Digital Evaluation of Aroma Intensity and Odor Characteristics of Tea with Different Types—Based on OAV-Splitting Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tea Samples and Chemicals
2.2. Extraction and Analysis of Tea Volatile Compounds
2.3. Qualitative and Quantitative Analysis of Tea Aroma Components
2.4. Calculation of OAV of Teas and Analysis of Odor Characteristics
3. Results and Discussion
3.1. Analysis of Volatile Compounds in Tea with Different Types
3.2. Analysis of OAV, Odor Characteristic and Key Compounds in Tea with Different Types
3.3. Analysis of Odor Index in Teas of Different Types
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, X.Q.; Li, Q.S.; Xiang, L.P.; Liang, Y.R. Recent advances in volatiles of teas. Molecules 2016, 21, 338. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedula, V.S.P.; Prakash, I. The aroma, taste, color and bioactive constituents. J. Med. Plants. Res. 2011, 5, 2110–2124. [Google Scholar]
- Feng, Z.H.; Li, Y.F.; Li, M.; Wang, Y.J.; Zhang, L.; Wan, X.C.; Yang, X.G. Tea aroma formation from six model manufacturing processes. Food Chem. 2019, 285, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, C.; Zheng, T.T.; Zhao, M.M.; Gong, W.Y.; Wang, Q.M.; Yan, L.; Zhang, W.J. Characterization of key odor-active compounds in Sun-Dried black tea by sensory and instrumental-directed flavor analysis. Foods 2022, 22, 1740. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Y.; Ho, C.T.; Schwab, W.; Wan, X.C. Aroma profiles of green tea made with fresh tea leaves plucked in summer. Food Chem. 2021, 363, 130328. [Google Scholar] [CrossRef]
- Ito, Y.; Kubota, K. Sensory evaluation of the synergism among odorants present in concentrations below their odor threshold in a Chinese jasmine green tea infusion. Mol. Nutr. Food Res. 2005, 49, 61–68. [Google Scholar] [CrossRef]
- Song, H.L.; Liu, J.B. GC-O-MS technique and its applications in food flavor analysis. Food Res. Int. 2018, 114, 187–198. [Google Scholar] [CrossRef]
- Guo, X.Y.; Schwab, W.; Ho, C.T.; Song, C.K.; Wan, X.C. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC-MS and GC-IMS. Food Chem. 2022, 376, 131933. [Google Scholar] [CrossRef]
- Owuor, P.O.; Takeo, T.; Horita, H.; Tsushida, T.; Mural, T. Differentiation of clonal teas by terpene index. J. Sci. Food Agric. 1987, 40, 341–345. [Google Scholar] [CrossRef]
- Wang, M.Q.; Ma, W.J.; Shi, J.; Zhu, Y.; Lin, Z.; Lv, H.P. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC–MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Res. Int. 2020, 130, 108908. [Google Scholar] [CrossRef]
- Yin, X.; Huang, J.A.; Huang, J.; Wu, W.L.; Tong, T.; Liu, S.J.; Zhou, L.Y.; Liu, Z.H.; Zhang, S.G. Identification of volatile and odor-active compounds in Hunan black tea by SPME/GC-MS and multivariate analysis. LWT 2022, 164, 113656. [Google Scholar] [CrossRef]
