Performance, Carcass Traits, Pork Quality and Expression of Genes Related to Intramuscular Fat Metabolism of Two Diverse Genetic Lines of Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design and Diets
2.2. Blood Sampling and Analysis
2.3. Slaughter Procedures and Tissue Sampling
2.4. Carcass Traits
2.5. Pork Quality
2.6. Gene Expression Analysis
2.7. Statistical Analysis
3. Results
3.1. Performance and Serological Analysis
3.2. Carcass Traits
3.3. Carcass pH
3.4. Pork Quality
3.5. mRNA Expression in Longissimus Dorsi Muscle
3.6. mRNA Expression Soleus Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Wijk, H.J.; Arts, D.J.G.; Matthews, J.O.; Webster, M.; Ducro, B.J.; Knol, E.F. Genetic parameters for carcass composition and pork quality estimated in a commercial production chain. J. Anim. Sci. 2005, 83, 324–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miar, Y.; Plastow, G.; Bruce, H.; Moore, S.; Manafiazar, G.; Kemp, R.; Charagu, P.; Huisman, A.; Van Haandel, B.; Zhang, C.; et al. Genetic and phenotypic correlations between performance traits with meat quality and carcass characteristics in commercial crossbred pigs. PLoS ONE 2014, 9, e110105. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Warriss, P.D. The influence of the manipulation of carcass composition on meat quality. In The Control of Fat and Lean Deposition; Buttery, P.J., Boorman, K.N., Lindsay, D.B., Eds.; Butterworth-Heinemann: Oxford, UK, 1992; pp. 331–353. [Google Scholar]
- Zappaterra, M.; Deserti, M.; Mazza, R.; Braglia, S.; Zambonelli, P.; Davoli, R. A gene and protein expression study on four porcine genes related to intramuscular fat deposition. Meat Sci. 2016, 121, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Ngapo, T.M.; Gariepy, C. Factors affecting the eating quality of pork. Crit. Rev. Food Sci. Nutr. 2008, 48, 599–633. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, D.C.; Lonergan, S.M.; Huff-Lonergan, E.J. Genetics of meat quality and carcass traits. In The Genetics of the Pig, 2nd ed.; Rothschild, M.F., Ruvinsky, A., Eds.; CAB International: Cambridge, MA, USA, 2011; pp. 355–389. [Google Scholar]
- Aaslyng, M.D.; Meinert, L. Meat flavour in pork and beef–From animal to meal. Meat Sci. 2017, 132, 112–117. [Google Scholar] [CrossRef]
- Dransfield, E.; Ngapo, T.M.; Nielsen, N.A.; Bredahl, L.; Sjöden, P.O.; Magnusson, M.; Campo, M.M.; Nute, G.R. Consumer choice and suggested price for pork as influenced by its appearance, taste and information concerning country of origin and organic pig production. Meat Sci. 2005, 69, 61–70. [Google Scholar] [CrossRef]
- Khanal, P.; Maltecca, C.; Schwab, C.; Gray, K.; Tiezzi, F. Genetic parameters of meat quality, carcass composition, and growth traits in commercial swine. J. Anim. Sci. 2019, 97, 3669–3683. [Google Scholar] [CrossRef]
