Identification of Near Geographical Origin of Wolfberries by a Combination of Hyperspectral Imaging and Multi-Task Residual Fully Convolutional Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. HSI System and Image Calibration
2.3. Processing of Spectral Data
2.3.1. Region of Interest and Spectral Data Extraction
2.3.2. Effective Wavelength Extraction
2.4. Model Construction
2.4.1. Multi-Task Residual Fully Convolutional Network
2.4.2. Algorithm Optimization
2.4.3. Avoiding Overfitting
2.5. Multi-Task Data
2.5.1. Denoising Auto-Encoder (DAE)
2.5.2. Spectrum Pre-Processing
2.5.3. Extraction of Textural Data
2.6. Model Evaluation
3. Results and Discussion
3.1. Overview of Spectral Profiles
3.2. Optimization of Model Parameters
3.3. Effective Wavelengths
3.4. Modeling Results
3.4.1. Comparison of Multi-Task Datasets
3.4.2. Comparison of Modeling Results
3.5. Model Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yun, C.; Yalei, W.; Jian, Z.; Jun, C. Recognition of the position of Chinese wolfberry branches under the artificial background. IFAC Pap. 2018, 51, 321–325. [Google Scholar] [CrossRef]
- Yahui, L.; Xiaobo, Z.; Tingting, S.; Jiyong, S.; Jiewen, Z.; Holmes, M. Determination of geographical origin and anthocyanin content of black goji berry (Lycium ruthenicum Murr.) using near-infrared spectroscopy and chemometrics. Food Anal. Method 2016, 10, 1034–1044. [Google Scholar] [CrossRef]
- Yin, T.; Guo, T.; Ma, Z.; Wang, Z.; Sun, X.; Li, C. Classification of wolfberry with different geographical origins by using voltammetric electronic tongue. IFAC Pap. 2018, 51, 654–659. [Google Scholar] [CrossRef]
- Tingting, S.; Xiaobo, Z.; Jiyong, S.; Zhihua, L.; Xiaowei, H.; Yiwei, X.; Wu, C. Determination geographical origin and flavonoids content of goji berry using near-infrared spectroscopy and chemometrics. Food Anal. Method 2015, 9, 68–79. [Google Scholar] [CrossRef]
- Zhao, J.; Sugirbay, A.; Chen, Y.; Zhang, S.; Liu, F.; Bu, L.; Chen, Y.; Wang, Z.; Chen, J. FEM explicit dynamics simulation and NIR hyperspectral reflectance imaging for determination of impact bruises of Lycium barbarum L. Postharvest Biol. Technol. 2019, 155, 102–110. [Google Scholar] [CrossRef]
- Mu, Q.; Kang, Z.; Guo, Y.; Chen, L.; Wang, S.; Zhao, Y. Hyperspectral image classification of wolfberry with different geographical origins based on three-dimensional convolutional neural network. Int. J. Food Prop. 2021, 24, 1705–1721. [Google Scholar] [CrossRef]
- Tang, N.; Sun, J.; Yao, K.; Zhou, X.; Tian, Y.; Cao, Y.; Nirere, A. Identification of Lycium barbarum varieties based on hyperspectral imaging technique and competitive adaptive reweighted sampling-whale optimization algorithm-support vector machine. J. Food Process Eng. 2021, 44, 13603. [Google Scholar] [CrossRef]
- Xiao, Q.; Bai, X.; Gao, P.; He, Y. Application of convolutional neural network-based feature extraction and data fusion for geographical origin identification of Radix Astragali by visible/short-wave near-infrared and near infrared hyperspectral imaging. Sensors 2020, 20, 4940. [Google Scholar] [CrossRef]
- Fazari, A.; Pellicer-Valero, O.J.; Gómez-Sanchıs, J.; Bernardi, B.; Cubero, S.; Benalia, S.; Zimbalatti, G.; Blasco, J. Application of deep convolutional neural networks for the detection of anthracnose in olives using VIS/NIR hyperspectral images. Comput. Electron. Agric. 2021, 187, 106252. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, G.; Yin, X.; Hu, R.; Gu, C.; Pan, Z.; Zhou, X.; Chen, Y. Integrating spectral and image data to detect Fusarium head blight of wheat. Comput. Electron. Agric. 2020, 175, 105588. [Google Scholar] [CrossRef]
