Discrimination of Black and White Sesame Seeds Based on Targeted and Non-Targeted Platforms with Chemometrics: From Profiling towards Identification of Chemical Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Sample Information and Treatment
2.3. ICP-MS Determination of Chemical Elements in the Sesame Seeds
2.4. HS-GC-IMS Analysis of Volatile Flavor Components in the Sesame Seeds
2.5. GC-MS Determination of Fatty Acids in the Sesame Seeds
2.6. UHPLC-Q-TOF/MS Profiling of Metabolites in the Sesame Seeds
2.7. Data Statistics
3. Results and Discussion
3.1. Comparison of Element Profiles between Black and White Sesame Seeds
3.2. Comparison of Volatile Profiles between Black and White Sesame Seeds
3.3. Comparison of Fatty Acid Profiles between Black and White Sesame Seeds
3.4. Comparison of Metabolite Profiles between Black and White Sesame Seeds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Botelho, J.R.S.; Medeiros, N.G.; Rodrigues, A.M.C.; Araújo, M.E.; Machado, N.T.; Santos, A.G.; Santos, I.R.; Gomes-Leal, W.; Carvalho, R.N., Jr. Black sesame (Sesamum indicum L.) seeds extracts by CO2 supercritical fluid extraction: Isotherms of global yield, kinetics data, total fatty acids, phytosterols and neuroprotective effects. J. Supercrit. Fluids 2014, 93, 49–55. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Kim, E.; Shin, B.K.; Seo, J.-A.; Kim, Y.-S.; Lee, D.Y.; Choi, H.-K. NMR-based metabolic profiling discriminates the geographical origin of raw sesame seeds. Food Control 2020, 112, 107113. [Google Scholar] [CrossRef]
- Yadav, A.; Saini, I.; Kaushik, P.; Ansari, M.A.; Khan, M.R.; Haq, N. Effects of arbuscular mycorrhizal fungi and P-solubilizing Pseudomonas fluorescence (ATCC-17400) on morphological traits and mineral content of sesame. Saudi J. Biol. Sci. 2021, 28, 2649–2654. [Google Scholar] [CrossRef]
- Lee, B.M.; Lee, E.M.; Kang, D.J.; Seo, J.-A.; Choi, H.-K.; Kim, Y.-S.; Lee, D.Y. Discovery study of integrative metabolic profiles of sesame seeds cultivated in different countries. LWT-Food Sci. Technol. 2020, 129, 109454. [Google Scholar] [CrossRef]
- Dravie, E.E.; Kortei, N.K.; Essuman, E.K.; Tettey, C.O.; Boakye, A.A.; Hunkpe, G. Antioxidant, phytochemical and physicochemical properties of sesame seed (Sesamum indicum L). Sci. Afr. 2020, 8, e00349. [Google Scholar] [CrossRef]
- Parsaeian, M.; Shahabi, M.; Hassanpour, H. The integration of image processing and artificial neural network to estimate four fatty acid contents of sesame oil. LWT 2020, 129, 109476. [Google Scholar] [CrossRef]
- De Magalhães, B.E.A.; Santana, D.D.A.; Silva, I.M.D.J.; Minho, L.A.C.; Gomes, M.; Almeida, J.R.G.D.S.; dos Santos, W.N.L. Determination of phenolic composition of oilseed whole flours by HPLC-DAD with evaluation using chemometric analyses. Microchem. J. 2020, 155, 104683. [Google Scholar] [CrossRef]