- Aymerich, P.; Gasa, J.; Bonet, J.; Coma, J.; Solà-Oriol, D. The effects of sire line, sex, weight and marketing day on carcass fatness of non-castrated pigs. Livest. Sci. 2019, 228, 25–30. [Google Scholar] [CrossRef]
- Jeleníková, J.; Pipek, P.; Miyahara, M. The effects of breed, sex, intramuscular fat and ultimate pH on pork tenderness. Eur. Food Res. Technol. 2008, 227, 989–994. [Google Scholar] [CrossRef]
- Nakev, J.; Popova, T. Quality of meat in purebred pigs involved in crossbreeding schemes. I. Chemical composition and quality characteristics of m. Longissimus thoracis. Bulg. J. Agric. Sci. 2020, 26, 894–898. [Google Scholar]
- Augspurger, N.R.; Ellis, M.; Hamilton, D.N.; Wolter, B.F.; Beverly, J.L.; Wilson, E.R. The effect of sire line on the feeding patterns of grow-finish pigs. Appl. Anim. Behav. Sci. 2002, 75, 103–114. [Google Scholar] [CrossRef]
- De Vries, A.G.; Van der Wal, P.G.; Long, T.; Eikelenboom, G.; Merks, J.W.M. Genetic parameters of pork quality and production traits in Yorkshire populations. Livest. Prod. Sci. 1994, 40, 277–289. [Google Scholar] [CrossRef]
- Bidanel, J.P.; Ducos, A. Variabilite et evolution genetique des caracteres mesures dans les stations publiques de controle de performances chez les porcs de race Pietrain. J. Rech. Porc. Fr. 1995, 27, 149–154. [Google Scholar]
- Li, S.; Wang, H.; Wang, X.; Wang, Y.; Feng, J. Betaine affects muscle lipid metabolism via regulating the fatty acid uptake and oxidation in finishing pig. J. Anim. Sci. Biotechnol. 2017, 8, 72. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.H.; Kim, M.J.; Jeon, G.J.; Chung, H.Y. Association of genetics variants for FABP3 gene with back fat thickness and intramuscular fat content in pig. Mol. Biol. Rep. 2011, 38, 2161–2166. [Google Scholar] [CrossRef]
- Malgwi, I.H.; Halas, V.; Grünvald, P.; Schiavon, S.; Jócsák, I. Genes related to fat metabolism and intramuscular fat content of pork: A focus on nutrigenetics and nutrigenomics. Animals 2022, 12, 150. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, M.; Fernández, A.; Núñez, Y.; Benítez, R.; Isabel, B.; Fernández, A.I.; Rey, A.I.; Gonzalez-Bulnes, A.; Medrano, J.F.; Cánovas, Á.; et al. Developmental Stage, Muscle and Genetic Type Modify Muscle Transcriptome in Pigs: Effects on Gene Expression and Regulatory Factors Involved in Growth and Metabolism. PLoS ONE 2016, 11, e0167858. [Google Scholar] [CrossRef] [Green Version]
- Óvilo, C.; Benítez, R.; Fernández, A.; Isabel, B.; Núñez, Y.; Fernández, A.I.; Rodríguez, C.; Daza, A.; Silió, L.; López-Bote, C. Dietary energy source largely affects tissue fatty acid composition but has minor influence on gene transcription in Iberian pigs. J. Anim. Sci. 2014, 92, 939–954. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Albino, L.F.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Saraiva, A.; de Abreu, M.L.T.; Rodrigues, P.B.; de Oliveira, R.F.; et al. Tabelas Brasileiras para Aves e Suínos: Composição de Alimentos e Exigências Nutricionais, 4th ed.; Universidade Federal de Viçosa: Viçosa, Brazil, 2017; 488p. [Google Scholar]
