Evaluation of Microwave-Assisted Extraction as a Potential Green Technology for the Isolation of Bioactive Compounds from Saffron (Crocus sativus L.) Floral By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design
2.3. Extraction Procedure
2.4. Extract Characterization
2.4.1. Total Phenolic Content
2.4.2. Total Flavonoid Content
2.4.3. Oxygen Radical Absorbance Capacity Assay
2.4.4. Hydroxyl Radical Scavenging Capacity Assay
2.5. Statistical Analysis
3. Results and Discussion
3.1. Bioactive Content
3.2. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Carmona, M.; Zalacain, A.; Alonso, G. The Chemical Composition of Saffron: Color, Taste and Aroma; Bomarzo SL: Albacete, Spain, 2006. [Google Scholar]
- Shahi, T.; Assadpour, E.; Jafari, S.M. Main chemical compounds and pharmacological activities of stigmas and tepals of ‘red gold’; saffron. Trends Food Sci. Technol. 2016, 58, 69–78. [Google Scholar] [CrossRef]
- Ali Ahmed, A.B.; Taha, R.M.; Anuar, N.; Elias, H.; Abdullah, S.; Khan, A.; Vijay, L.; Vidhyavathi, R. Chapter 6—Saffron as a natural food colorant and its applications. In Saffron; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 221–239. [Google Scholar]
- Melnyk, J.P.; Wang, S.; Marcone, M.F. Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res. Int. 2010, 43, 1981–1989. [Google Scholar] [CrossRef]
- Stelluti, S.; Caser, M.; Demasi, S.; Scariot, V. Sustainable processing of floral bio-residues of saffron (Crocus sativus L.) for valuable biorefinery products. Plants 2021, 10, 523. [Google Scholar] [CrossRef]
- Zara, S.; Petretto, G.L.; Mannu, A.; Zara, G.; Budroni, M.; Mannazzu, I.; Multineddu, C.; Pintore, G.; Fancello, F. Antimicrobial activity and chemical characterization of a non-polar extract of saffron stamens in food matrix. Foods 2021, 10, 703. [Google Scholar] [CrossRef] [PubMed]
- Cardone, L.; Castronuovo, D.; Perniola, M.; Cicco, N.; Candido, V. Saffron (Crocus sativus L.), the king of spices: An overview. Sci. Hortic. 2020, 272, 109560. [Google Scholar] [CrossRef]
- Caser, M.; Demasi, S.; Stelluti, S.; Donno, D.; Scariot, V. Crocus sativus L. Cultivation in alpine environments: Stigmas and tepals as source of bioactive compounds. Agronomy 2020, 10, 1473. [Google Scholar] [CrossRef]
- Ozkan, K.; Bayram, Y.; Karasu, S.; Karadag, A.; Sagdic, O. Chapter 3—Extraction of bioactive compounds from saffron species. In Saffron; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 99–141. [Google Scholar]
- Marić, M.; Grassino, A.N.; Zhu, Z.; Barba, F.J.; Brnčić, M.; Rimac Brnčić, S. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci. Technol. 2018, 76, 28–37. [Google Scholar] [CrossRef]
- Sarfarazi, M.; Jafari, S.M.; Rajabzadeh, G.; Feizi, J. Development of an environmentally-friendly solvent-free extraction of saffron bioactives using subcritical water. LWT 2019, 114, 108428. [Google Scholar] [CrossRef]
- Álvarez, A.; Terreros, S.; Cocero, M.J.; Mato, R.B. Microwave pretreatment for the extraction of anthocyanins from saffron flowers: Assessment of product quality. Antioxidants 2021, 10, 1054. [Google Scholar] [CrossRef]