- Morris, J.B.; Wang, M.L.; Tonnis, B.D. Variability for oil, protein, lignan, tocopherol, and fatty acid concentrations in eight sesame (Sesamum indicum L.) genotypes. Ind. Crop. Prod. 2021, 164, 113355. [Google Scholar] [CrossRef]
- Shen, Y.; Hu, L.-T.; Xia, B.; Ni, Z.-J.; Elam, E.; Thakur, K.; Zhang, J.-G.; Wei, Z.-J. Effects of different sulfur-containing substances on the structural and flavor properties of defatted sesame seed meal derived Maillard reaction products. Food Chem. 2021, 365, 130463. [Google Scholar] [CrossRef]
- Wu, Z.; Qin, D.; Duan, J.; Li, H.; Sun, J.; Huang, M.; Sun, B. Characterization of benzenemethanethiol in sesame-flavour baijiu by high-performance liquid chromatography-mass spectrometry and sensory science. Food Chem. 2021, 364, 130345. [Google Scholar] [CrossRef]
- Wacal, C.; Ogata, N.; Sasagawa, D.; Handa, T.; Basalirwa, D.; Acidri, R.; Ishigaki, T.; Yamamoto, S.; Nishihara, E. Seed yield, crude protein and mineral nutrient contents of sesame during a two-year continuous cropping on upland field converted from a paddy. Field Crop. Res. 2019, 240, 125–133. [Google Scholar] [CrossRef]
- Cheng, R.; Liao, X.; Addou, A.M.; Qian, J.; Wang, S.; Cheng, Z.; Wang, L.; Huang, J. Effects of “nine steaming nine sun-drying” on proximate composition, oil properties and volatile compounds of black sesame seeds. Food Chem. 2021, 344, 128577. [Google Scholar] [CrossRef]
- Chun, Y.S.; Kim, S.-Y.; Kim, M.; Lim, J.Y.; Shin, B.K.; Kim, Y.-S.; Lee, D.Y.; Seo, J.-A.; Choi, H.-K. Mycobiome analysis for distinguishing the geographical origins of sesame seeds. Food Res. Int. 2021, 143, 110271. [Google Scholar] [CrossRef]
- Cloos, A.-S.; Ghodsi, M.; Stommen, A.; Vanderroost, J.; Dauguet, N.; Pollet, H.; D’Auria, L.; Mignolet, E.; Larondelle, Y.; Terrasi, R.; et al. Interplay between plasma membrane lipid alteration, oxidative stress and calcium-based mechanism for extracellular vesicle biogenesis from erythrocytes during blood storage. Front. Physiol. 2020, 11, 712. [Google Scholar] [CrossRef]
- Mi, S.; Yu, W.; Li, J.; Liu, M.; Sang, Y.; Wang, X. Characterization and discrimination of chilli peppers based on multi-element and non-targeted metabolomics analysis. LWT 2020, 131, 109742. [Google Scholar] [CrossRef]
- Benton, H.P.; Ivanisevic, J.; Mahieu, N.G.; Kurczy, M.E.; Johnson, C.H.; Franco, L.; Rinehart, D.; Valentine, E.; Gowda, H.; Ubhi, B.K.; et al. Autonomous metabolomics for rapid metabolite identification in global profiling. Anal. Chem. 2014, 87, 884–891. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.; Liu, C.; Lu, X.; Fang, D.; Hu, Q.; Zhang, Y.; Zhao, L. Characterization of flavor frame in shiitake mushrooms (Lentinula edodes) detected by HS-GC-IMS coupled with electronic tongue and sensory analysis: Influence of drying techniques. LWT-Food Sci. Technol. 2021, 146, 111402. [Google Scholar] [CrossRef]