- Xiao, R.J.; Xu, Z.R.; Chen, H.L. Effects of ractopamine at different dietary protein levels on growth performance and carcass characteristics in finishing pigs. Anim. Feed Sci. and Technol. 1999, 79, 119–127. [Google Scholar] [CrossRef]
- Marcolla, C.S.; Holanda, D.M.; Ferreira, S.V.; Rocha, G.C.; Serão, N.V.L.; Duarte, M.S.; Abreu, M.L.T.; Saraiva, A. Chromium, CLA, and ractopamine for finishing pigs. J. Anim. Sci. 2017, 95, 4472–4480. [Google Scholar] [CrossRef]
- Bridi, A.M.; Silva, C.A. Métodos de Avaliação de Carcaça e da Carne Suína; Midiograf: Londrina, Brazil, 2006; 97p. [Google Scholar]
- Soares, M.H.; Valente, D.T., Jr.; Rodrigues, G.A.; Júnior, R.L.C.; Rocha, G.C.; Bohrer, B.M.; Juárez, M.; Duarte, M.S.; Saraiva, A. Effects of feeding ractopamine hydrochloride with or without supplemental betaine on live performance, carcass and meat quality traits, and gene expression of finishing pigs. Meat Sci. 2022, 191, 108851. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Papadopoulos, L.S.; Miler, R.K. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat, 2nd ed.; American Meat Science Association: Champaign, IL, USA, 2015; 105p. [Google Scholar]
- Brewer, M.S.; Zhu, L.G.; Bidner, B.; Meisinger, D.J.; McKeith, F.K. Measuring pork color: Effects of bloom time, muscle, pH and relationship to instrumental parameters. Meat Sci. 2001, 57, 169–176. [Google Scholar] [CrossRef]
- Karamucki, T.; Jakubowska, M.; Rybarczyk, A.; Szaruga, R.; Gardzielewska, J.; Natalczyk-Szymkowska, W. Relationship between CIE L^* a^* b^* and CIE L^* C^* h scale colour parameters determined when applying illuminant C and observer 2^ o and illuminant D65 and observer 10^ o and proximate chemical composition and quality traits of porcine longissimus lumborum muscle. Pol. J. Food Nutr. Sci. 2006, 15, 129. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Latorre, M.A.; Lázaro, R.; Garcia, M.I.; Nieto, M.; Mateos, G.G. Effect of sex and terminal sire genotype on performance, carcass characteristics, and meat quality of pigs slaughtered at 117 kg body weight. Meat Sci. 2003, 65, 1369–1377. [Google Scholar] [CrossRef]
- Alonso, V.; Campo, M.M.; Español, S.; Roncáles, P.; Beltrán, J.A. Effect of crossbreeding and gender on meet quality and fatty acid composition in pork. Meat Sci. 2009, 81, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Wismer-Pedersen, J. Some Observations on the Quality of Cured Bacon in Relation to Ante-Mortem Treatment: I. Results of a sugar feeding experiment. Acta Agric. Scand. 1959, 9, 69–90. [Google Scholar] [CrossRef]
