Physicochemical Characteristics, Fatty Acids Profile and Lipid Oxidation during Ripening of Graviera Cheese Produced with Raw and Pasteurized Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Cheesemaking
2.3. Physicochemical Analysis
2.4. Fatty Acids Analysis
2.5. Lipid Oxidation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics of Milk
3.2. Physicochemical Characteristics of Cheese
Correlation between Physicochemical Characteristics
3.3. Fatty Acids Profile
3.4. Lipid Oxidation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Psoni, L.; Tzanetakis, N.; Litopoulou-Tzanetaki, E. Characteristics of Batzos Cheese Made from Raw, Pasteurized and/or Pasteurized Standardized Goat Milk and a Native Culture. Food Control 2006, 17, 533–539. [Google Scholar] [CrossRef]
- Casalta, E.; Sorba, J.M.; Aigle, M.; Ogier, J.C. Diversity and dynamics of the microbial community during the manufacture of Calenzana, an artisanal Corsican cheese. Intern. J. Food Microbiol. 2009, 133, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Fuka, M.M.; Wallisch, S.; Engel, M.; Welzl, G.; Havranek, J.; Schloter, M. Dynamics of Bacterial Communities during the Ripening Process of Different Croatian Cheese Types Derived from Raw Ewe’s Milk Cheeses. PLoS ONE 2013, 8, e80734. [Google Scholar]
- Masoud, W.; Vogensen, F.K.; Lillevang, S.; Abu Al-Soud, W.; Sørensen, S.J.; Jakobsen, M. The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR. Intern. J. Food Microbiol. 2012, 153, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Ocak, E.; Javidipour, I.; Tuncturk, Y. Volatile compounds of Van Herby cheeses produced with raw and pasteurised milks from different species. J. Food Sci. Technol. 2015, 52, 4315–4323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grappin, R.; Beuvier, E. Possible Implications of Milk Pasteurization on the Manufacture and Sensory Quality of Ripened Cheese. Int. Dairy J. 1997, 7, 751–761. [Google Scholar] [CrossRef]
- Ginzinger, W.; Jaros, D.; Lavanchy, P.; Rohm, H. Raw Milk Flora Affects Composition and Quality of Bergkäse. 3. Physical and Sensory Properties, and Conclusions. Lait 1999, 79, 411–421. [Google Scholar] [CrossRef]
- Ortigosa, M.; Torre, P.; Izco, J.M. Effect of Pasteurization of Ewe’s Milk and Use of a Native Starter Culture on the Volatile Components and Sensory Characteristics of Roncal Cheese. J. Dairy Sci. 2001, 84, 1320–1330. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Fox, P.F.; Lucey, J.A.; Jordan, K.N.; Cogan, T.M. Contribution of the Indigenous Microflora to the Maturation of Cheddar Cheese. Int. Dairy J. 1993, 3, 613–634. [Google Scholar] [CrossRef]
- Requena, T.; De Fuente, M.A.; De Palencia, P.F.; Juârez, M.; Pelaez, C. Original Article Evaluation of a Specifie Starter for the Production of Semi-Hard 90atl8 Milk Cheese. Lait 1992, 72, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Greek Ministry of Economics, FOOD AND BEVERAGE CODE Apr 2014 Article 83. Available online: https://www.aade.gr/sites/default/files/2020-03/83-iss3.pdf (accessed on 24 May 2022).
- Vandera, E.; Kakouri, A.; Koukkou, A.-I.; Samelis, J. Major ecological shifts within the dominant nonstarter lactic acid bacteria in mature Greek Graviera cheese as affected by the starter culture type. Int. J. Food Microbiol. 2019, 290, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Vandera, E.; Parapouli, M.; Kakouri, A.; Koukkou, A.-I.; Hatziloukas, E.; Samelis, J. Structural enterocin gene profiles and mode of antilisterial activity in synthetic liquid media and skim milk of autochthonous Enterococcus spp. isolates from artisan Greek Graviera and Galotyri cheeses. Food Microbiol. 2020, 86, 103335. [Google Scholar] [CrossRef] [PubMed]
- Kandarakis, I.G.; Moschopoulou, E.E.; Moatsou, G.A.; Anifantakis, M.E. Effects of starters on gross and microbiological composition and organoleptic characteristics of Graviera Kritis cheese. Lait 1998, 78, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Walther, B.; Schmid, A.; Sieber, R.; Wehrmüller, K. Cheese in Nutrition and Health. Dairy Sci. Technol. 2008, 88, 389–405. [Google Scholar] [CrossRef] [Green Version]
- Lucas, A.; Rock, E.; Chamba, J.F.; Verdier-Metz, I.; Brachet, P.; Coulon, J.B. Respective Effects of Milk Composition and the Cheese-Making Process on Cheese Compositional Variability in Components of Nutritional Interest. Lait 2006, 86, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Bittante, G.; Cipolat-Gotet, C.; Malchiodi, F.; Sturaro, E.; Tagliapietra, F.; Schiavon, S.; Cecchinato, A. Effect of Dairy Farming System, Herd, Season, Parity, and Days in Milk on Modeling of the Coagulation, Curd Firming, and Syneresis of Bovine Milk. J. Dairy Sci. 2015, 98, 2759–2774. [Google Scholar] [CrossRef]
- Hilario, M.C.; Puga, C.D.; Wrage, N.; Pérez-Gil, R.F. Feeding Goats on Scrubby Mexican Rangeland and Pasteurization: Influences on Milk and Artisan Cheese Quality. Trop. Anim. Health Prod. 2010, 42, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Fundamentals of Cheese Science, 2nd ed.; Springer: New York, NY, USA, 2017; ISBN 9781489976819. [Google Scholar]
- ISO-ISO 2920:2004-Whey Cheese—Determination of Dry Matter (Reference Method). Available online: https://www.iso.org/standard/40464.html (accessed on 2 September 2021).
