Chemical Composition and Antioxidant Profile of Sorghum (Sorghumbicolor (L.) Moench) and Pearl Millet (Pennisetumglaucum (L.) R.Br.) Grains Cultivated in the Far-North Region of Cameroon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples Preparation
2.3. Characterization of Sorghum and Pearl Millet Flours
2.3.1. Proximate Analysis
2.3.2. Determination of Mineral Content
2.3.3. Determination of Phytochemical Profile of Flours
2.3.4. Antioxidant Activity
2.3.5. HPLC Analysis of Polyphenols
2.4. Statistical Analysis
3. Results and Discussion
3.1. Proximate Chemical Composition of Sorghum and Pearl Millet Flours
3.2. The Mineral Content of Sorghum and Pearl Millet Flours
3.3. Phytochemicals Profile of Sorghum and Pearl Millet Flours
3.4. Antioxidant Activity of Sorghum and Pearl Millet Flours
3.5. High-Performance Liquid Chromatography Analysis
3.6. Principal Components Analysis (PCA) of Experimental Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Morais Cardoso, L.; Pinheiro, S.S.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 372–390. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.B.; Vijayabharathi, R.; Sathyabama, S.; Malleshi, N.G.; Priyadarisini, V.B. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J. Food Sci. Technol. 2014, 51, 1021–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, R.; Vanga, S.K.; Wang, J.; Orsat, V.; Raghavan, V. Millets for Food Security in the Context of Climate Change: A Review. Sustainability 2018, 10, 2228. [Google Scholar] [CrossRef] [Green Version]
- Afify, A.E.-M.M.R.; El-Beltagi, H.S.; El-Salam, S.M.A.; Omran, A.A. Biochemical changes in phenols, flavonoids, tannins, vitamin E, β–carotene and antioxidant activity during soaking of three white sorghum varieties. Asian Pac. J. Trop. Biomed. 2012, 2, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Dillon, S.L.; Shapter, F.M.; Henry, R.J.; Cordeiro, G.; Izquierdo, L.; Lee, L.S. Domestication to Crop Improvement: Genetic Resources for Sorghum and Saccharum (Andropogoneae). Ann. Bot. 2007, 100, 975–989. [Google Scholar] [CrossRef] [Green Version]
- Elkhalifa, A.E.O.; Schiffler, B.; Bernhardt, R. Effect of fermentation on the functional properties of sorghum flour. Food Chem. 2005, 92, 1–5. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.; Guan, X.; Liu, J.; Zhang, M.; Xu, B. Optimization of germination conditions to enhance hydroxyl radical inhibition by water-soluble protein from stress millet. J. Cereal Sci. 2008, 48, 619–624. [Google Scholar] [CrossRef]
- Gupta, N.; Srivastava, A.K.; Pandey, V.N. Biodiversity and Nutraceutical Quality of Some Indian Millets. Proc. Natl. Acad. Sci. India Sect. B Boil. Sci. 2012, 82, 265–273. [Google Scholar] [CrossRef]
- Lee, H.-S.; Santana, Á.L.; Peterson, J.; Yucel, U.; Perumal, R.; De Leon, J.; Lee, S.-H.; Smolensky, D. Anti-Adipogenic Activity of High-Phenolic Sorghum Brans in Pre-Adipocytes. Nutrients 2022, 14, 1493. [Google Scholar] [CrossRef]
- Woo, H.J.; Oh, I.T.; Lee, J.Y.; Jun, D.Y.; Seu, M.C.; Woo, K.S.; Nam, M.H.; Kim, Y.H. Apigeninidin induces apoptosis through activation of Bak and Bax and subsequent mediation of mitochondrial damage in human promyelocytic leukemia HL-60 cells. Process Biochem. 2012, 47, 1861–1871. [Google Scholar] [CrossRef]