- Lindahl, G.; Henckel, P.; Karlsson, A.H.; Andersen, H.J. Significance of early postmortem temperature and pH decline on colour characteristics of pork loin from different crossbreeds. Meat Sci. 2006, 72, 613–623. [Google Scholar] [CrossRef]
- Morcuende, D.; Estévez, M.; Ramírez, R.; Cava, R. Effect of the Iberian x Duroc reciprocal cross on productive parameters, meat quality and lipogenic enzyme activities. Meat Sci. 2007, 76, 86–94. [Google Scholar] [CrossRef]
- Alonso, V.; Muela, E.; Gutiérrez, B.; Calanche, J.B.; Roncalés, P.; Beltrán, J.A. The inclusion of Duroc breed in maternal line affects pork quality and fatty acid profile. Meat Sci. 2015, 107, 49–56. [Google Scholar] [CrossRef]
- McGloughlin, P.; Allen, P.; Tarrant, P.V.; Joseph, R.L.; Lynch, P.B.; Hanrahan, T.J. Growth and carcass quality of crossbred pigs sired by Duroc, Landrace and Large White boars. Livest. Prod. Sci. 1988, 18, 275–288. [Google Scholar] [CrossRef]
- Chang, K.C.; Costa, N.; Blackely, R.; Southwood, O.; Evans, G.; Plastow, G.; Wood, J.D.; Richardson, R.I. Relationships of myosin heavy chain fibre types to meat quality traits in traditional and modern pigs. Meat Sci. 2003, 64, 93–103. [Google Scholar] [CrossRef]
- Almeida, V.V.; Nuñez, A.J.C.; Schinckel, A.P.; Ward, M.G.; Andrade, C.; Sbardella, M.; Berenchtein, B.; Coutinho, L.L.; Miyada, V.S. Gene expression of beta-adrenergic receptors and myosin heavy chain isoforms induced by ractopamine feeding duration in pigs not carrying the ryanodine receptor mutation. Livest. Sci. 2015, 172, 91–95. [Google Scholar] [CrossRef]
- Ryu, Y.C.; Kim, B.C. The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci. 2005, 71, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chai, J.; Luo, Z.; He, H.; Chen, L.; Liu, X.; Zhou, Q. Meat and nutritional quality comparison of purebred and crossbred pigs. Anim. Sci. J. 2018, 89, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.E.D.; Faustman, C. Metmyoglobin reducing activity. Meat Sci. 2005, 71, 407–439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Z.; Oyelami, F.O.; Sun, H.; Xu, Z.; Ma, P.; Wang, Q.; Pan, Y. Identificartion of genes related to intramuscular fat independent of backfat thickness in Duroc pigs using single-step genome-wide association. Anim. Gen. 2020, 52, 108–113. [Google Scholar] [CrossRef]
- Kim, J.A.; Cho, E.S.; Jeong, Y.D.; Choi, Y.H.; Kim, Y.S.; Woo Choi, J.; Kim, J.S.; Jang, A.; Hong, J.K.; Sa, S. The effects of breed and gender on meat quality of Duroc, Pietrain, and their crossbred. J. Anim. Sci. Technol. 2020, 62, 409. [Google Scholar] [CrossRef]
- Hocquette, J.F.; Gondret, F.; Baeza, E.; Medale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef] [Green Version]
Ingredient, % | Phase 1 | Phase 2 |
---|---|---|
Corn | 72.325 | 72.325 |
Soybean meal | 20.000 | 20.000 |
Soybean oil | 3.550 | 3.550 |
Dicalcium phosphate | 0.950 | 0.950 |
Limestone | 0.830 | 0.830 |
Inert clay filler | 1.200 | 0.595 |