- ISO-ISO 3433:2008-Cheese—Determination of Fat Content—Van Gulik Method. Available online: https://www.iso.org/standard/46336.html (accessed on 2 September 2021).
- AOAC 920.123-1920, Nitrogen in Cheese AOAC Official Method. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=852 (accessed on 2 September 2021).
- ISO 8968-1, IDF Standard 20-1; International Standard. Milk and Milk Products: Determination of Nitrogen Content. International Dairy Federation: Brussels, Belgium, 2014.
- Kosikowski, F.V. Cheese and Fermented Milk Foods, 2nd ed.; Edwards Brothers, Inc.: Ann Arbor, MI, USA, 1977. [Google Scholar]
- Standard, B. ISO 5509:2000. Animal and Vegetable Fats and Oils-Preparation of Methyl Esters of Fatty Acids. Available online: https://www.iso.org/standard/11560.html (accessed on 24 May 2022).
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples. J. Agric. Food Chem. 2002, 42, 1931–1937. [Google Scholar] [CrossRef]
- Rynne, N.M.; Beresford, T.P.; Kelly, A.L.; Guinee, T.P. Effect of milk pasteurization temperature and in situ whey protein denaturation on the composition, texture and heat-induced functionality of half-fat Cheddar cheese. Intern. Dairy J. 2004, 14, 989–1001. [Google Scholar] [CrossRef]
- OguzAydemir. Proteolysis and lipolysis of white-brined (Beyaz) cheese during storage: Effect of milk pasteurization temperature. J. Food Process Preserv. 2018, 42, e13612. [Google Scholar] [CrossRef]
- International Dairy Foods Association, IDFA. Available online: https://www.idfa.org/pasteurization (accessed on 12 June 2022).
- Patrignani, F.; Lanciotti, R. Applications of high and ultra high pressure homogenization for food safety. Front. Microbiol. 2016, 7, 1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaei, A.; Alirezalu, K.; AzadmardDamirchi, S.; Hesari, J.; Papademas, P.; Domínguez, R.; Lorenzo, J.M.; Yaghoubi, M. Effect of Pasteurization and Ripening Temperature on Chemical and Sensory Characteristics of Traditional Motal Cheese. Fermentation 2020, 6, 95. [Google Scholar] [CrossRef]
- Shahab Lavasani, A.R.; Ehsani, M.R.; Mirdamadi, S.; Ebrahim Zadeh Mousavi, M.A. Changes in Physicochemical and Organoleptic Properties of Traditional Iranian Cheese Lighvan during Ripening. Int. J. Dairy Technol. 2012, 65, 64–70. [Google Scholar] [CrossRef]
- Awad, S. Texture and Flavour Development in Ras Cheese Made from Raw and Pasteurised Milk. Food Chem. 2006, 97, 394–400. [Google Scholar] [CrossRef]
- Rashtchi, P.; Bazmi, A.; Noshirvani, N.; Moosavy, M.H. Comparison of the Microbial, Physicochemical, and Sensorial Properties of Raw and Pasteurized Lighvan Cheeses during Ripening Time. Food Sci. Nutr. 2021, 9, 5527–5535. [Google Scholar] [CrossRef]
- Bertolino, M.; Dolci, P.; Giordano, M.; Rolle, L.; Zeppa, G. Evolution of Chemico-Physical Characteristics during Manufacture and Ripening of Castelmagno PDO Cheese in Wintertime. Food Chem. 2011, 129, 1001–1011. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsiplakou, E.; Pappa, E.C.; Pappas, A.C.; Mavrommatis, A.; Sotirakoglou, K.; Georgiou, C.A.; Zervas, G. Fatty Acid Profile and Physicochemical Properties of Greek Protected Designation of Origin Cheeses, Implications for Authentication. Eur. Food Res. Technol. 2020, 246, 1741–1753. [Google Scholar] [CrossRef]