- Tenyang, N.; Ponka, R.; Tiencheu, B.; Djikeng, F.T.; Azmeera, T.; Karuna, M.S.; Prasad, R.B.; Womeni, H.M. Effects of boiling and roasting on proximate composition, lipid oxidation, fatty acid profile and mineral content of two sesame varieties commercialized and consumed in Far-North Region of Cameroon. Food Chem. 2017, 221, 1308–1316. [Google Scholar] [CrossRef]
- Kanu, P.J. Biochemical analysis of black and white sesame seeds from China. Am. J. Biochem. Mol. Biol. 2011, 1, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Mi, S.; Shang, K.; Li, X.; Zhang, C.H.; Liu, J.Q.; Huang, D.Q. Characterization and discrimination of selected China’s domestic pork using an LC-MS-based lipidomics approach. Food Control 2019, 100, 305–314. [Google Scholar] [CrossRef]
- Fei, X.; Qi, Y.; Lei, Y.; Wang, S.; Hu, H.; Wei, A. Transcriptome and metabolite analysis reveals key genes for melanin synthesis during the development of Zanthoxylum bungeanum seeds. Ind. Crop. Prod. 2021, 165, 113419. [Google Scholar] [CrossRef]
- Bai, L.; Cheng, X.; Xu, J.; Wang, X.; Zhao, H.; Tao, Y.; Huang, H. Black sesame pigment extract from sesame dregs by subcritical CO2: Extraction optimization, composition analysis, binding copper and antioxidant protection. LWT-Food Sci. Technol. 2019, 100, 28–34. [Google Scholar] [CrossRef]
- Li, C.; Hou, L. Review on volatile flavor components of roasted oilseeds and their products. Grain Oil Sci. Technol. 2018, 1, 151–156. [Google Scholar]
- Chen, X.; Chen, H.; Xiao, J.; Liu, J.; Tang, N.; Zhou, A. Variations of volatile flavour compounds in finger citron (Citrus medica L. var. sarcodactylis) pickling process revealed by E-nose, HS-SPME-GC-MS and HS-GC-IMS. Food Res. Int. 2020, 138, 109717. [Google Scholar] [CrossRef]
- Dar, A.A.; Kancharla, P.K.; Chandra, K.; Sodhi, Y.S.; Arumugam, N. Assessment of variability in lignan and fatty acid content in the germplasm of Sesamum indicum L. J. Food Sci. Technol. 2019, 56, 976–986. [Google Scholar] [CrossRef]
- Ahmed, I.A.M.; Uslu, N.; Özcan, M.M.; Al Juhaimi, F.; Ghafoor, K.; Babiker, E.E.; Osman, M.A.; Alqah, H.A. Effect of conventional oven roasting treatment on the physicochemical quality attributes of sesame seeds obtained from different locations. Food Chem. 2021, 338, 128109. [Google Scholar] [CrossRef]
- Akin, G.; Elmas, N.K.; Arslan, F.N.; Yılmaz, I.; Kenar, A. Chemometric classification and quantification of cold pressed grape seed oil in blends with refined soybean oils using attenuated total reflectance–mid infrared (ATR–MIR) spectroscopy. LWT-Food Sci. Technol. 2019, 100, 126–137. [Google Scholar] [CrossRef]
- Xing, C.; Yuan, X.; Wu, X.; Shao, X.; Yuan, J.; Yan, W. Chemometric classification and quantification of sesame oil adulterated with other vegetable oils based on fatty acids composition by gas chromatography. LWT-Food Sci. Technol. 2019, 108, 437–445. [Google Scholar] [CrossRef]
- Salsinha, A.S.; Rodríguez-Alcalá, L.M.; Relvas, J.B.; Pintado, M.E. Fatty acids role on obesity induced hypothalamus inflammation: From problem to solution—A review. Trends Food Sci. Technol. 2021, 112, 592–607. [Google Scholar] [CrossRef]