- Patton, S.; Josephson, D.V. A method for determining significance of volatile flavor compounds in foods. J. Food Sci. 1957, 22, 316–318. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Z.; Yu, H.Y.; Lou, X.M.; Huang, J.; Yuan, H.B.; Wang, B.; Xu, Z.Y.; Tian, H.X. Characterization of six lactones in cheddar cheese and their sensory interactions studied by odor activity values and feller’s additive mode. J. Agric. Food Chem. 2022, 70, 301–308. [Google Scholar] [CrossRef]
- Xu, L.R.; Chang, J.R.; Mei, X.; Zhuang, Y.F.; Wu, G.C.; Jin, Q.Z.; Wang, X.G. Comparative analysis of aroma compounds in French fries and palm oil at three crucial stages by GC/MS-olfactometry, odor activity values, and aroma recombination. J. Sci. Food Agric. 2021, 102, 2792–2804. [Google Scholar] [CrossRef]
- Ye, Y.T.; Wang, L.X.; Zhan, P.; Tian, H.L.; Liu, J.S. Characterization of the aroma compounds of millet huangjiu at different fermentation stage. Food Chem. 2022, 366, 130691. [Google Scholar] [CrossRef]
- Zhu, H.; Chai, G.B.; Chi, G.J.; Wang, D.Z.; Liu, J.H.; Lu, B.B.; Zhang, W.J.; Mao, J.; Sun, S.H.; Zhang, J.X.; et al. Sensory-oriented analysis of smoky components in mainstream cigarette smoke. Tobac. Sci. Technol. 2017, 50, 41–49. [Google Scholar]
- Lin, X.Y. Perfumery, 3rd ed.; Chemical Industry Press: Beijing, China, 2018. [Google Scholar]
- Sasaki, T.; Koshi, E.; Take, H.; Michihata, T.; Maruya, M.; Enomoto, T. Characterisation of odorants in roasted stem tea using gas chromatography–mass spectrometry and gas chromatography-olfactometry analysis. Food Chem. 2017, 220, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.; Liu, S.Q.; Xu, Y.Q.; Tan, L.P.; Zhang, W.L.; Lassabliere, B.; Sun, J.C.; Yu, B. Characterising volatiles in tea (Camellia sinensis). Part II: Untargeted and targeted approaches to multivariate analysis. LWT 2018, 94, 142–162. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Zeng, L.; Fu, Y.Q.; Huang, J.S.; Wang, J.R.; Jin, S.; Yin, J.F.; Xu, Y.Q. Comparative analysis of volatile compounds in Tieguanyin with different types based on HS-SPME-GC-MS. Foods 2022, 11, 1530. [Google Scholar] [CrossRef]
- Van, G.L.J. Compilations of Odour Threshold Values in Air, Water and Other Media; Second Enlarged and Revised Edition; Boelens Aroma Chemical Information Services: Houten, The Netherlands, 2011. [Google Scholar]
- Van, G.L.J. Compilations of Flavor Threshold Values in Water and Other Media; Boelens Aroma Chemical Information Services: Houten, The Netherlands, 2003. [Google Scholar]
- Gu, Q.; Lu, J.S.; Ye, B.C. Tea Chemistry; University of Science and Technology of China: Hefei, China, 2012. [Google Scholar]
- Gong, X.W.; Han, Y.; Zhu, J.C.; Hong, L.; Zhu, D.L.; Liu, J.H.; Zhang, X.; Niu, Y.W.; Xiao, Z.B. Identification of the aroma-active compounds in Longjing tea characterized by odor activity value, gas chromatography- olfactometry, and aroma recombination. Int. J. Food Prop. 2017, 20, 1107–1121. [Google Scholar] [CrossRef]