- Saldo, J.; McSweeney, P.L.H.; Sendra, E.; Kelly, A.L.; Guamis, B. Proteolysis in caprine milk cheese treated by high pressure to accelerate cheese ripening. Intern. Dairy J. 2002, 12, 35–44. [Google Scholar] [CrossRef]
- Trujillo, A.J.; Capellas, M.; Buffa, M.; Royo, C.; Gervilla, R.; Felipe, X.; Sendra, E.; Saldo, J.; Ferragut, V.; Guamis, B. Application of high pressure treatment for cheese production. Food Res. Intern. 2000, 33, 311–316. [Google Scholar] [CrossRef]
- Macedo, A.C.; Malcata, F.X. Secondary Proteolysis in Serra Cheese during Ripening and throughout the Cheese-Making Season. Eur. Food Res. Technol. 1997, 204, 173–179. [Google Scholar] [CrossRef]
- Leclercq-Perlat, M.N.; Buono, F.; Lambert, D.; Latrille, E.; Spinnler, H.E.; Corrieu, G. Controlled Production of Camembert-Type Cheeses. Part I: Microbiological and Physicochemical Evolutions. J. Dairy Res. 2004, 71, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Beuvier, E.; Berthaud, K.; Cegarra, S.; Dasen, A.; Pochet, S.; Buchin, S.; Duboz, G. Ripening and quality of Swiss-type cheese made from raw, pasteurized or microfiltered milk. Intern. Dairy J. 1997, 7, 311–323. [Google Scholar] [CrossRef]
- Celik, S.; Turkoglu, H. Ripening of traditional Örgü cheese manufactured with raw or pasteurized milk: Composition and biochemical properties. Int. J. Dairy Technol. 2007, 60, 253–258. [Google Scholar] [CrossRef]
- Aly, A.S.; Gala, E.A. Effect of milk pretreatment on the keeping quality of Domiati cheese. Pak. J. Nutr. 2002, 1, 132–136. [Google Scholar]
- Klantschitsch, T.; Bachmann, H.-P.; Puhan, Z. Influence of milk treatment and ripening conditions on quality of Raclette cheese. Lait 2000, 80, 51–67. [Google Scholar] [CrossRef]
- Albenizo, M.; Corbo, M.R.; Rehman, S.U.; Fox, P.F.; De Angelis, M.; Corsetti, A.; Sevi Gorbetti, M. Micro-biological and biochemical characteristics of Canestrato Pugliese cheese made from row milk, pasteurized milk or by heating the curd in hot whey. Int. J. Food Microbiol. 2001, 67, 35–48. [Google Scholar] [CrossRef]
- Sebbane, H.; Almi, D.; Hadouchi, S.; Hedjel, L.; Smail-Saadoun, N.; Mati, A. Microbiological and Physicochemical Changes during Ripening of Camembert Cheeses Made from Raw and Pasteurized Cow Milk Produced in Tizi-Ouzou (North of Algeria). Indian J. Dairy Sci. 2021, 74, 18–29. [Google Scholar] [CrossRef]
- Summer, A.; Formaggioni, P.; Franceschi, P.; Di Frangia, F.; Righi, F.; Malacarne, M. Cheese as Functional Food. Food Technol. Biotechnol. 2017, 55, 277–289. [Google Scholar] [CrossRef]
- Mure, C.C.; Alina, R.; Marc, V.; Semeniuc, C.A.; Ancu, S. Fatty Acid and Volatile Compound Profiles of Apuseni Cheese during Ripening. Foods 2021, 10, 258. [Google Scholar]
- De la Fuente, M.A.; Fontecha, J.; Juárez, M. Fatty Acid Composition of the Triglyceride and Free Fatty Acid Fractions in Different Cows-, Ewes- and Goats-Milk Cheeses. Z. Lebensm. Unters. Forsch. 1993, 196, 155–158. [Google Scholar] [CrossRef]
- Woo, A.H.; Lindsay, R.C. Concentrations of Major Free Fatty Acids and Flavor Development in Italian Cheese Varieties. J. Dairy Sci. 1984, 67, 960–968. [Google Scholar] [CrossRef]
- Gatzias, I.S.; Karabagias, I.K.; Kontominas, M.G.; Badeka, A.V. Geographical Differentiation of Feta Cheese from Northern Greece Based on Physicochemical Parameters, Volatile Compounds and Fatty Acids. LWT 2020, 131, 109615. [Google Scholar] [CrossRef]