- Vila-Real, C.; Pimenta-Martins, A.; Maina, N.; Gomes, A.; Pinto, E. Nutritional Value of African Indigenous Whole Grain Cereals Millet and Sorghum. Nutr. Food Sci. Int. J. 2017, 4, 555628. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdel-Aal, E.-S.M.; Noaman, M. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem. 2006, 98, 32–38. [Google Scholar] [CrossRef]
- Taleon, V.; Dykes, L.; Rooney, W.L.; Rooney, L.W. Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. J. Cereal Sci. 2012, 56, 470–475. [Google Scholar] [CrossRef]
- Dicko, M.H.; Gruppen, H.; Barro, C.; Traore, A.S.; van Berkel, W.J.H.; Voragen, A.G.J. Impact of Phenolic Compounds and Related Enzymes in Sorghum Varieties for Resistance and Susceptibility to Biotic and Abiotic Stresses. J. Chem. Ecol. 2005, 31, 2671–2688. [Google Scholar] [CrossRef] [PubMed]
- Obadina, A.; Ishola, I.O.; Adekoya, I.O.; Soares, A.G.; de Carvalho, C.W.P.; Barboza, H.T. Nutritional and physico-chemical properties of flour from native and roasted whole grain pearl millet (Pennisetum glaucum [L.] R. Br.). J. Cereal Sci. 2016, 70, 247–252. [Google Scholar] [CrossRef]
- Ghimire, B.-K.; Seo, J.-W.; Yu, C.-Y.; Kim, S.-H.; Chung, I.-M. Comparative Study on Seed Characteristics, Antioxidant Activity, and Total Phenolic and Flavonoid Contents in Accessions of Sorghum bicolor (L.) Moench. Molecules 2021, 26, 3964. [Google Scholar] [CrossRef]
- Kardeş, Y.M.; Kaplan, M.; Kale, H.; Yılmaz, M.F.; Karaman, K.; Temizgül, R.; Akar, T. Biochemical composition of selected lines from sorghum (Sorghum bicolor L.) landraces. Planta 2021, 254, 26. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International; AOAC International: Rockville, ML, USA, 2005. [Google Scholar]
- Cheok, C.Y.; Chin, N.L.; Yusof, Y.A.; Talib, R.A.; Law, C.L. Optimization of total monomeric anthocyanin (TMA) and total phenolic content (TPC) extractions from mangosteen (Garcinia mangostana Linn.) hull using ultrasonic treatments. Ind. Crops Prod. 2013, 50, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Turturică, M.; Stănciuc, N.; Bahrim, G.; Râpeanu, G. Effect of thermal treatment on phenolic compounds from plum (prunus domestica) extracts—A kinetic study. J. Food Eng. 2016, 171, 200–207. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Kumar, V.G.; Viswanathan, R.; Malathi, P.; Nandakumar, M.P.; Sundar, A.R. Differential Induction of 3-deoxyanthocyanidin Phytoalexins in Relation to Colletotrichum falcatum Resistance in Sugarcane. Sugar Tech 2015, 17, 314–321. [Google Scholar] [CrossRef]
- de Carvalho, L.M.J.; Gomes, P.B.; de Oliviera Godoy, R.L.; Pacheco, S.; do Monte, P.H.F.; de Carvalho, J.L.V.; Nutti, M.R.; Neves, A.C.L.; Vieira, A.C.R.A.; Ramos, S.R.R. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Res. Int. 2012, 47, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Vaintraub, I.A.; Lapteva, N.A. Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Anal. Biochem. 1988, 175, 227–230. [Google Scholar] [CrossRef]
- Castro-Vargas, H.I.; Rodríguez-Varela, L.I.; Ferreira, S.R.S.; Parada-Alfonso, F. Extraction of phenolic fraction from guava seeds (Psidium guajava L.) using supercritical carbon dioxide and co-solvents. J. Supercrit. Fluids 2010, 51, 319–324. [Google Scholar] [CrossRef]
- Păcularu-Burada, B.; Turturică, M.; Rocha, J.M.; Bahrim, G.-E. Statistical Approach to Potentially Enhance the Postbiotication of Gluten-Free Sourdough. Appl. Sci. 2021, 11, 5306. [Google Scholar] [CrossRef]
