 | 97.73 | −1.45 | C17H14O6 | Cirsimaritin isomer IV | TM, TL |
30.925 | 343.0839 | 344.0896 | 93.48 | −4.29 | C18H16O7 | Cirsilineol isomer II | TM, TL |
31.808 | 283.0625 | 284.0685 | 93.61 | −4.6 | C16H12O5 | Genkwanin | TM, TL |
Lignans | |||||||
18.298 | 555.1127 | 556.1217 | 93.67 | 3.38 | C27H24O13 | Salvianolic acid K isomer I | TL |
20.636 | 491.0988 | 492.1056 | 99.37 | −0.5 | C26H20O10 | Salvianolic acid C | TM, TL |
21.242 | 493.1124 | 494.1196 | 93.27 | 3.41 | C26H22O10 | Salvianolic acid A isomer I | OG |
21.312 | 717.1441 | 718.1512 | 92.68 | 3.02 | C36H30O16 | Salvianolic acid B isomer I | OG |
21.499 | 493.1163 | 494.1213 | 90.03 | −4.42 | C26H22O10 | Salvianolic acid A isomer II | OG, TL |
21.687 | 493.1144 | 494.1215 | 79.06 | −0.37 | C26H22O10 | Salvianolic acid A isomer III | OG |
22.891 | 717.1468 | 718.1542 | 97.81 | −1.07 | C36H30O16 | Salvianolic acid B isomer II | OG |
Phenolic glycosides | |||||||
6.728 | 331.104 | 332.1112 | 83.73 | −1.28 | C14H20O9 | Leonuriside A | OG |
13.404 | 583.166 | 584.173 | 73.58 | 1.96 | C26H32O15 | Seguinoside K | OG |
15.91 | 433.1131 | 434.1203 | 79.12 | 2.39 | C21H22O10 | Caffeylarbutin | OG |
16.153 | 421.114 | 422.1209 | 96.94 | 0.91 | C20H22O10 | Amburoside A | OG |
Terpenes | |||||||
17.152 | 369.1588 | 370.1628 | 77.01 | −8.89 | C18H26O8 | Thymohydroquinone acetylglucoside | TG |
30.546 | 455.3567 | 456.3603 | 78.84 | −7.46 | C30H48O3 | Ursolic acid/Oleanolic acid | TG |
33.476 | 329.1794 | 330.1831 | 73.16 | −10.45 | C20H26O4 | Carnosol | TG, TL |
Others | |||||||
2.903 | 195.0478 | 196.055 | 50.7 | −13.2 | C13H8O2 | Xanthone | TL, Z |
3.056 | 191.0213 | 192.027 | 75.04 | −8.23 | C6H8O7 | Isocitric acid | TL, Z |
3.103 | 149.0085 | 150.0157 | 82.53 | 5.1 | C4H6O6 | Tartaric acid | Z |
3.166 | 179.0571 | 180.0634 | 94.8 | −5.37 | C6H12O6 | Glucose | TL |
3.436 | 133.0135 | 134.021 | 45.58 | 4.12 | C4H6O5 | Malic acid | All |
4.623 | 191.0203 | 192.027 | 97.97 | −3.01 | C6H8O7 | Citric acid | TL, Z |
5.414 | 147.0304 | 148.0377 | 85.56 | −3.41 | C5H8O5 | Pentonic acid lactone | Z |
9.604 | 447.1532 | 448.1581 | 88.89 | −5.12 | C19H28O12 | Barlerin | TM, TL |
12.043 | 329.1243 | 330.1315 | 47.6 | −0.2 | C15H22O8 | Dihydrocaffeyl alcohol glucopyranoside | OG |
12.48 | 367.1047 | 368.1119 | 80.21 | −3.2 | C17H20O9 | Caffeoylquinic acid methyl ester | Z |
12.774 | 387.1684 | 388.1756 | 71.31 | −5.73 | C18H28O9 | Tuberonic acid glucoside isomer I | TG, TL |
13.013 | 387.1676 | 388.1748 | 94.26 | −3.8 | C18H28O9 | Tuberonic acid glucoside isomer II | OG, TM, TL, Z |
13.973 | 179.0354 | 180.0423 | 98.21 | −1.83 | C9H8O4 | Caffeic acid | TG, TM, TL |
14.074 | 659.1614 | 660.1687 | 98.32 | 0.52 | C31H32O16 | Dicaffeoyl-hydroxy-methylglutaroyl-quinic acid | OG |
14.513 | 401.1832 | 402.1904 | 77.65 | −3.53 | C19H30O9 | Tuberonic acid methyl esther glucoside | Z |