- Zhu, J.C.; Niu, Y.W.; Xiao, Z.B. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Food Chem. 2021, 339, 128136. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.N. Study on the Mapping and Correlation Evaluation of Sensory and Chemical Components of Tea Aroma and Taste based on Sensomics. Ph.D. Thesis, Sichuan Agricultural University, Yaan, China, 2020. [Google Scholar]
- Xu, X.D.; Xu, R.; Jia, Q.; Feng, T.; Huang, Q.R.; Ho, C.T.; Song, S.Q. Identification of dihydro-β-ionone as a key aroma compound in addition to C8 ketones and alcohols in Volvariella volvacea mushroom. Food Chem. 2019, 293, 333–339. [Google Scholar] [CrossRef]
- Lv, S.D.; Wu, Y.S.; Wei, J.F.; Lian, M.; Wang, C.; Gao, X.M.; Meng, Q.X. Application of gas chromatography–mass spectrometry and chemometrics methods for assessing volatile profiles of Pu-erh tea with different processing methods and ageing years. RSC. Adv. 2015, 5, 87806–87817. [Google Scholar] [CrossRef]
- Yang, P.; Yu, M.G.; Song, H.L.; Xu, Y.Q.; Lin, Y.P.; Granvogl, M. Characterization of key aroma-active compounds in rough and moderate fire Rougui Wuyi Rock Tea (Camellia sinensis) by sensory-directed flavor analysis and elucidation of the influences of roasting on aroma. J. Agric. Food Chem. 2022, 70, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Takei, Y.; Ishiwata, K.; Yamanishi, T. Aroma components characteristic of spring green tea. Agri. Bio. Chem. 1976, 40, 2151–2157. [Google Scholar]
- Nie, C.N.; Gao, Y.; Du, X.; Bian, J.L.; Li, H.; Zhang, X.; Wang, C.M.; Li, S.Y. Characterization of the effect of cis-3-hexen-1-ol on green tea aroma. Sci. Rep. 2020, 10, 15506. [Google Scholar] [CrossRef] [PubMed]
Compound | Ci (μg kg−1) | OAVi | % | OAV-Splitting of Odor Characteristic | |||||
---|---|---|---|---|---|---|---|---|---|
Woody | Floral | Burnt | Green | Fruity | Fatty | ||||
β-Ionone | 0.16 ± 0.02 | 22.86 | 33.57 | 11.43 | 6.86 | 4.57 | 0 | 0 | 0 |
(E)-3-Hexen-1-ol | 0.73 ± 0.01 | 10.43 | 15.32 | 0 | 0 | 0 | 9.39 | 1.04 | 0 |
6-Methyl-5-hepten-2-one | 0.47 ± 0.01 | 9.40 | 13.80 | 0 | 6.58 | 0 | 0 | 2.82 | 0 |
Methyl salicylate | 0.27 ± 0.02 | 6.75 | 9.91 | 0 | 4.73 | 2.02 | 0 | 0 | 0 |
Linalool | 3.29 ± 0.08 | 6.58 | 9.66 | 0 | 6.58 | 0 | 0 | 0 | 0 |
Epoxydihydrolinalool | 2.91 ± 0.26 | 5.82 | 8.55 | 5.65 | 0 | 0 | 0 | 0 | 0.17 |
Phenethyl alcohol | 3.38 ± 0.56 | 4.51 | 6.62 | 0.45 | 3.61 | 0 | 0.45 | 0 | 0 |
Hexanal | 0.84 ± 0.01 | 1.75 | 2.57 | 0.18 | 0 | 0 | 0.17 | 0.35 | 1.05 |
Total | 12.05 | 68.10 * | 17.71 | 28.36 | 6.59 | 10.01 | 4.21 | 1.22 | |
% ** | 26.01 | 41.64 | 9.68 | 14.70 | 6.18 | 1.79 |
Compound | Ci (μg kg−1) | OAVi | % | OAV-Splitting of Odor Characteristic | |||||
---|---|---|---|---|---|---|---|---|---|
Woody | Floral | Burnt | Green | Fruity | Fatty | ||||