- Shegro, A.; Shargie, N.G.; Van Biljon, A.; Labuschagne, M.T. Diversity in starch, protein and mineral composition of sorghum landrace accessions from Ethiopia. J. Crop Sci. Biotechnol. 2012, 15, 275–280. [Google Scholar] [CrossRef]
- Udachan, I.; Sahoo, A.K.; Hend, G.M. Extraction and characterization of sorghum (Sorghum bicolor L. Moench) starch. Int. Food Res. J. 2012, 19, 315–319. [Google Scholar]
- Iyabo, O.O.; Ibiyinka, O.; Abimbola Deola, O. Comparative study of nutritional, functional and anti-nutritional properties of white sorghum bicolor (Sorghum) and Pennisetum glaucum (pearl millet). Int. J. Eng. Technol. Manag. Res. 2018, 5, 151–158. [Google Scholar] [CrossRef]
- Chavan, U.D.; Patil, J.V.; Shinde, M.S. Nutritional and roti quality of sorghum genotypes. Indones. J. Agric. Sci. 2016, 10, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Songre-Ouattara, L.T.; Bationo, F.; Parkouda, C.; Dao, A.; Bassole, I.H.N.; Diawara, B. Qualité des grains et aptitude à la transformation: Cas des variétés de Sorghum bicolor, Pennisetumg laucum et Zea mays en usage en Afrique de l’Ouest. Int. J. Biol. Chem. Sci. 2015, 9, 2819–2832. [Google Scholar] [CrossRef] [Green Version]
- Dube, M.; Nyoni, N.; Bhebhe, S.; Maphosa, M.; Bombom, A. Pearl millet as a sustainable alternative cereal for novel value-added products in sub-saharan africa: A review. Agric. Rev. 2021, 42, 240–244. [Google Scholar] [CrossRef]
- Obilana, A.B.; Manyasa, E. Millets. In Pseudocereals and Less Common Cereals: Grain Properties and Utilization Potential; Belton, P.S., Taylor, J.R.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 177–217. [Google Scholar] [CrossRef]
- Tsozué, D.; Noubissie, N.M.M.; Mamdem, E.L.T.; Basga, S.D.; Oyono, D.L.B. Effects of environmental factors and soil properties on soil organic carbon stock in a natural dry tropical area of Cameroon. Soil 2021, 7, 677–691. [Google Scholar] [CrossRef]
- Awika, J.M.; Rooney, L.W.; Waniska, R.D. Anthocyanins from black sorghum and their antioxidant properties. Food Chem. 2005, 90, 293–301. [Google Scholar] [CrossRef]
- Dykes, L.; Seitz, L.M.; Rooney, W.L.; Rooney, L.W. Flavonoid composition of red sorghum genotypes. Food Chem. 2009, 116, 313–317. [Google Scholar] [CrossRef]
- Dykes, L.; Rooney, L.W. Sorghum and millet phenols and antioxidants. J. Cereal Sci. 2006, 44, 236–251. [Google Scholar] [CrossRef]
- Przybylska-Balcerek, A.; Frankowski, J.; Stuper-Szablewska, K. The influence of weather conditions on bioactive compound content in sorghum grain. Eur. Food Res. Technol. 2020, 246, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Punia, H.; Tokas, J.; Malik, A.; Satpal; Sangwan, S. Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Res. Commun. 2021, 49, 343–353. [Google Scholar] [CrossRef]
- Pontieri, P.; Pepe, G.; Campiglia, P.; Merciai, F.; Basilicata, M.G.; Smolensky, D.; Calcagnile, M.; Troisi, J.; Romano, R.; Del Giudice, F.; et al. Comparison of Content in Phenolic Compounds and Antioxidant Capacity in Grains of White, Red, and Black Sorghum Varieties Grown in the Mediterranean Area. ACS Food Sci. Technol. 2021, 1, 1109–1119. [Google Scholar] [CrossRef]