- Kondyli, E.; Katsiari, M.C.; Masouras, T.; Voutsinas, L.P. Free Fatty Acids and Volatile Compounds of Low-Fat Feta-Type Cheese Made with a Commercial Adjunct Culture. Food Chem. 2002, 79, 199–205. [Google Scholar] [CrossRef]
- Bozoudi, D.; Kondyli, E.; Claps, S.; Hatzikamari, M.; Michaelidou, A.; Biliaderis, C.G.; Litopoulou-Tzanetaki, E. Compositional Characteristics and Volatile Organic Compounds of Traditional PDO Feta Cheese Made in Two Different Mountainous Areas of Greece. Int. J. Dairy Technol. 2018, 71, 673–682. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Sousa, M.J. Biochemical Pathways for the Production of Flavour Compounds in Cheeses during Ripening: A Review. Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Garaffo, M.A.; Vassallo-Agius, R.; Nengas, Y.; Lembo, E.; Rando, R.; Maisano, R.; Dugo, G.; Giuffrida, D. Fatty Acids Profile, Atherogenic (IA) and Thrombogenic (IT) Health Lipid Indices, of Raw Roe of Blue Fin Tuna and Their Salted Product “Bottarga”. Food Nutr. Sci. 2011, 2, 736–743. [Google Scholar] [CrossRef] [Green Version]
- Zlatanos, S.; Laskaridis, K.; Feist, C.; Sagredos, A. CLA Content and Fatty Acid Composition of Greek Feta and Hard Cheeses. Food Chem. 2002, 78, 471–477. [Google Scholar] [CrossRef]
- Maurelli, S.; Blasi, F.; Cossignani, L.; Bosi, A.; Simonetti, M.S.; Damiani, P. Enzymatic Synthesis of Structured Triacylglycerols Containing CLA Isomers Starting from sn-1,3-Diacylglycerols. J. Am. Oil Chem. Soc. 2009, 86, 127–133. [Google Scholar] [CrossRef]
- Corazzin, M.; Romanzin, A.; Sepulcri, A.; Pinosa, M.; Piasentier, E.; Bovolenta, S. Fatty Acid Profiles of Cow’s Milk and Cheese as Affected by Mountain Pasture Type and Concentrate Supplementation. Animals 2019, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Delgado, F.J.; González-Crespo, J.; Ladero, L.; Cava, R.; Ramírez, R. Free Fatty Acids and Oxidative Changes of a Spanish Soft Cheese (PDO ’Torta Del Casar’) during Ripening. Int. J. Food Sci. Technol. 2009, 44, 1721–1728. [Google Scholar] [CrossRef]
Physicochemical Parameter | Raw Milk | Pasteurized Milk |
---|---|---|
pH | 6.63 ± 0.07 a | 6.55 ± 0.04 b |
Fat (%) | 3.63 ± 0.49 a | 3.24 ± 0.08 b |
Solids (%) | 8.64 ± 0.23 a | 8.81 ± 0.20 a |
Protein (%) | 3.35 ± 0.09 a | 3.43 ± 0.08 a |
Lactose (%) | 4.73 ± 0.14 a | 4.84 ± 0.12 a |
Minerals (%) | 0.72 ± 0.04 a | 0.70 ± 0.02 a |
Density | 1.030 ± 0.001 a | 1.032 ± 0.001 b |
Freezing point (°C) | −0.495 ± 0.014 a | −0.491 ± 0.009 a |
Physicochemical Parameters | Cheese | Ripening Period (Days) | |||||
---|---|---|---|---|---|---|---|
1 | 7 | 15 | 30 | 60 | 90 | ||
pH | Raw A | 5.41 ± 0.32 a | 5.29 ± 0.13 a | 5.34 ± 0.19 a | 5.25 ± 0.37 a | 5.39 ± 0.39 a | 5.35 ± 0.38 a |
Pasteurized B | 5.51 ± 0.19 a | 5.25 ± 0.20 a | 5.24 ± 0.23 a | 5.46 ± 0.11 a | 5.43 ± 0.10 a | 5.49 ± 0.06 a | |
Moisture (%) | Raw A | 41.73 ± 3.61 a | 38.89 ± 5.10 ac | 38.45 ± 4.77 ac | 38.72 ± 2.54 ac | 36.82 ± 5.43 ac | 36.36 ± 4.50 bc |
Pasteurized A | 42.52 ± 1.75 a | 40.61 ± 1.30 ac | 38.01 ± 1.92 ad | 34.39 ± 4.11 bd | 35.30 ± 4.93 bd | 34.84 ± 3.88 bd | |
Fat (%) | Raw A | 27.00 ± 1.84 a | 29.25 ± 3.98 a | 30.08 ± 4.09 a | 30.75 ± 3.43 a | 29.92 ± 4.48 a | 29.33 ± 4.20 a |
Pasteurized B | 30.70 ± 2.25 a | 30.76 ± 1.83 a | 33.00 ± 3.02 a | 32.75 ± 2.19 a | 33.33 ± 3.06 a | 32.92 ± 2.92 a | |