3-Octanone | 0.23 ± 0.01 | 230.00 | 46.74 | 34.50 | 0 | 0 | 172.50 | 23.00 | 0 |
β-Cyclocitral | 0.30 ± 0.05 | 100.00 | 20.32 | 10.00 | 0 | 0 | 20.00 | 70.00 | 0 |
Valeraldehyde | 0.67 ± 0.08 | 55.83 | 11.35 | 0 | 0 | 0 | 5.58 | 11.17 | 39.08 |
β-Ionone | 0.19 ± 0.00 | 27.14 | 5.52 | 13.57 | 8.14 | 5.43 | 0 | 0 | 0 |
(E)-3-Hexen-1-ol | 1.54 ± 0.07 | 22.00 | 4.47 | 0 | 0 | 0 | 19.80 | 2.20 | 0 |
6-Methyl-5-hepten-2-one | 0.71 ± 0.06 | 14.20 | 2.89 | 0 | 9.94 | 0 | 0 | 4.26 | 0 |
1-Penten-3-ol | 5.04 ± 0.25 | 14.07 | 2.86 | 0 | 0 | 5.63 | 2.81 | 5.63 | 0 |
1-Octen-3-ol | 0.52 ± 0.04 | 13.00 | 2.64 | 0 | 0 | 10.40 | 1.30 | 0 | 1.30 |
1-Pentanol | 0.79 ± 0.01 | 5.26 | 1.07 | 0 | 0 | 0 | 0 | 0 | 5.26 |
(E,E)-2,4-Heptadienal | 0.25 ± 0.00 | 5.10 | 1.04 | 0 | 0 | 0 | 0 | 0 | 5.10 |
Hexanal | 1.39 ± 0.02 | 2.90 | 0.59 | 0.29 | 0 | 0 | 0.29 | 0.58 | 1.74 |
2-Hexen-1-ol | 0.31 ± 0.01 | 1.34 | 0.27 | 0 | 0 | 0 | 1.34 | 0 | 0 |
1-Octanol | 0.13 ± 0.02 | 1.18 | 0.24 | 0 | 0.24 | 0 | 0.47 | 0 | 0.47 |
Total | 12.07 | 492.02 * | 58.36 | 18.32 | 21.46 | 224.09 | 116.84 | 52.95 | |
% ** | 11.86 | 3.72 | 4.36 | 45.55 | 23.75 | 10.76 |
Compound | Ci (μg kg−1) | OAVi | % | OAV-Splitting of Odor Characteristic | |||||
---|---|---|---|---|---|---|---|---|---|
Woody | Floral | Burnt | Green | Fruity | Fatty | ||||
β-Cyclocitral | 0.36 ± 0.01 | 120.00 | 39.64 | 12.00 | 0 | 0 | 24.00 | 84.00 | 0 |
Valeraldehyde | 0.80 ± 0.12 | 66.67 | 22.02 | 0 | 0 | 0 | 6.67 | 13.33 | 46.67 |
β-Ionone | 0.32 ± 0.02 | 45.71 | 15.10 | 22.86 | 13.71 | 9.14 | 0 | 0 | 0 |
6-Methyl-5-hepten-2-one | 1.54 ± 0.19 | 30.80 | 10.17 | 0 | 21.56 | 0 | 0 | 9.24 | 0 |
(E,E)-2,4-Heptadienal | 0.71 ± 0.09 | 14.49 | 4.79 | 0 | 0 | 0 | 0 | 0 | 14.49 |
Furfural | 2.06 ± 0.06 | 7.30 | 2.41 | 0 | 0 | 5.84 | 0 | 0 | 1.46 |
1-Penten-3-ol | 2.59 ± 0.12 | 7.23 | 2.39 | 0 | 0 | 2.89 | 1.45 | 2.89 | 0 |
Hexanal | 3.29 ± 0.10 | 6.87 | 2.27 | 0.69 | 0.00 | 0.00 | 0.69 | 1.37 | 4.12 |
(E)-3-Hexen-1-ol | 0.15 ± 0.00 | 2.14 | 0.71 | 0 | 0 | 0 | 1.93 | 0.21 | 0 |
3,5-Octadien-2-one | 0.23 ± 0.01 | 1.53 | 0.50 | 0 | 0 | 1.53 | 0 | 0 | 0 |
Total | 12.05 | 302.74 * | 35.55 | 35.27 | 19.40 | 34.74 | 111.04 | 66.74 | |
% ** | 11.74 | 11.65 | 6.40 | 11.48 | 36.68 | 22.05 |
Compound | Ci (μg kg−1) | OAVi | % | OAV-Splitting of Odor Characteristic | |||||
---|---|---|---|---|---|---|---|---|---|
Woody | Floral | Burnt | Green | Fruity | Fatty | ||||
β-Cyclocitral | 0.79 ± 0.09 | 263.33 | 55.80 | 26.33 | 0 | 0 | 52.67 | 184.33 | 0 |
β-Ionone | 0.66 ± 0.04 | 94.29 | 19.98 | 47.14 | 28.29 | 18.86 | 0 | 0 | 0 |
6-Methyl-5-hepten-2-one | 1.83 ± 0.23 | 36.60 | 7.76 | 0 | 25.62 | 0 | 0 | 10.98 | 0 |
(E)-3-Hexen-1-ol | 1.52 ± 0.02 | 21.71 | 4.60 | 0 | 0 | 0 | 19.54 | 2.17 | 0 |
Furfural | 4.62 ± 0.41 | 16.38 | 3.47 | 0 | 0 | 13.10 | 0 | 0 | 3.28 |
1-Pentanol | 1.61 ± 0.13 | 10.71 | 2.27 | 0 | 0 | 0 | 0 | 0 | 10.71 |