- DOCM. Specifications for the saffrons protected by this Denomination of Origin, which includes those saffrons produced in a defined geographical area of the Autonomous Community of Castilla-La Mancha. Off. Gaz. Castilla-La Mancha 1999, 19, 1098–1112. [Google Scholar]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Çam, M.; Hışıl, Y. Pressurised water extraction of polyphenols from pomegranate peels. Food Chem. 2010, 123, 878–885. [Google Scholar] [CrossRef]
- Serra, A.T.; Duarte, R.O.; Bronze, M.R.; Duarte, C.M.M. Identification of bioactive response in traditional cherries from Portugal. Food Chem. 2011, 125, 318–325. [Google Scholar] [CrossRef]
- Moore, J.; Yin, J.-J.; Yu, L. Novel fluorometric assay for Hydroxyl Radical Scavenging Capacity (HOSC) estimation. J. Agric. Food Chem. 2006, 54, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Sólyom, K.; Solá, R.; Cocero, M.J.; Mato, R.B. Thermal degradation of grape marc polyphenols. Food Chem. 2014, 159, 361–366. [Google Scholar] [CrossRef]
- Hassas-Roudsari, M.; Chang, P.R.; Pegg, R.B.; Tyler, R.T. Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chem. 2009, 114, 717–726. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A. Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chem. 2018, 258, 137–143. [Google Scholar] [CrossRef]
- Jafari, S.M.; Mahdavee Khazaei, K.; Assadpour, E. Production of a natural color through microwave-assisted extraction of saffron tepal’s anthocyanins. Food Sci. Nutr. 2019, 7, 1438–1445. [Google Scholar] [CrossRef]
- Hashemi Gahruie, H.; Parastouei, K.; Mokhtarian, M.; Rostami, H.; Niakousari, M.; Mohsenpour, Z. Application of innovative processing methods for the extraction of bioactive compounds from saffron (Crocus sativus) petals. J. Appl. Res. Med. Aromat. Plants 2020, 19, 100264. [Google Scholar] [CrossRef]
- Sun, C.; Nile, S.H.; Zhang, Y.; Qin, L.; El-Seedi, H.R.; Daglia, M.; Kai, G. Novel insight into utilization of flavonoid glycosides and biological properties of saffron (Crocus sativus L.) flower byproducts. J. Agric. Food Chem. 2020, 68, 10685–10696. [Google Scholar] [CrossRef]
- Yang, B.; Liu, X.; Gao, Y. Extraction optimization of bioactive compounds (crocin, geniposide and total phenolic compounds) from Gardenia (Gardenia jasminoides Ellis) fruits with response surface methodology. Innov. Food Sci. Emerg. Technol. 2009, 10, 610–615. [Google Scholar] [CrossRef]
- Charles, D.J. Antioxidant Assays. In Antioxidant Properties of Spices, Herbs and Other Sources; Springer: New York, NY, USA, 2013; pp. 9–38. [Google Scholar]
- Oliveira-Alves, S.C.; Andrade, F.; Prazeres, I.; Silva, A.B.; Capelo, J.; Duarte, B.; Caçador, I.; Coelho, J.; Serra, A.T.; Bronze, M.R. Impact of drying processes on the nutritional composition, volatile profile, phytochemical content and bioactivity of Salicornia ramosissima J. woods. Antioxidants 2021, 10, 1312. [Google Scholar] [CrossRef] [PubMed]