- Elegbede, C.F.; Papadopoulos, A.; Gauvreau, J.; Crépet, A. A Bayesian network to optimise sample size for food allergen monitoring. Food Control 2015, 47, 212–220. [Google Scholar] [CrossRef]
- Li, H.; Lin, Z.; An, Z.; Zuo, S.; Zhu, W.; Zhang, Z.; Mu, Y.; Cao, L.; Prades García, J.D. Automatic electrocardiogram detection and classification using bidirectional long short-term memory network improved by Bayesian optimization. Biomed. Signal Process. 2022, 73, 103424. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, L.; Li, J.; Deng, L.; Ni, J.; Han, Z. Aflatoxin rapid detection based on hyperspectral with 1D-convolution neural network in the pixel level. Food Chem. 2021, 360, 129968. [Google Scholar] [CrossRef] [PubMed]
- Sasank, V.V.S.; Venkateswarlu, S. An automatic tumour growth prediction based segmentation using full resolution convolutional network for brain tumour. Biomed. Signal Process. 2022, 71, 103090. [Google Scholar] [CrossRef]
- Wang, D.; Li, Z.; Dey, N.; Ashour, A.S.; Moraru, L.; Biswas, A.; Shi, F. Optical pressure sensors based plantar image segmenting using an improved fully convolutional network. Optik 2019, 179, 99–114. [Google Scholar] [CrossRef]
- Jiang, Z.; Tahmasebi, P.; Mao, Z. Deep residual U-net convolution neural networks with autoregressive strategy for fluid flow predictions in large-scale geosystems. Adv. Water Resour. 2021, 150, 103878. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, C.; Xu, X.; Chen, J. RIC-Net: A plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism. Comput. Electron. Agric. 2022, 193, 106644. [Google Scholar] [CrossRef]
- Aceto, G.; Ciuonzo, D.; Montieri, A.; Pescapé, A. DISTILLER: Encrypted traffic classification via multimodal multitask deep learning. J. Netw. Comput. Appl. 2021, 183–184, 102985. [Google Scholar] [CrossRef]
- Habic, V.; Semenov, A.; Pasiliao, E.L. Multitask deep learning for native language identification. Knowl.-Based Syst. 2020, 209, 106440. [Google Scholar] [CrossRef]
- Li, Y.; Kazemeini, A.; Mehta, Y.; Cambria, E. Multitask learning for emotion and personality traits detection. Neurocomputing 2022, 493, 340–350. [Google Scholar] [CrossRef]
- Men, H.; Yuan, H.; Shi, Y.; Liu, M.; Wang, Q.; Liu, J. A residual network with attention module for hyperspectral information of recognition to trace the origin of rice. Spectrochim. Acta Part A Mol. Spectrosc. 2021, 263, 120155. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Cheng, J.; Yi, J. Copper price forecasted by hybrid neural network with Bayesian Optimization and wavelet transform. Resour. Policy 2022, 75, 102520. [Google Scholar] [CrossRef]
- Huan, J.; Cao, W.; Qin, Y. Prediction of dissolved oxygen in aquaculture based on EEMD and LSSVM optimized by the Bayesian evidence framework. Comput. Electron. Agric. 2018, 150, 257–265. [Google Scholar] [CrossRef]
- Huang, X.; Yang, X.; Zhao, J.; Xiong, L.; Ye, Y. A new weighting k-means type clustering framework with an l2-norm regularization. Knowl.-Based Syst. 2018, 151, 165–179. [Google Scholar] [CrossRef]
- Chen, S.; Chen, G.; Gu, R. An efficient L2-norm regularized least-squares temporal difference learning algorithm. Knowl.-Based Syst. 2013, 45, 94–99. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, X. An L2-norm regularized incremental-stencil WENO scheme for compressible flows. Comput. Fluids 2020, 213, 104721. [Google Scholar] [CrossRef]