- Gull, A.; Prasad, K.; Kumar, P. Physico-chemical, functional and antioxidant properties of millet flours. J. Agric. Eng. Food Technol. 2015, 2, 73–75. [Google Scholar]
- Kumari, D.; Madhujith, T.; Chandrasekara, A. Comparison of phenolic content and antioxidant activities of millet varieties grown in different locations in Sri Lanka. Food Sci. Nutr. 2016, 5, 474–485. [Google Scholar] [CrossRef]
- Coulibaly, A.; Kouakou, B.; Chen, J. Phytic Acid in Cereal Grains: Structure, Healthy or Harmful Ways to Reduce Phytic Acid in Cereal Grains and Their Effects on Nutritional Quality. Am. J. Plant Nutr. Fertil. Technol. 2011, 1, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Van Hung, P. Phenolic Compounds of Cereals and Their Antioxidant Capacity. Crit. Rev. Food Sci. Nutr. 2016, 56, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Ghinea, I.O.; Mihaila, M.D.I.; Blaga, G.-V.; Avramescu, S.M.; Cudalbeanu, M.; Isticioaia, S.-F.; Dinica, R.M.; Furdui, B. HPLC-DAD Polyphenolic Profiling and Antioxidant Activities of Sorghum bicolor during Germination. Agronomy 2021, 11, 417. [Google Scholar] [CrossRef]
- Hong, S.; Pangloli, P.; Perumal, R.; Cox, S.; Noronha, L.E.; Dia, V.P.; Smolensky, D. A Comparative Study on Phenolic Content, Antioxidant Activity and Anti-Inflammatory Capacity of Aqueous and Ethanolic Extracts of Sorghum in Lipopolysaccharide-Induced RAW 264.7 Macrophages. Antioxidants 2020, 9, 1297. [Google Scholar] [CrossRef]
Samples | Moisture (%) | Proteins | Lipids | Fibers | Ash | Carbohydrates |
---|---|---|---|---|---|---|
Sorghum Varieties | ||||||
white | 9.33 ± 0.01 a | 19.62 ± 0.01 a | 3.49 ± 0.02 a | 2.56 ± 0.02 a | 1.59 ± 0.01 a | 72.71± 0.02 a |
yellow-pale | 8.51± 0.01 b | 23.21 ± 0.01 b | 3.62 ± 0.01 b | 3.39 ± 0.01 b | 1.44 ± 0.01 b | 68.31 ± 0.04 b |
yellow | 8.63 ± 0.01 c | 23.78 ± 0.01 c | 2.74 ± 0.01 c | 3.79 ± 0.03 c | 1.21 ± 0.01 c | 68.45 ± 0.02 c |
red | 8.85 ± 0.01 d | 23.51 ± 0.01 d | 3.33 ± 0.01 d | 4.70 ± 0.03 d | 1.15 ± 0.01 d | 67.28 ± 0.02 d |
Pearl Millet Varieties | ||||||
gawane | 8.00 ± 0.01 e | 27.85 ± 0.01 e | 5.11 ± 0.01 e | 5.68 ± 0.03 e | 2.24 ± 0.01 e | 59.09 ± 0.01 e |
mouri | 8.03 ± 0.01 f | 32.56 ± 0.02 f | 5.36 ± 0.01 f | 3.72 ± 0.05 c | 2.77 ± 0.01 f | 55.57 ± 0.04 f |
Samples | Ca | Na | K | Mg | P |
---|---|---|---|---|---|
Sorghum Varieties | |||||
white | 11.20 ± 0.08 a | 4.55 ± 0.03 c | 328.70 ± 0.89 d | 130.47 ± 0.13 a | 256.74 ± 1.04 a |
yellow-pale | 12.91 ± 0.09 b | 3.98 ± 0.13 a | 313.39 ± 8.31 c | 149.11 ± 0.46 b | 311.37 ± 0.13 b |
yellow | 11.90 ± 0.01 c | 3.94 ± 0.01 a | 314.34 ± 1.10 c | 139.35 ± 0.03 c | 279.73 ± 0.76 c |
red | 10.81 ± 0.03 d | 4.21 ± 0.01 b | 278.68 ± 0.21 a | 145.69 ± 0.63 d | 301.77 ± 0.35 d |
Pearl Millet Varieties | |||||
gawane | 13.66 ± 0.09 e | 4.48 ± 0.05 c | 302.52 ± 1.36 b | 132.47 ± 0.21 e | 266.03 ± 0.90 e |
mouri | 15.67 c ± 0.30 f | 3.96 ± 0.03 a | 307.06 ± 1.92 bc | 142.48 ± 0.40 f | 292.66 ± 0.12 f |
Samples | Cu | Fe | Mn | Zn | Samples |
---|---|---|---|---|---|
Sorghum Varieties | |||||
White | 0.12 ± 0.07 a | 2.75 ± 0.15 a | 1.48 ± 0.05 a | 1.34 ± 0.01 a | White |
yellow-pale | 0.25 ± 0.07 c | 3.15 ± 0.08 b | 1.69 ± 0.01 b | 1.71 ± 0.01 b | yellow-pale |
yellow | 0.21 ± 0.08 b | 3.28 ± 0.07 c | 1.40 ± 0.02 c | 1.38 ± 0.03 c | yellow |
red | 0.32 ± 0.08 c | 3.07 ± 0.01 d | 1.56 ± 0.01 d | 2.13 ± 0.06 d | red |