- Pfister, E.; Smith, R.; Lane, M.A. N-3 Polyunsaturated fatty acid ethyl esters decrease the invasion, but not the proliferation, of human colorectal cancer cells via a PI3K-dependent mechanism in vitro. Prostaglandins Leukot. Essent. Fat. Acids 2021, 167, 102273. [Google Scholar] [CrossRef]
- Ma, W.-J.; Li, H.; Zhang, W.; Zhai, J.; Li, J.; Liu, H.; Guo, X.-F.; Li, D. Effect of n-3 polyunsaturated fatty acid supplementation on muscle mass and function with aging: A meta-analysis of randomized controlled trials. Prostaglandins Leukot. Essent. Fat. Acids 2021, 165, 102249. [Google Scholar] [CrossRef]
- Mallick, R.; Basak, S.; Duttaroy, A.K. Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog. Lipid Res. 2021, 83, 101116. [Google Scholar] [CrossRef]
- Gong, W.-Y.; Zhao, Z.-X.; Liu, B.-J.; Lu, L.-W.; Dong, J.-C. Exploring the chemopreventive properties and perspectives of baicalin and its aglycone baicalein in solid tumors. Eur. J. Med. Chem. 2017, 126, 844–852. [Google Scholar] [CrossRef]
- Zhou, J.; Chan, L.; Zhou, S. Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr. Med. Chem. 2012, 19, 3523–3531. [Google Scholar] [CrossRef]
Chemical Elements | Black Sesame Seeds | White Sesame Seeds | p Value |
---|---|---|---|
B | 8.00 ± 0.22 b | 9.23 ± 0.22 a | <0.01 |
Na | 15.01 ± 0.84 b | 35.72 ± 3.66 a | <0.01 |
Mg | 3266.97 ± 37.89 a | 3143.82 ± 84.45 a | 0.08 |
Al | 28,570.61 ± 1994.83 a | 40,979.52 ± 23196.22 a | 0.41 |
P | 6564.94 ± 99.60 a | 6415.67 ± 163.69 a | 0.25 |
K | 5186.90 ± 51.18 b | 5721.57 ± 63.21 a | <0.01 |
Ca | 9758.70 ± 326.90 b | 11,692.50 ± 538.44 a | 0.01 |
V | 89.91 ± 8.24 a | 114.97 ± 56.13 a | 0.49 |
Cr | 80.02 ± 9.60 b | 186.45 ± 57.98 a | 0.03 |
Mn | 18,358.41 ± 189.85 a | 9936.66 ± 712.65 b | <0.01 |
Fe | 71.14 ± 4.34 a | 83.42 ± 34.94 a | 0.58 |
Co | 195.67 ± 0.99 a | 66.60 ± 11.43 b | <0.01 |
Ni | 772.25 ± 656.80 | N.A. | N.A. |
Cu | 18,523.51 ± 281.40 a | 17,638.38 ± 255.02 b | 0.02 |
Zn | 41,249.64 ± 670.53 b | 49,721.01 ± 780.07 a | <0.01 |
As | 14.42 ± 5.78 b | 93.20 ± 12.30 a | <0.01 |
Se | 111.60 ± 6.39 b | 135.36 ± 6.33 a | 0.01 |
Rb | 8172.23 ± 686.90 a | 4799.52 ± 49.31 b | <0.01 |
Sr | 41,527.71 ± 1350.69 b | 78,744.99 ± 791.66 a | <0.01 |
Y | 21.08 ± 11.02 a | 45.15 ± 52.30 a | 0.48 |
Mo | 590.68 ± 33.16 b | 1636.58 ± 40.24 a | <0.01 |
Ru | N.A. | N.A. | N.A. |
Rh | N.A. | 3.13 ± 5.42 | N.A. |
Pd | 16.72 ± 4.45 a | 11.12 ± 1.21 a | 0.10 |
Ag | 3.61 ± 0.59 a | 4.26 ± 1.11 a | 0.42 |
Cd | 76.49 ± 7.50 a | 58.94 ± 3.25 b | 0.02 |
Sn | 488.73 ± 194.94 a | 161.18 ± 101.29 a | 0.06 |
Sb | 2.02 ± 0.24 a | 2.14 ± 0.81 a | 0.81 |
Te | N.A. | N.A. | N.A. |
Cs | 7.67 ± 0.22 a | 19.87 ± 9.00 a | 0.08 |
Ba | 32,457.92 ± 2355.45 a | 15,442.80 ± 313.27 b | <0.01 |
La | 27.04 ± 7.86 a | 54.08 ± 61.51 a | 0.49 |
Ce | 36.17 ± 10.12 a | 63.60 ± 44.69 a | 0.36 |
Pr | 5.13 ± 2.02 a | 10.63 ± 11.29 a | 0.45 |
Nd | 17.66 ± 8.87 a | 42.10 ± 44.45 a | 0.40 |