Salt | 0.355 | 0.355 |
L-lysine HCl, 98.5% | 0.230 | 0.435 |
DL—methionine, 99.0% | 0.050 | 0.145 |
L—threonine, 98.5% | 0.035 | 0.155 |
L—tryptophan, 98.0% | 0.015 | 0.045 |
L—valine, 96.5% | --- | 0.055 |
Mineral premix 1 | 0.200 | 0.200 |
Vitamin premix 2 | 0.200 | 0.200 |
Antibiotic 3 | 0.050 | 0.050 |
Ractopamine 4 | --- | 0.100 |
Antioxidant 5 | 0.010 | 0.010 |
Item | Phase 1 | Phase 2 |
---|---|---|
ME, kcal/kg | 3.350 | 3.350 |
Crude protein, % | 15.00 | 15.44 |
SID Lys, % | 0.811 | 0.973 |
SID Met + Cys, % | 0.487 | 0.584 |
SID Thr, % | 0.527 | 0.632 |
SID Trp, % | 0.162 | 0.195 |
SID Val, % | 0.623 | 0.671 |
SID Iso, % | 0.546 | 0.546 |
Sodium, % | 0.158 | 0.158 |
Calcium, % | 0.545 | 0.545 |
Available phosphorus, % | 0.269 | 0.269 |
Gene | GenBank No. | Sequence | Size, bp |
---|---|---|---|
GAPDH | AF017079 | F:5′-CCTTCCGTGTCCCTACTGC-3′ R:5′-CATCAAAGGTAGAAGAGTGAGTGTC-3′ | 195 |
CPT1 | NM_001007191.1 | F:5′-GGACGAGGAGTCTCACCACTATGAC-3′ R:5′-TCTTGAACGCGATGAGGGTGA-3′ | 128 |
PPARγ | NM_214379 | F:5′-GTGGAGACCGCCCAGGTTTG-3′ R:5′-GGGAGGACTCTGGGTGGTTCA-3′ | 108 |
PPARα | NM_001044526.1 | F:5′-GGCTTACGGCAATGGCTTCA-3′ R:5′-CGGTCTCCGCACCAAATGA-3′ | 168 |
C/EBPα | AF103944 | F:5′-CGTGGAGACTCAACAGAAGG-3′ R: 5′-GCAGCGTGTCCAGTTCGCGG-3′ | 95 |
LPL | NM_214286.1 | F:5′-CCCTATACAAGAGGGAACCGGAT-3′ R:5′-CCGCCATCCAGTCGATAAACGT-3′ | 138 |
FAT/CD36 | NM_001044622.1 | F:5′-CTGGTGCTGTCATTGGAGCAGT-3′ R:5′-CTGTCTGTAAACTTCCGTGCCTGTT-3′ | 160 |
FABP3 | NM_001099931.1 | F:5′-CCAACATGACCAAGCCTACCACA-3′ R:5′-ACAAGTTTGCCTCCATCCAGTGT-3′ | 176 |
ADIP | AY135647 | F:5′-GGAGATACAGGTCTTACTGGTCCTA-3′ R:5′-CAGGAATGTTGCAGTGGAATTTGCCA-3′ | 262 |
AdipoR1 | NM_001007193 | F:5′-GACCATGCTCAGACCAAATATGTATTTCA-3′ R:5′-AACGAGTAATAGAGCCAGGGGACGAAGCT-3′ | 222 |
AdipoR2 | NM_001007192 | F:5′-CAAACATCTCCTTTGTGGCCC-3′ R:5′-CAAGTAGATGAAGCAAGGTTGCGGGTTA-3′ | 242 |
HSL | AJ000482 | F:5′-GCT CCC ATC GTCAAG AAT C-3′ R:5′-TAA AGC GAA TGCGGT CC-3′ | 112 |
Item 1 | HYB | DUR | SEM 3 | p-Value |
---|---|---|---|---|
IBW, kg 2 | 88.90 | 85.63 | 0.73 | 0.06 |
FBW, kg | 144.68 | 143.65 | 1.54 | 0.39 |
ADFI, kg | 2.860 | 3.020 | 0.05 | 0.26 |
ADG, kg | 1.238 | 1.289 | 0.03 | 0.38 |
F:G | 2.37 | 2.37 | 0.03 | 0.88 |
Item 1 | HYB | DUR | SEM 2 | p-Value |
---|---|---|---|---|
CHO, mg/dL | 91.00 | 88.00 | 2.06 | 0.50 |
TG, mg/dL | 31.00 | 27.17 | 2.15 | 0.41 |
SUN, mg/dL | 22.44 | 23.83 | 1.19 | 0.59 |
Item 1 | HYB | DUR | SEM 3 | p-Value |
---|---|---|---|---|
HCW 2, kg | 120.52 | 116.87 | 1.05 | 0.12 |
CY, % | 83.74 | 82.74 | 0.38 | 0.24 |
BF, mm | 13.86 | 11.49 | 0.68 | 0.03 |
LMA, cm2 | 73.33 | 68.89 | 1.46 | 0.19 |
Item | HYB | DUR | SEM 1 | p-Value |
---|---|---|---|---|
pH | ||||
15 min | 6.593 | 6.720 | 0.05 | 0.19 |
45 h | 6.353 | 6.513 | 0.04 | 0.09 |
1 h | 6.227 | 6.487 | 0.08 | 0.16 |
3 h | 5.848 | 6.048 | 0.08 | 0.28 |
6 h | 5.660 | 5.798 | 0.06 | 0.30 |