FDM (%) | Raw A | 46.35 ± 1.56 a | 47.79 ± 4.08 a | 48.71 ± 3.16 a | 50.10 ± 4.16 a | 47.18 ± 3.70 a | 45.99 ± 4.34 a |
Pasteurized B | 53.53 ± 5.40 a | 51.80 ± 2.78 a | 53.17 ± 3.743 a | 49.92 ± 1.34 a | 51.04 ± 1.27 a | 50.46 ± 1.87 a | |
Protein (%) | Raw A | 25.68 ± 2.62 a | 26.53 ± 1.04 a | 26.92 ± 0.87 a | 26.27 ± 1.13 a | 28.04 ± 1.29 a | 26.50 ± 1.47 a |
Pasteurized B | 23.13 ± 1.84 a | 24.28 ± 2.04 ac | 25.77 ± 2.95 ac | 26.09 ± 1.12 ac | 26.86 ± 0.79 bc | 27.52 ± 2.09 bc | |
NaCl (%) | Raw A | 1.22−0.24 ad | 1.09 ± 0.42 a | 1.08 ± 0.29 a | 1.66 ± 0.42 ac | 2.01 ± 0.53 bc | 1.80 ± 0.32 bcd |
Pasteurized A | 1.01 ± 0.05 a | 1.34 ± 0.25 ad | 1.28 ± 0.17 bd | 1.64 ± 0.42 cd | 1.80 ± 0.41 cd | 1.86 ± 0.44 ce | |
S/M (g NaCl 100 g–1 moisture) | Raw A | 2.80 ± 0.34 ab | 2.60 ± 0.76 ad | 2.71 ± 0.49 bd | 4.12 ± 1.10 c | 5.28 ± 1.65 c | 4.74 ± 0.99 c |
Pasteurized A | 2.32 ± 016 a | 3.17 ± 0.56 b | 3.26 ± 0.49 b | 4.64 ± 1.39 b | 5.01 ± 1.59 b | 5.27 ± 1.61 b | |
WSN/TN | Raw A | 5.97 ± 2.10 a | 6.38 ± 1.72 a | 7.05 ± 1.44 a | 5.95 ± 1.85 a | 5.63 ± 0.70 a | 6.10 ± 1.95 a |
Pasteurized B | 4.59 ± 1.66 a | 5.80 ± 2.06 a | 5.05 ± 1.37 a | 4.71 ± 1.50 a | 4.84 ± 0.64 a | 5.09 ± 0.92 a |
Variable | pH | Moisture (%) | Fat (%) | FDM (%) | Protein (%) | ΝaCl(%) | S/M | WSN/TN |
---|---|---|---|---|---|---|---|---|
1. pH | - | |||||||
2. Moisture (%) | 0.638 *** | - | ||||||
3. Fat (%) | −0.605 *** | −0.815 *** | - | |||||
4. FDM (%) | −0.422 * | −0.426 * | 0.871 *** | - | ||||
5. Protein (%) | 0.02 | −0.019 | −0.161 | −0.27 | - | |||
6. ΝaCl (%) | 0.099 | 0.268 | −0.422 * | −0.418 * | 0.277 | - | ||
7. S/M | −0.152 | −0.094 | −0.131 | −0.269 | 0.276 | 0.93 *** | - | |
8. WSN/TN | 0.052 | −0.174 | 0.228 | 0.194 | −0.025 | −0.531 ** | −0.506 ** | - |
Variable | pH | Moisture (%) | Fat (%) | FDM (%) | Protein (%) | ΝaCl (%) | S/M | WSN/TN |
---|---|---|---|---|---|---|---|---|
1. pH | - | |||||||
2. Moisture (%) | 0.164 | - | ||||||
3. Fat (%) | −0.222 | −0.701 *** | - | |||||
4. FDM (%) | −0.118 | −0.039 | 0.73 *** | - | ||||
5. Protein (%) | −0.176 | −0.352 * | −0.013 | −0.362 * | - | |||
6. ΝaCl (%) | −0.313 | −0.528 ** | 0.536 ** | 0.218 | 0.273 | - | ||
7. S/M | −0.213 | −0.779 *** | 0.681 *** | 0.200 | 0.324 | 0.93 *** | - | |
8. WSN/TN | −0.193 | 0.222 | 0.091 | 0.374 * | −0.352* | −0.109 | −0.166 | - |
Fatty Acid Ester | Cheese | Ripening Period | ||||
---|---|---|---|---|---|---|
30 | 60 | 90 | 120 | p-Value | ||
C4:0 | Raw | 2.04 ± 0.39 | 2.07 ± 0.60 | 2.28 ± 0.29 | 2.31 ± 0.09 | NS |
Pasteurized | 2.29 ± 0.48 | 2.22 ± 0.35 | 2.34 ± 0.16 | 2.17 ± 0.12 | NS | |
C6:0 | Raw | 1.65 ± 0.21 | 1.71 ± 0.30 | 1.80 ± 0.12 | 1.71 ± 0.15 | NS |
Pasteurized | 1.80 ± 0.19 | 1.77 ± 0.21 | 1.83 ± 0.08 | 1.64 ± 0.21 | NS | |
C8:0 | Raw | 1.17 ± 0.12 | 1.20 ± 0.17 | 1.26 ± 0.05 | 1.19 ± 0.09 | NS |
Pasteurized | 1.23 ± 0.03 | 1.24 ± 0.12 | 1.27 ± 0.03 | 1.16 ± 0.17 | NS | |
C10:0 | Raw | 2.98 ± 0.36 | 2.99 ± 0.32 | 3.10 ± 0.20 | 2.95 ± 0.20 | NS |
Pasteurized | 3.04 ± 0.22 | 3.07 ± 0.30 | 3.13 ± 0.15 | 2.86 ± 0.41 | NS | |
C11:0 | Raw | 0.12 ± 0.04 | 0.11 ± 0.03 | 0.12 ± 0.02 | 0.10 ± 0.01 | NS |
Pasteurized | 0.12 ± 0.02 | 0.12 ± 0.03 | 0.13 ± 0.04 | 0.08 ± 0.05 | NS | |
C12:0 | Raw | 3.75 ± 0.48 | 3.79 ± 0.29 | 3.84 ± 0.24 | 3.66 ± 0.14 | NS |
Pasteurized | 3.77 ± 0.41 | 3.82 ± 0.30 | 3.88 ± 0.23 | 3.60 ± 0.40 | NS | |