Sm | 3.42 ± 1.21 a | 9.03 ± 10.10 a | 0.39 |
Eu | 2.33 ± 0.47 a | 2.34 ± 1.60 a | 0.99 |
Gd | 3.57 ± 1.20 a | 9.45 ± 11.44 a | 0.43 |
Tb | 82.07 ± 14.25 | N.A. | N.A. |
Dy | 2.78 ± 0.93 a | 6.79 ± 7.93 a | 0.43 |
Ho | 0.69 ± 0.28 a | 1.36 ± 1.59 a | 0.52 |
Er | 1.51 ± 0.47 a | 3.40 ± 4.51 a | 0.51 |
Tm | 0.26 ± 0.10 a | 0.58 ± 0.54 a | 0.38 |
Yb | 1.21 ± 0.49 a | 3.86 ± 3.75 a | 0.29 |
Lu | 149.29 ± 131.00 a | 249.43 ± 118.28 a | 0.38 |
Hf | 23.48 ± 10.05 a | 10.05 ± 11.02 a | 0.19 |
Ir | 1.86 ± 3.22 | N.A. | N.A. |
Pt | 0.94 ± 0.11 a | 0.97 ± 0.16 a | 0.82 |
Au | 10.37 ± 0.54 a | 9.72 ± 1.23 a | 0.45 |
Tl | 0.61 ± 0.09 a | 0.95 ± 0.42 a | 0.25 |
Pb | 48.73 ± 3.86 a | 68.72 ± 25.09 a | 0.24 |
Th | 21.10 ± 6.09 a | 13.66 ± 8.01 a | 0.27 |
U | 1.38 ± 0.13 a | 5.89 ± 3.99 a | 0.12 |
No. | Category | Compounds | CAS# | Formula | MW | RI | RT (min) | DT (a.u.) | Contents (μg/g) | p Value | |
---|---|---|---|---|---|---|---|---|---|---|---|
BS | WS | ||||||||||
1 | Aldehydes | Phenylacetaldehyde | C122781 | C8H8O | 120.2 | 1014.3 | 8.77 | 1.27 | 52.91 ± 10.60 a | 60.62 ± 27.22 a | 0.57 |
2 | Hexanal | C66251 | C6H12O | 100.2 | 792.8 | 4.07 | 1.26 | 62.63 ± 14.69 a | 55.63 ± 9.52 a | 0.40 | |
3 | 2-Methylbutanal | C96173 | C5H10O | 86.1 | 661.8 | 2.71 | 1.15 | 137.44 ± 32.61 a | 134.68 ± 24.12 a | 0.56 | |
4 | Butanal | C123728 | C4H8O | 72.1 | 619.5 | 2.43 | 1.28 | 359.35 ± 83.83 a | 416.43 ± 75.68 a | 0.29 | |
5 | Ketones | Dimethyldioxolone | C37830903 | C5H6O3 | 114.1 | 966.4 | 7.31 | 1.17 | 45.75 ± 14.58 a | 47.11 ± 15.21 a | 0.89 |
6 | 5-Methyl-3-heptanone | C541855 | C8H16O | 128.2 | 945 | 6.80 | 1.28 | 126.53 ± 56.71 a | 98.99 ± 26.43 a | 0.35 | |
7 | 2-Hexanone | C591786 | C6H12O | 100.2 | 785.7 | 3.96 | 1.18 | 40.41 ± 9.22 a | 42.62 ± 8.11 a | 0.70 | |
8 | 3-Hydroxybutan-2-one | C513860 | C4H8O2 | 88.1 | 716.6 | 3.19 | 1.06 | 73.77 ± 74.24 a | 27.56 ± 21.89 a | 0.22 | |
9 | Hydroxyacetone | C116096 | C3H6O2 | 74.1 | 626.4 | 2.47 | 1.22 | 554.19 ± 143.03 a | 617.66 ± 117.44 a | 0.47 | |
10 | 3-Pentanone | C96220 | C5H10O | 86.1 | 651.7 | 2.64 | 1.35 | 100.92 ± 27.05 a | 106.51 ± 18.62 a | 0.71 | |
11 | 2,3-Butanedione | C431038 | C4H6O2 | 86.1 | 585.4 | 2.20 | 1.19 | 608.86 ± 145.45 a | 802.22 ± 125.24 a | 0.05 | |
12 | Butanone | C78933 | C4H8O | 72.1 | 548.6 | 1.96 | 1.04 | 1352.07 ± 314.15 a | 1605.94 ± 267.51 a | 0.21 | |
13 | Alcohols | 3-Octenol | C3391864 | C8H16O | 128.2 | 965.2 | 7.28 | 1.73 | 27.98 ± 10.65 a | 30.00 ± 12.85 a | 0.79 |
14 | n-Hexanol | C111273 | C6H14O | 102.2 | 880.1 | 5.37 | 1.32 | 66.88 ± 16.65 a | 76.06 ± 10.57 a | 0.33 | |
15 | 2-Methylbutan-1-ol | C137326 | C5H12O | 88.1 | 766.3 | 3.74 | 1.23 | 14287.18 ± 5954.86 a | 18509.37 ± 6883.96 a | 0.33 | |
16 | 1-Pentanol | C71410 | C5H12O | 88.1 | 768.2 | 3.76 | 1.25 | 31.01 ± 7.69 a | 32.94 ± 5.90 a | 0.67 | |
17 | 1-Butanol | C71363 | C4H10O | 74.1 | 610.3 | 2.36 | 1.38 | 9.59 ± 5.20 a | 8.77 ± 3.41 a | 0.78 | |