9 h | 5.564 | 5.532 | 0.03 | 0.65 |
12 h | 5.503 | 5.486 | 0.02 | 0.66 |
24 h | 5.461 | 5.471 | 0.01 | 0.69 |
Item 1 | HYB | DUR | SEM 2 | p-Value |
---|---|---|---|---|
THL, % | 7.399 | 6.360 | 0.43 | 0.28 |
CL, % | 15.460 | 15.100 | 0.52 | 0.77 |
TL, % | 22.285 | 20.489 | 0.47 | 0.09 |
WBSF, kgf | 4.340 | 3.926 | 1.19 | 0.07 |
L* | 54.001 | 56.808 | 0.59 | 0.04 |
A* | 6.836 | 5.610 | 0.25 | 0.03 |
B* | 13.265 | 13.532 | 0.19 | 0.51 |
IMF, % | 1.446 | 1.933 | 0.05 | <0.001 |
Item | HYB | DUR | SEM 1 | p-Value |
---|---|---|---|---|
PPARγ | 1.236 | 2.034 | 0.12 | 0.008 |
CEBPα | 5.489 | 5.375 | 0.52 | 0.92 |
FAT/CD 36 | 1.497 | 2.817 | 0.16 | 0.002 |
FABP3 | 1.405 | 1.198 | 0.09 | 0.27 |
LPL | 1.507 | 2.444 | 0.26 | 0.11 |
HSL | 3.471 | 5.782 | 0.37 | 0.01 |
PPARα | 2.053 | 2.337 | 0.18 | 0.47 |
CPT-1 | 1.247 | 1.852 | 0.14 | 0.06 |
ADIP R1 | 2.336 | 1.758 | 0.31 | 0.39 |
ADIP R2 | 8.907 | 11.608 | 0.99 | 0.22 |
ADIP | 1.224 | 3.475 | 0.28 | 0.002 |
Item | HYB | DUR | SEM 1 | p-Value |
---|---|---|---|---|
PPARγ | 1.243 | 2.310 | 0.17 | 0.009 |
CEBPα | 6.008 | 4.728 | 1.17 | 0.61 |
FAT/CD 36 | 1.941 | 2.936 | 0.18 | 0.02 |
FABP3 | 8.270 | 9.472 | 0.32 | 0.10 |
LPL | 1.603 | 2.096 | 0.21 | 0.28 |
HSL | 8.407 | 7.026 | 1.08 | 0.56 |
PPARα | 13.448 | 9.345 | 1.01 | 0.08 |
CPT-1 | 2.768 | 2.394 | 0.43 | 0.69 |
ADIP R1 | 13.278 | 14.956 | 0.72 | 0.29 |
ADIP R2 | 5.213 | 7.930 | 1.18 | 0.30 |
ADIP | 14.505 | 11.671 | 1.32 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, M.H.; de Amorim Rodrigues, G.; Júnior, D.T.V.; da Silva, C.B.; Costa, T.C.; de Souza Duarte, M.; Saraiva, A. Performance, Carcass Traits, Pork Quality and Expression of Genes Related to Intramuscular Fat Metabolism of Two Diverse Genetic Lines of Pigs. Foods 2022, 11, 2280. https://doi.org/10.3390/foods11152280
Soares MH, de Amorim Rodrigues G, Júnior DTV, da Silva CB, Costa TC, de Souza Duarte M, Saraiva A. Performance, Carcass Traits, Pork Quality and Expression of Genes Related to Intramuscular Fat Metabolism of Two Diverse Genetic Lines of Pigs. Foods. 2022; 11(15):2280. https://doi.org/10.3390/foods11152280
Chicago/Turabian StyleSoares, Marcos Henrique, Gustavo de Amorim Rodrigues, Dante Teixeira Valente Júnior, Caroline Brito da Silva, Thaís Correia Costa, Marcio de Souza Duarte, and Alysson Saraiva. 2022. "Performance, Carcass Traits, Pork Quality and Expression of Genes Related to Intramuscular Fat Metabolism of Two Diverse Genetic Lines of Pigs" Foods 11, no. 15: 2280. https://doi.org/10.3390/foods11152280
APA StyleSoares, M. H., de Amorim Rodrigues, G., Júnior, D. T. V., da Silva, C. B., Costa, T. C., de Souza Duarte, M., & Saraiva, A. (2022). Performance, Carcass Traits, Pork Quality and Expression of Genes Related to Intramuscular Fat Metabolism of Two Diverse Genetic Lines of Pigs. Foods, 11(15), 2280. https://doi.org/10.3390/foods11152280