Pearl Millet Varieties | |||||
Gawane | 0.69 ± 0.03 e | 4.45 ± 0.01 e | 0.54 ± 0.01 e | 2.78 ± 0.02 e | Gawane |
Mouri | 0.59 ± 0.06 d | 4.92 ± 0.04 f | 0.92 ± 0.01 f | 1.97± 0.01 f | Mouri |
Samples | TPC (mg GAE/g DE) | TFC (mg CE/g DE) | TDC (mg/g DE) | TCC (mg/100 g DE) | Phytates (mg/100 g DW) |
---|---|---|---|---|---|
Sorghum Varieties | |||||
white | 22.48 ± 0.75 a | 7.14 ± 0.34 a | 1.60 ± 0.03 a | 0.99 ± 0.10 a | 330.44 ± 19.59 a |
yellow-pale | 33.96 ± 0.80 b | 5.18 ± 0.64 b | 1.04 ± 0.05 b | 0.94 ± 0.02 a | 391.00 ± 18.95 b |
yellow | 21.91 ± 0.93 a | 19.97 ± 0.52 c | 1.20 ± 0.02 b | 0.74 ± 0.02 b | 389.91 ± 24.57 b |
red | 82.22 ± 3.29 c | 23.82 ± 1.27 d | 9.06 ± 0.32 c | 0.66 ± 0.03 c | 223.33 ± 12.24 c |
Pearl Millet Varieties | |||||
gawane | 17.36 ± 0.44 a | 9.23 ± 0.10 e | 0.74 ± 0.01 d | 0.52 ± 0.03 d | 384.93 ± 18.28 b |
mouri | 19.15 ± 0.56 a | 8.85 ± 0.06 e | 1.01 ± 0.05 b | 0.53 ± 0.01 d | 273.60 ± 15.54 d |
Samples | DPPH (%) | ABTS (%) |
---|---|---|
Sorghum Cultivars | ||
white | 73.18 ± 5.26 b | 95.02 ± 5.51 a |
yellow-pale | 93.14 ± 4.46 c | 92.65 ± 6.76 a |
yellow | 64.09 ± 3.29 a | 98.14 ± 5.48 a |
red | 86.43 ± 5.03 c | 95.77 ± 3.97 a |
Pearl Millet Cultivars | ||
gawane | 70.55 ± 3.62 ab | 90.64 ± 4.48 a |
mouri | 73.27 ± 5.36 b | 89.24 ± 1.64 a |
Bioactive Compounds Identified (μg/mL) | Sorghum Cultivars | Pearl Millet Cultivars | ||||
---|---|---|---|---|---|---|
White | Yellow-Pale | Yellow | Red | Gawane | Mouri | |
Gallic Acid | 115.11 ± 2.00 c | 170.01 ± 0.80 b | 104.73 ± 0.90 d | ND | 185.79 ± 0.70 a | 165.59 ± 0.10 b |
Catechin | ND | ND | NQ | 87.41 ± 0.90 a | 12.65 ± 0.60 c | 75.73 ± 0.30 b |
Vanillic Acid | ND | 21.34 ± 0.7 | 548.65 ± 1.40 b | 18.24 ± 0.04 a | 20.27 ± 0.20 b | ND |
Chlorogenic Acid | 10.11 ± 0.10 f | 22.37 ± 0.11 d | 59.36 ± 0.09 a | 32.71 ± 0.08 c | 19.06 ± 0.07 e | 34.61 ± 0.12 b |
Epicatechin | ND | ND | 114.80 ± 2.69 a | ND | ND | ND |
Caffeic Acid | 7.42 ± 0.04 a | ND | ND | 4.72 ± 0.01 b | ND | 4.32 ± 0.05 c |
Ferulic Acid | 2.73 ± 0.22 d | 5.11 ± 0.07 c | 55.96 ± 0.17 a | 34.16 ± 0.49 b | NQ | NQ |
Quercetin | ND | ND | ND | 53.85 ± 0.74 a | ND | ND |
Kaempferol | ND | ND | ND | 11.49 ± 0.10 a | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mawouma, S.; Condurache, N.N.; Turturică, M.; Constantin, O.E.; Croitoru, C.; Rapeanu, G. Chemical Composition and Antioxidant Profile of Sorghum (Sorghumbicolor (L.) Moench) and Pearl Millet (Pennisetumglaucum (L.) R.Br.) Grains Cultivated in the Far-North Region of Cameroon. Foods 2022, 11, 2026. https://doi.org/10.3390/foods11142026
Mawouma S, Condurache NN, Turturică M, Constantin OE, Croitoru C, Rapeanu G. Chemical Composition and Antioxidant Profile of Sorghum (Sorghumbicolor (L.) Moench) and Pearl Millet (Pennisetumglaucum (L.) R.Br.) Grains Cultivated in the Far-North Region of Cameroon. Foods. 2022; 11(14):2026. https://doi.org/10.3390/foods11142026
Chicago/Turabian StyleMawouma, Saliou, Nina Nicoleta Condurache, Mihaela Turturică, Oana Emilia Constantin, Constantin Croitoru, and Gabriela Rapeanu. 2022. "Chemical Composition and Antioxidant Profile of Sorghum (Sorghumbicolor (L.) Moench) and Pearl Millet (Pennisetumglaucum (L.) R.Br.) Grains Cultivated in the Far-North Region of Cameroon" Foods 11, no. 14: 2026. https://doi.org/10.3390/foods11142026