18 | Isobutanol | C78831 | C4H10O | 74.1 | 591.9 | 2.24 | 1.38 | 222.29 ± 48.70 a | 254.58 ± 45.73 a | 0.31 | |
19 | 2-Propanol | C67630 | C3H8O | 60.1 | 534.8 | 1.86 | 1.09 | 303.53 ± 59.56 a | 354.45 ± 49.15 a | 0.18 | |
20 | 1-Propanol | C71238 | C3H8O | 60.1 | 521.4 | 1.78 | 1.13 | 118.34 ± 27.38 b | 200.48 ± 34.55 a | 0.003 | |
21 | Methanethiol | C74931 | CH4S | 48.1 | 468.4 | 1.43 | 1.04 | 51.50 ± 50.90 a | 40.69 ± 10.19 a | 0.65 | |
22 | Esters | Methyl hexanoate | C106707 | C7H14O2 | 130.2 | 929 | 6.42 | 1.28 | 441.05 ± 95.94 a | 541.71 ± 94.33 a | 0.13 |
23 | Acetic acid butyl ester | C123864 | C6H12O2 | 116.2 | 806.3 | 4.27 | 1.23 | 28.07 ± 7.77 a | 27.96 ± 4.60 a | 0.98 | |
24 | Propyl acetate | C109604 | C5H10O2 | 102.1 | 657.4 | 2.68 | 1.48 | 116.08 ± 33.10 a | 127.96 ± 25.29 a | 0.54 | |
25 | 1,2-Dimethoxyethane | C110714 | C4H10O2 | 90.1 | 638.8 | 2.55 | 1.10 | 40.55 ± 11.53 a | 45.91 ± 12.16 a | 0.50 | |
26 | Acetic acid ethyl ester | C141786 | C4H8O2 | 88.1 | 609.4 | 2.36 | 1.34 | 10.56 ± 4.31 b | 37.93 ± 8.80 a | <0.01 | |
27 | Alkanes | α-Pinene | C80568 | C10H16 | 136.2 | 936.9 | 6.61 | 1.69 | 1710.80 ± 390.53 a | 2081.38 ± 359.40 a | 0.16 |
28 | Isoprene | C78795 | C5H8 | 68.1 | 528.8 | 1.82 | 1.21 | 68.54 ± 26.98 a | 82.22 ± 13.58 a | 0.34 | |
29 | Ethers | 1,2-Dimethoxyethane | C110714 | C4H10O2 | 90.1 | 638.8 | 2.55 | 1.10 | 40.55 ± 11.53 a | 45.91 ± 12.16 a | 0.50 |
30 | MTBE | C1634044 | C5H12O | 88.1 | 566.5 | 2.07 | 1.35 | 37.32 ± 8.12 a | 42.57 ± 8.38 a | 0.34 | |
31 | Others | 2,5-Dimethylpyrazine | C123320 | C6H8N2 | 108.1 | 940.3 | 6.69 | 1.50 | 9.93 ± 2.14 b | 34.80 ± 5.87 a | <0.01 |
32 | 1,4-Dioxane | C123911 | C4H8O2 | 88.1 | 710.6 | 3.13 | 1.33 | 29.92 ± 33.15 a | 5.59 ± 2.40 a | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mi, S.; Wang, Y.; Zhang, X.; Sang, Y.; Wang, X. Discrimination of Black and White Sesame Seeds Based on Targeted and Non-Targeted Platforms with Chemometrics: From Profiling towards Identification of Chemical Markers. Foods 2022, 11, 2042. https://doi.org/10.3390/foods11142042
Mi S, Wang Y, Zhang X, Sang Y, Wang X. Discrimination of Black and White Sesame Seeds Based on Targeted and Non-Targeted Platforms with Chemometrics: From Profiling towards Identification of Chemical Markers. Foods. 2022; 11(14):2042. https://doi.org/10.3390/foods11142042
Chicago/Turabian StyleMi, Si, Yuhang Wang, Xiangnan Zhang, Yaxin Sang, and Xianghong Wang. 2022. "Discrimination of Black and White Sesame Seeds Based on Targeted and Non-Targeted Platforms with Chemometrics: From Profiling towards Identification of Chemical Markers" Foods 11, no. 14: 2042. https://doi.org/10.3390/foods11142042
APA StyleMi, S., Wang, Y., Zhang, X., Sang, Y., & Wang, X. (2022). Discrimination of Black and White Sesame Seeds Based on Targeted and Non-Targeted Platforms with Chemometrics: From Profiling towards Identification of Chemical Markers. Foods, 11(14), 2042. https://doi.org/10.3390/foods11142042