C13:0 | Raw | 0.17 ± 0.04 | 0.17 ± 0.03 | 0.18 ± 0.04 | 0.15 ± 0.02 | NS |
Pasteurized | 0.18 ± 0.04 | 0.18 ± 0.04 | 0.15 ± 0.07 | 0.16 ± 0.02 | NS | |
C14:0 | Raw | 11.61 ± 0.43 | 11.46 ± 0.34 | 11.62 ± 0.33 | 11.39 ± 0.52 | NS |
Pasteurized | 11.45 ± 0.57 | 11.54 ± 0.37 | 11.56 ± 0.38 | 10.87 ± 1.08 | NS | |
C14:1 | Raw | 1.21 ± 0.10 | 1.19 ± 0.12 | 1.22 ± 0.18 | 1.10 ± 0.15 | NS |
Pasteurized | 1.26 ± 0.19 | 1.25 ± 0.20 | 1.24 ± 0.18 | 1.21 ± 0.24 | NS | |
C15:0 | Raw | 1.39 ± 0.20 | 1.37 ± 0.19 | 1.38 ± 0.19 | 1.23 ± 0.08 | NS |
Pasteurized | 1.42 ± 0.20 | 1.39 ± 0.19 | 1.40 ± 0.20 | 1.25 ± 0.15 | NS | |
C15:1 | Raw | n.d. | n.d. | n.d. | n.d. | NS |
Pasteurized | n.d. | n.d. | n.d. | n.d. | NS | |
C16:0 | Raw | 35.23 ± 0.95 a | 34.93 ± 2.15 ab | 34.21 ± 1.16 ab | 32.73 ± 0.52 b | * |
Pasteurized | 35.06 ± 0.32 a | 34.46 ± 1.36 ab | 34.66 ± 1.49 ab | 33.80 ± 1.50 b | * | |
C16:1 | Raw | 1.94 ± 0.18 | 1.92 ± 0.22 | 1.97 ± 0.23 | 1.84 ± 0.12 | NS |
Pasteurized | 2.00 ± 0.22 | 1.98 ± 0.24 | 1.96 ± 0.22 | 1.70 ± 0.55 | NS | |
C17:0 | Raw | 0.63 ± 0.06 | 0.65 ± 0.05 | 0.63 ± 0.04 | 0.68 ± 0.09 | NS |
Pasteurized | 0.54 ± 0.27 | 0.65 ± 0.05 | 0.62 ± 0.07 | 0.66 ± 0.07 | NS | |
C17:1 | Raw | n.d. | n.d. | n.d. | n.d. | NS |
Pasteurized | n.d. | n.d. | n.d. | n.d. | NS | |
C18:0 | Raw | 8.56 ± 0.91 a | 8.97 ± 1.24 ab | 8.64 ± 1.50 ab | 10.28 ± 0.67 b | * |
Pasteurized | 8.26 ± 0.74 a | 8.59 ± 1.26 ab | 8.57 ± 1.25 ab | 10.01 ± 2.00 b | * | |
C18:1 t | Raw | 0.45 ± 0.07 | 0.43 ± 0.06 | 0.27 ± 0.19 | 0.30 ± 0.26 | NS |
Pasteurized | 0.42 ± 0.05 | 0.38 ± 0.17 | 0.30 ± 0.20 | 0.36 ± 0.24 | NS | |
C18:1 cn9 | Raw | 22.21 ± 0.97 | 22.05 ± 0.51 | 22.13 ± 0.35 | 23.03 ± 0.43 | NS |
Pasteurized | 22.20 ± 0.60 | 22.26 ± 0.74 | 21.78 ± 0.98 | 22.60 ± 0.95 | NS | |
C18:1 n7 | Raw | 0.83 ± 0.08 | 0.83 ± 0.04 | 0.86 ± 0.05 | 0.80 ± 0.11 | NS |
Pasteurized | 0.82 ± 0.02 | 0.86 ± 0.04 | 0.85 ± 0.04 | 0.73 ± 0.30 | NS | |
C18:2 t | Raw | 0.12 ± 0.07 | 0.12 ± 0.09 | 0.13 ± 0.09 | 0.10 ± 0.11 | NS |
Pasteurized | 0.13 ± 0.09 | 0.13 ± 0.09 | 0.13 ± 0.09 | 0.02 ± 0.01 | NS | |
C18:2 c | Raw | 2.45 ± 0.07 ab | 2.44 ± 0.03 ab | 2.43 ± 0.08 a | 2.58 ± 0.28 b | * |
Pasteurized | 2.49 ± 0.06 ab | 2.48 ± 0.09 ab | 2.45 ± 0.07 a | 2.66 ± 0.32 b | * | |
C18:3γ | Raw | n.d. | n.d. | n.d. | n.d. | NS |
Pasteurized | n.d. | n.d. | n.d. | n.d. | NS | |
C18:3α | Raw | 0.30 ± 0.04 | 0.28 ± 0.02 | 0.32 ± 0.05 | 0.23 ± 0.09 | NS |
Pasteurized | 0.29 ± 0.01 | 0.29 ± 0.03 | 0.32 ± 0.05 | 0.52 ± 0.10 | NS | |
CLA | Raw | 0.41 ± 0.07 ab | 0.37 ± 0.06 a | 0.40 ± 0.06 ab | 0.52 ± 0.08 b | * |
Pasteurized | 0.40 ± 0.07 ab | 0.40 ± 0.06 a | 0.40 ± 0.08 ab | 0.56 ± 0.05 b | * | |
C20:0 | Raw | 0.13 ± 0.01 a | 0.14 ± 0.03 a | 0.14 ± 0.02 ab | 0.18 ± 0.02 b | * |
Pasteurized | 0.14 ± 0.02 a | 0.14 ± 0.02 a | 0.16 ± 0.04 ab | 0.22 ± 0.13 b | * | |
C20:1 n9 | Raw | 0.07 ± 0.01 a | 0.09 ± 0.02 ab | 0.10 ± 0.03 b | 0.09 ± 0.03 ab | * |
Pasteurized | 0.05 ± 0.03 a | 0.09 ± 0.02 ab | 0.09 ± 0.02 b | 0.10 ± 0.05 ab | * | |
C20:2 | Raw | n.d. | n.d. | n.d. | n.d. | |
Pasteurized | n.d. | n.d. | n.d. | n.d. | ||
C21:0 | Raw | n.d. | n.d. | n.d. | n.d. | |
Pasteurized | n.d. | n.d. | n.d. | n.d. | ||
C20:3 n6 | Raw | 0.13 ± 0.02 | 0.14 ± 0.03 | 0.14 ± 0.03 | 0.16 ± 0.03 | NS |
Pasteurized | 0.10 ± 0.06 | 0.12 ± 0.06 | 0.12 ± 0.06 | 0.14 ± 0.04 | NS | |