- Qu, H.; Zheng, J.; Tang, X. Effects of loss function and data sparsity on smooth manifold extraction with deep model. Expert Syst. Appl. 2022, 198, 116851. [Google Scholar] [CrossRef]
- Scarpiniti, M.; Sarv, A.S.; Baccarelli, E.; Piazzo, L.; Momenzadeh, A. A novel unsupervised approach based on the hidden features of deep denoising autoencoders for COVID-19 disease detection. Expert Syst. Appl. 2022, 192, 116366. [Google Scholar] [CrossRef]
- Hu, H.; Hsu, L.; Lee, T. All-round improvement in DCT-based blind image watermarking with visual enhancement via denoising autoencoder. Comput. Electr. Eng. 2022, 100, 107845. [Google Scholar] [CrossRef]
- Vitale, R.; Hugelier, S.; Cevoli, D.; Ruckebusch, C. A spatial constraint to model and extract texture components in Multivariate Curve Resolution of near-infrared hyperspectral images. Anal. Chim. Acta 2020, 1095, 30–37. [Google Scholar] [CrossRef]
- He, X.; Yan, C.; Jiang, X.; Shen, F.; You, J.; Fang, Y. Classification of aflatoxin B1 naturally contaminated peanut using visible and near-infrared hyperspectral imaging by integrating spectral and texture features. Infrared Phys. Technol. 2021, 114, 103652. [Google Scholar] [CrossRef]
- Elmaz, F.; Eyckerman, R.; Casteels, W.; Latré, S.; Hellinckx, P. CNN-LSTM architecture for predictive indoor temperature modeling. Build. Environ. 2021, 206, 108327. [Google Scholar] [CrossRef]
Basic | SG | OSC | Normalize | MSC | 1st | 2nd | DAE | |
---|---|---|---|---|---|---|---|---|
Train (%) | 89.60 | 98.47 | 99.08 | 89.30 | 87.16 | 93.88 | 82.26 | 95.72 |
Test (%) | 89.38 | 91.15 | 92.59 | 93.81 | 90.74 | 91.15 | 81.25 | 95.54 |
MRes-FCN (Group 3) | MRes-FCN (Group 10) | CNN (Group 7) | SVM (Group 9) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC (%) | PRC (%) | RC (%) | SPC (%) | ACC (%) | PRC (%) | RC (%) | SPC (%) | ACC (%) | PRC (%) | RC (%) | SPC (%) | ACC (%) | PRC (%) | RC (%) | SPC (%) | |
Huinong | 96.43 | 100 | 96.55 | 100 | 95.54 | 100 | 93.33 | 100 | 93.81 | 100 | 93.33 | 100 | 94.64 | 100 | 90.32 | 100 |
Zhongning | 100 | 96.55 | 100 | 100 | 93.33 | 100 | 100 | 93.33 | 100 | 96.43 | 93.10 | 98.75 | ||||
Tongxin | 100 | 96.55 | 100 | 100 | 93.33 | 100 | 96.43 | 90 | 98.73 | 100 | 96.55 | 100 | ||||
Guyuan | 85.71 | 100 | 95.45 | 82.14 | 100 | 94.38 | 78.57 | 100 | 93.26 | 82.14 | 100 | 94.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Li, K.; Hao, J.; Dong, F.; Wang, S.; Rodas-González, A.; Zhang, Z.; Li, H.; Wu, K. Identification of Near Geographical Origin of Wolfberries by a Combination of Hyperspectral Imaging and Multi-Task Residual Fully Convolutional Network. Foods 2022, 11, 1936. https://doi.org/10.3390/foods11131936
Cui J, Li K, Hao J, Dong F, Wang S, Rodas-González A, Zhang Z, Li H, Wu K. Identification of Near Geographical Origin of Wolfberries by a Combination of Hyperspectral Imaging and Multi-Task Residual Fully Convolutional Network. Foods. 2022; 11(13):1936. https://doi.org/10.3390/foods11131936
Chicago/Turabian StyleCui, Jiarui, Kenken Li, Jie Hao, Fujia Dong, Songlei Wang, Argenis Rodas-González, Zhifeng Zhang, Haifeng Li, and Kangning Wu. 2022. "Identification of Near Geographical Origin of Wolfberries by a Combination of Hyperspectral Imaging and Multi-Task Residual Fully Convolutional Network" Foods 11, no. 13: 1936. https://doi.org/10.3390/foods11131936
APA StyleCui, J., Li, K., Hao, J., Dong, F., Wang, S., Rodas-González, A., Zhang, Z., Li, H., & Wu, K. (2022). Identification of Near Geographical Origin of Wolfberries by a Combination of Hyperspectral Imaging and Multi-Task Residual Fully Convolutional Network. Foods, 11(13), 1936. https://doi.org/10.3390/foods11131936