15.019 | 225.1151 | 226.1223 | 74.35 | −7.74 | C12H18O4 | Tuberonic acid | TG, TM |
19.981 | 401.2207 | 402.2278 | 67.62 | −6.13 | C20H34O8 | Botcinic acid | Z |
23.503 | 327.2198 | 328.227 | 73.43 | −6.11 | C18H32O5 | Polyrhacitide A | Z |
23.713 | 327.2185 | 328.2258 | 83.25 | −2.4 | C18H32O5 | Trihydroxyoctadecadienoic acid | OG, TG, TM, TL |
24.955 | 329.235 | 330.2406 | 92.2 | −4.88 | C18H34O5 | Pinellic acid isomer I | TG, TM, TL |
25.252 | 329.2359 | 330.2431 | 68.98 | −7.42 | C18H34O5 | Pinellic acid isomer II | TG |
30.446 | 165.0933 | 166.0994 | 92.18 | −7.15 | C10H14O2 | Cymenediol | TG |
Antioxidant Assay | Solvent (% EtOH) | Origanum bastetanum | Thymus zygis gracilis | Thymus membranaceus | Thymus longiflorus | Ziziphora hispánica |
---|---|---|---|---|---|---|
TEAC (µmol Trolox eq./mg dry extract) | 100 | 3 ± 1 | 4 ± 3 | 3.1 ± 0.7 | 2.3 ± 0.5 | 1.2 ± 0.4 |
80 | 8.5 ± 0.7 | 7.3 ± 1.5 | 4 ± 1 | 7.1 ± 1.0 | 1.7 ± 0.6 | |
50 | 3 ± 1 | 4 ± 2 | 1.1 ± 0.2 | 2.5 ± 0.3 | 0.66 ± 0.07 | |
0 | 0.5 ± 0.1 | 0.4 ± 0.2 | 0.9 ± 0.3 | 0.4 ± 0.1 | 0.3 ± 0.1 | |
FRAP (µmol FeSO4 eq./mg extract) | 100 | 0.64 ± 0.07 | 1.4 ± 0.1 | 0.75 ± 0.05 | 0.46 ± 0.07 | 0.33 ± 0.07 |
80 | 2.2 ± 0.1 | 1.5 ± 0.1 | 1.4 ± 0.1 | 1.7 ± 0.1 | 0.38 ± 0.05 | |
50 | 1.6 ± 0.1 | 1.23 ± 0.07 | 1.2 ± 0.1 | 2.1 ± 0.1 | 0.49 ± 0.04 | |
0 | 0.42 ± 0.09 | 0.39 ± 0.09 | 0.32 ± 0.08 | 0.95 ± 0.06 | 0.15 ± 0.010 | |
ORAC (µmol Trolox eq./mg dry extract) | 100 | 2.20 | 4.33 | 3.21 | 2.02 | 1.69 |
80 | 5.31 | 3.81 | 3.72 | 3.56 | 2.07 | |
50 | 3.56 | 4.13 | 3.35 | 3.79 | 3.37 | |
0 | 1.62 | 1.06 | 0.84 | 1.47 | 1.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque-Soto, C.; Borrás-Linares, I.; Quirantes-Piné, R.; Falcó, I.; Sánchez, G.; Segura-Carretero, A.; Lozano-Sánchez, J. Potential Antioxidant and Antiviral Activities of Hydroethanolic Extracts of Selected Lamiaceae Species. Foods 2022, 11, 1862. https://doi.org/10.3390/foods11131862
Duque-Soto C, Borrás-Linares I, Quirantes-Piné R, Falcó I, Sánchez G, Segura-Carretero A, Lozano-Sánchez J. Potential Antioxidant and Antiviral Activities of Hydroethanolic Extracts of Selected Lamiaceae Species. Foods. 2022; 11(13):1862. https://doi.org/10.3390/foods11131862
Chicago/Turabian StyleDuque-Soto, Carmen, Isabel Borrás-Linares, Rosa Quirantes-Piné, Irene Falcó, Gloria Sánchez, Antonio Segura-Carretero, and Jesús Lozano-Sánchez. 2022. "Potential Antioxidant and Antiviral Activities of Hydroethanolic Extracts of Selected Lamiaceae Species" Foods 11, no. 13: 1862. https://doi.org/10.3390/foods11131862
APA StyleDuque-Soto, C., Borrás-Linares, I., Quirantes-Piné, R., Falcó, I., Sánchez, G., Segura-Carretero, A., & Lozano-Sánchez, J. (2022). Potential Antioxidant and Antiviral Activities of Hydroethanolic Extracts of Selected Lamiaceae Species. Foods, 11(13), 1862. https://doi.org/10.3390/foods11131862