C20:4 n6 | Raw | 0.22 ± 0.03 | 0.19 ± 0.09 | 0.20 ± 0.09 | 0.25 ± 0.01 | NS |
Pasteurized | 0.18 ± 0.10 | 0.24 ± 0.03 | 0.24 ± 0.06 | 0.24 ± 0.02 | NS | |
C20:3 n3 | Raw | n.d. | n.d. | n.d. | n.d. | |
Pasteurized | n.d. | n.d. | n.d. | n.d. | ||
C22:0 | Raw | n.d. | n.d. | n.d. | n.d. | |
Pasteurized | n.d. | n.d. | n.d. | n.d. | ||
EPA | Raw | 0.04 ± 0.04 | 0.04 ± 0.02 | 0.02 ± 0.02 | 0.04 ± 0.04 | NS |
Pasteurized | 0.02 ± 0.02 | 0.02 ± 0.02 | 0.04 ± 0.04 | 0.06 ± 0.06 | NS | |
C22:1 n11 | Raw | n.d. | n.d. | n.d. | n.d. | |
Pasteurized | n.d. | n.d. | n.d. | n.d. | ||
C22:1 n9 | Raw | n.d. | n.d. | n.d. | n.d. | |
Pasteurized | n.d. | n.d. | n.d. | n.d. | ||
C22:2 | Raw | n.d. | n.d. | n.d. | n.d. | |
Pasteurized | n.d. | n.d. | n.d. | n.d. | ||
C23:0 | Raw | n.d. | n.d. | n.d. | n.d. | |
Pasteurized | n.d. | n.d. | n.d. | n.d. | ||
C22:4 n6 | Raw | n.d. | n.d. | n.d. | n.d. | |
Pasteurized | n.d. | n.d. | n.d. | n.d. | ||
C24:0 | Raw | n.d. | n.d. | n.d. | n.d. | |
Pasteurized | n.d. | n.d. | n.d. | n.d. | ||
C22:5 n3 | Raw | 0.04 ± 0.01 | 0.09 ± 0.03 | 0.11 ± 0.05 | 0.02 ± 0.01 | NS |
Pasteurized | 0.05 ± 0.01 | 0.07 ± 0.02 | 0.10 ± 0.04 | 0.15 ± 0.06 | NS | |
C24:1 | Raw | n.d. | n.d. | n.d. | n.d. | NS |
Pasteurized | n.d. | n.d. | n.d. | n.d. | NS | |
DHA | Raw | 0.03 ± 0.01 | 0.06 ± 0.02 | 0.14 ± 0.07 | 0.05 ± 0.01 | NS |
Pasteurized | 0.23 ± 0.10 | 0.07 ± 0.02 | 0.06 ± 0.02 | 0.04 ± 0.01 | NS | |
SFA | Raw | 69.47 ± 0.88 | 69.65 ± 0.40 | 69.30 ± 0.17 | 68.67 ± 1.05 | NS |
Pasteurized | 69.33 ± 0.82 | 69.28 ± 0.69 | 69.78 ± 0.86 | 68.58 ± 1.29 | NS | |
PUFA | Raw | 3.82 ± 0.21 | 3.84 ± 0.09 | 4.06 ± 0.13 | 4.07 ± 0.51 | NS |
Pasteurized | 3.91 ± 0.53 | 3.90 ± 0.08 | 3.99 ± 0.25 | 4.53 ± 1.12 | NS | |
MUFA | Raw | 26.69 ± 0.75 | 26.48 ± 0.37 | 26.60 ± 0.17 | 27.19 ± 0.41 | NS |
Pasteurized | 26.75 ± 0.46 | 26.79 ± 0.71 | 26.19 ± 0.87 | 26.68 ± 0.50 | NS | |
UFA | Raw | 30.52 ± 0.90 | 30.33 ± 0.40 | 30.66 ± 0.14 | 31.26 ± 0.93 | NS |
Pasteurized | 30.66 ± 0.80 | 30.70 ± 0.68 | 30.19 ± 0.90 | 31.22 ± 0.99 | NS | |
n-6 | Raw | 2.88 ± 0.11 | 2.94 ± 0.14 | 2.92 ± 0.19 | 3.10 ± 0.25 | NS |
Pasteurized | 2.88 ± 0.14 a | 2.98 ± 0.13 ab | 2.99 ± 0.14 ab | 3.20 ± 0.25 b | * | |
n-3 | Raw | 0.40 ± 0.07 a | 0.50 ± 0.07 ab | 0.67 ± 0.20 b | 0.44 ± 0.06 ab | * |
Pasteurized | 0.58 ± 0.45 | 0.48 ± 0.11 | 0.56 ± 0.18 | 0.77 ± 0.20 | NS | |
n-6/n-3 | Raw | 7.34 ± 1.69 | 6.05 ± 1.02 | 4.89 ± 2.15 | 7.19 ± 1.01 | NS |
Pasteurized | 6.75 ± 1.04 | 6.68 ± 2.00 | 5.79 ± 1.85 | 6.06 ± 1.24 | NS | |
PUFA/SFA | Raw | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.01 | NS |
Pasteurized | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.07 ± 0.02 | NS | |
AI | Raw | 2.80 ± 0.13 a | 2.79 ± 0.11 ab | 2.76 ± 0.08 ab | 2.62 ± 0.03 b | * |
Pasteurized | 2.76 ± 0.12 | 2.75 ± 0.12 | 2.81 ± 0.17 | 2.60 ± 0.26 | NS |
Fatty Acids | Milk | Raw Cheese | Pasteurized Cheese | pValue |
---|---|---|---|---|
C4:0 | 2.50± 0.20 a | 2.29 ± 0.24 b | 2.28 ± 0.17 b | * |
C6:0 | 1.89 ± 0.21 | 1.77 ± 0.13 | 1.76 ± 0.16 | NS |
C8:0 | 1.31 ± 0.16 | 1.24 ± 0.07 | 1.23 ± 0.11 | NS |
C10:0 | 3.30 ± 0.46 | 3.06 ± 0.20 | 3.03 ± 0.28 | NS |
C11:0 | 0.09 ± 0.05 | 0.11 ± 0.02 | 0.11 ± 0.05 | NS |
C12:0 | 4.09 ± 0.60 | 3.78 ± 0.22 | 3.78 ± 0.32 | NS |
C13:0 | 0.14 ± 0.06 | 0.17 ± 0.04 | 0.15 ± 0.06 | NS |