Methyl salicylate | 0.41 ± 0.05 | 10.25 | 2.17 | 0 | 7.17 | 3.08 | 0 | 0 | 0 |
2(5H)-Furanone | 0.26 ± 0.02 | 4.33 | 0.92 | 0 | 0.43 | 0.43 | 0 | 2.60 | 0.87 |
Acetic acid | 22.57 ± 0.73 | 4.10 | 0.87 | 0 | 0 | 0 | 0 | 0.41 | 3.69 |
Hexanal | 1.57 ± 0.01 | 3.28 | 0.70 | 0.33 | 0 | 0 | 0.32 | 0.66 | 1.97 |
Linalool | 1.40 ± 0.10 | 2.80 | 0.59 | 0 | 2.80 | 0 | 0 | 0 | 0 |
Phenethyl alcohol | 2.04 ± 0.22 | 2.72 | 0.58 | 0.27 | 2.18 | 0 | 0.27 | 0 | 0 |
Benzaldehyde | 4.83 ± 0.71 | 1.38 | 0.29 | 0.07 | 0 | 0 | 0.13 | 1.04 | 0.14 |
Total | 44.11 | 471.88 * | 74.14 | 66.49 | 35.47 | 72.93 | 202.19 | 20.66 | |
% ** | 15.71 | 14.09 | 7.52 | 15.45 | 42.85 | 4.38 |
Compound | Ci (μg kg−1) | OAV | % | OAV-Splitting of Odor Characteristic | |||||
---|---|---|---|---|---|---|---|---|---|
Woody | Floral | Burnt | Green | Fruity | Fatty | ||||
β-Ionone | 0.24 ± 0.01 | 34.29 | 61.25 | 17.14 | 10.29 | 6.86 | 0 | 0 | 0 |
6-Methyl-5-hepten-2-one | 0.32 ± 0.03 | 6.40 | 11.43 | 0 | 4.48 | 0 | 0 | 1.92 | 0 |
(E,E)-2,4-Heptadienal | 0.28 ± 0.01 | 5.71 | 10.20 | 0 | 0 | 0 | 0 | 0 | 5.71 |
1-Pentanol | 0.24 ± 0.02 | 1.60 | 2.86 | 0 | 0 | 0 | 0 | 0 | 1.6 |
1-Penten-3-ol | 0.57 ± 0.02 | 1.59 | 2.84 | 0 | 0 | 0.64 | 0.32 | 0.63 | 0 |
(E)-Geranylacetone | 0.27 ± 0.02 | 1.45 | 2.59 | 0 | 1.30 | 0 | 0 | 0 | 0.15 |
Acetic acid | 7.61 ± 0.25 | 1.38 | 2.47 | 0 | 0 | 0 | 0 | 0.14 | 1.24 |
Hexanal | 0.65 ± 0.07 | 1.36 | 2.43 | 0.14 | 0 | 0 | 0.13 | 0.27 | 0.82 |
Epoxydihydrolinalool | 0.56 ± 0.01 | 1.12 | 2.00 | 1.09 | 0 | 0 | 0 | 0 | 0.03 |
Linalool | 0.54 ± 0.04 | 1.08 | 1.93 | 0 | 1.08 | 0 | 0 | 0 | 0 |
Total | 11.28 | 55.98 * | 18.37 | 17.15 | 7.50 | 0.45 | 2.96 | 9.55 | |
% ** | 32.81 | 30.64 | 13.40 | 0.80 | 5.29 | 17.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Wang, G.; Lin, S.; Liu, Z.; Wang, P.; Li, J.; Zhang, Q.; He, H. Digital Evaluation of Aroma Intensity and Odor Characteristics of Tea with Different Types—Based on OAV-Splitting Method. Foods 2022, 11, 2204. https://doi.org/10.3390/foods11152204
Hu W, Wang G, Lin S, Liu Z, Wang P, Li J, Zhang Q, He H. Digital Evaluation of Aroma Intensity and Odor Characteristics of Tea with Different Types—Based on OAV-Splitting Method. Foods. 2022; 11(15):2204. https://doi.org/10.3390/foods11152204
Chicago/Turabian StyleHu, Wenwen, Gege Wang, Shunxian Lin, Zhijun Liu, Peng Wang, Jiayu Li, Qi Zhang, and Haibin He. 2022. "Digital Evaluation of Aroma Intensity and Odor Characteristics of Tea with Different Types—Based on OAV-Splitting Method" Foods 11, no. 15: 2204. https://doi.org/10.3390/foods11152204
APA StyleHu, W., Wang, G., Lin, S., Liu, Z., Wang, P., Li, J., Zhang, Q., & He, H. (2022). Digital Evaluation of Aroma Intensity and Odor Characteristics of Tea with Different Types—Based on OAV-Splitting Method. Foods, 11(15), 2204. https://doi.org/10.3390/foods11152204