C14:0 | 12.20 ± 1.11 a | 11.55 ± 0.38 ab | 11.31 ± 0.75 b | * |
C14:1 | 1.25 ± 0.39 | 1.19 ± 0.17 | 1.23 ± 0.19 | NS |
C15:0 | 1.15 ± 0.39 a | 1.34 ± 0.17 b | 1.34 ± 0.20 b | * |
C15:1 | n.d. | n.d. | n.d. | NS |
C16:0 | 34.19 ± 2.14 | 33.77 ± 1.21 | 34.35 ± 1.48 | NS |
C16:1 | 1.76 ± 0.34 | 1.93 ± 0.21 | 1.86 ± 0.37 | NS |
C17:0 | 0.59 ± 0.09 | 0.65 ± 0.06 | 0.63 ± 0.07 | NS |
C17:1 | n.d. | n.d. | n.d. | NS |
C18:0 | 8.60 ± 1.85 | 9.13 ± 1.49 | 9.09 ± 1.64 | NS |
C18:1 t | 0.42 ± 0.09 a | 0.28 ± 0.2 b | 0.32 ± 0.21 ab | * |
C18:1 c | 21.05 ± 2.72 | 22.4 ± 0.56 | 22.08 ± 1.00 | NS |
C18:1 n7 | 0.69 ± 0.20 a | 0.85 ± 0.07 b | 0.80 ± 0.18 ab | * |
C18:2 t | 0.18 ± 0.03 a | 0.12 ± 0.09 ab | 0.09 ± 0.02 b | * |
C18:2 c | 2.78 ± 0.40 a | 2.47 ± 0.16 b | 2.53 ± 0.21 b | * |
C18:3γ | n.d. | n.d. | n.d. | * |
C18:3α | 0.30 ± 0.04 | 0.30 ± 0.11 | 0.40 ± 0.25 | NS |
CLA | 0.42 ± 0.09 | 0.43 ± 0.14 | 0.46 ± 0.21 | NS |
C20:0 | 0.13 ± 0.03 a | 0.15 ± 0.03 ab | 0.18 ± 0.08 b | * |
C20:1 n9 | 0.08 ± 0.03 | 0.09 ± 0.04 | 0.1 ± 0.03 | NS |
C20:2 | n.d. | n.d. | n.d. | NS |
C21:0 | n.d. | n.d. | n.d. | NS |
C20:3 n6 | 0.18 ± 0.03 a | 0.15 ± 0.02 ab | 0.13 ± 0.07 b | * |
C20:4 n6 | 0.29 ± 0.11 a | 0.22 ± 0.07 ab | 0.24 ± 0.04 b | * |
20:3 n3 | n.d. | n.d. | n.d. | NS |
C22:0 | n.d. | n.d. | n.d. | NS |
EPA | 0.05 ± 0.01 | 0.03 ± 0.01 | 0.05 ± 0.01 | NS |
22:1 n11 | n.d. | n.d. | n.d. | NS |
22:1 n9 | n.d. | n.d. | n.d. | NS |
C22:2 | n.d. | n.d. | n.d. | NS |
C23:0 | n.d. | n.d. | n.d. | NS |
C22:4 n6 | n.d. | n.d. | n.d. | NS |
C24:0 | n.d. | n.d. | n.d. | NS |
C22:5 n3 | 0.06 ± 0.02 | 0.08 ± 0.03 | 0.12 ± 0.03 | NS |
24:1 | n.d. | n.d. | n.d. | NS |
DHA | 0.07 ± 0.02 ab | 0.12 ± 0.06 a | 0.05 ± 0.02 b | * |
SFA | 70.24 ± 3.12 | 69.11 ± 0.59 | 69.34 ± 1.14 | NS |
PUFA | 4.50 ± 0.46 a | 4.06 ± 0.26 b | 4.19 ± 0.69 b | * |
MUFA | 25.26 ± 2.86 | 26.78 ± 0.37 | 26.37 ± 0.77 | NS |
UFA | 29.76 ± 3.12 | 30.84 ± 0.53 | 30.56 ± 1.00 | NS |
n-6 | 3.55 ± 0.46 a | 2.98 ± 0.21 b | 3.07 ± 0.21 b | * |
n-3 | 0.48 ± 0.09 | 0.60 ± 0.2 | 0.63 ± 0.39 | NS |
n-6/n-3 | 7.61 ± 1.59 a | 5.58 ± 2.14 b | 5.89 ± 2.28 b | * |
PUFA/SFA | 0.06 ± 0.01 | 0.06 ± 0.00 | 0.06 ± 0.01 | NS |
AI | 2.97 ± 0.53 | 2.72 ± 0.09 | 2.73 ± 0.22 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannidou, M.D.; Maggira, M.; Samouris, G. Physicochemical Characteristics, Fatty Acids Profile and Lipid Oxidation during Ripening of Graviera Cheese Produced with Raw and Pasteurized Milk. Foods 2022, 11, 2138. https://doi.org/10.3390/foods11142138
Ioannidou MD, Maggira M, Samouris G. Physicochemical Characteristics, Fatty Acids Profile and Lipid Oxidation during Ripening of Graviera Cheese Produced with Raw and Pasteurized Milk. Foods. 2022; 11(14):2138. https://doi.org/10.3390/foods11142138
Chicago/Turabian StyleIoannidou, Maria D., Martha Maggira, and Georgios Samouris. 2022. "Physicochemical Characteristics, Fatty Acids Profile and Lipid Oxidation during Ripening of Graviera Cheese Produced with Raw and Pasteurized Milk" Foods 11, no. 14: 2138. https://doi.org/10.3390/foods11142138
APA StyleIoannidou, M. D., Maggira, M., & Samouris, G. (2022). Physicochemical Characteristics, Fatty Acids Profile and Lipid Oxidation during Ripening of Graviera Cheese Produced with Raw and Pasteurized Milk. Foods, 11(14), 2138. https://doi.org/10.3390/foods11142138