- Larrauri, J.A.; Sánchez-Moreno, C.; Saura-Calixto, F. Effect of temperature on the free radical scavenging capacity of extracts from red and white grape pomace peels. J. Agric. Food Chem. 1998, 46, 2694–2697. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Gallo, M.; Ferracane, R.; Graziani, G.; Ritieni, A.; Fogliano, V. Microwave assisted extraction of phenolic compounds from four different spices. Molecules 2010, 15, 6365–6374. [Google Scholar] [CrossRef]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant activity of spices and their impact on human health: A review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Cerdá-Bernad, D.; Valero-Cases, E.; Pastor, J.-J.; Frutos, M.J. Saffron bioactives crocin, crocetin and safranal: Effect on oxidative stress and mechanisms of action. Crit. Rev. Food Sci. Nutr. 2022, 62, 3232–3249. [Google Scholar] [CrossRef]
Independent Variables: MAE Conditions | |||
---|---|---|---|
Experiments | Time (min) (X1) | Temperature (°C) (X2) | Ethanol Concentration (%) (X3) |
1 | 0.5 (−1) | 25 (−1) | 0 (−1) |
2 | 5 (+1) | 25 (−1) | 0 (−1) |
3 | 0.5 (−1) | 100 (+1) | 0 (−1) |
4 | 5 (+1) | 100 (+1) | 0 (−1) |
5 | 0.5 (−1) | 25 (−1) | 100 (+1) |
6 | 5 (+1) | 25 (−1) | 100 (+1) |
7 | 0.5 (−1) | 100 (+1) | 100 (+1) |
8 | 5 (+1) | 100 (+1) | 100 (+1) |
9 | 6.2 (+1.35) | 62.5 (0) | 50 (0) |
10 | 3.15 (0) | 11.75 (−1.35) | 50 (0) |
11 | 3.15 (0) | 113.24 (+1.35) | 50 (0) |
12 | 3.15 (0) | 62.5 (0) | 50 (0) |
13 | 3.15 (0) | 62.5 (0) | 50 (0) |
14 | 3.15 (0) | 62.5 (0) | 50 (0) |
Extraction | Time (min) | Temperature (°C) | Ethanol (%) | TPC (mg GAE/g Dry Matter) | TFC (mg CE/g Dry Matter) | Yield (%) | ORAC (μmol TEAC/g Dry Matter) | HOSC (μmol TEAC/g Dry Matter) |
---|---|---|---|---|---|---|---|---|
1 | 0.50 | 25.00 | 0 | 93.87 ± 3.33 cd | 3.56 ± 0.23 efg | 20.65 | 4777 ± 352 bcd | 2286 ± 583 abc |
2 | 5.00 | 25.00 | 0 | 80.54 ± 1.56 ef | 3.33 ± 0.039 fg | 25.15 | 2679 ± 504 fg | 2034 ± 253 cd |
3 | 0.50 | 100.00 | 0 | 54.82 ± 4.33 gh | 3.26 ± 0.25 fg | 36.40 | 2170 ± 304 g | 1281 ± 230 d |
4 | 5.00 | 100.00 | 0 | 58.62 ± 4.44 g | 3.13 ± 0.03 g | 32.35 | 2175 ± 268 g | 2117 ± 127 bcd |
5 | 0.50 | 25.00 | 100 | 52.12 ± 1.75 gh | 5.62 ± 0.02 c | 23.65 | 2019 ± 439 g | 1716 ± 44 cd |
6 | 5.00 | 25.00 | 100 | 126.20 ± 2.99 a | 6.80 ± 0.33 b | 17.10 | 5128 ± 303 bc | 3131 ± 205 a |
7 | 0.50 | 100.00 | 100 | 49.19 ± 1.67 h | 7.41 ± 0.35 ab | 29.70 | 3451 ± 443 ef | 1623 ± 277 cd |
8 | 5.00 | 100.00 | 100 | 75.47 ± 1.02 f | 8.05 ± 0.11 a | 27.00 | 4026 ± 84 de | 2124 ± 383 bcd |
9 | 6.20 | 62.50 | 50 | 105.50 ± 3.05 b | 4.23 ± 0.14 de | 36.75 | 5027 ± 351 bc | 2444 ± 112 abc |
10 | 3.15 | 11.75 | 50 | 85.13 ± 2.13 e | 4.15 ± 0.42 de | 31.80 | 5641 ± 384 ab | 2407 ± 315 abc |
11 | 3.15 | 113.24 | 50 | 120.70 ± 3.69 a | 3.67 ± 0.15 defg | 27.75 | 4556 ± 390 cd | 1779 ± 272 cd |
12 | 3.15 | 62.50 | 50 | 86.97 ± 1.38 de | 4.34 ± 0.38 d | 23.60 | 4637 ± 37 cd | 1995 ± 131 cd |
13 | 3.15 | 62.50 | 50 | 96.77 ± 3.46 bc | 3.99 ± 0.22 def | 34.15 | 3278 ± 121 ef | 2240 ± 265 bc |
14 | 3.15 | 62.50 | 50 | 79.28 ± 3.14 ef | 4.14 ± 0.31 de | 25.70 | 6219 ± 246 a | 2944 ± 407 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerdá-Bernad, D.; Baixinho, J.P.; Fernández, N.; Frutos, M.J. Evaluation of Microwave-Assisted Extraction as a Potential Green Technology for the Isolation of Bioactive Compounds from Saffron (Crocus sativus L.) Floral By-Products. Foods 2022, 11, 2335. https://doi.org/10.3390/foods11152335
Cerdá-Bernad D, Baixinho JP, Fernández N, Frutos MJ. Evaluation of Microwave-Assisted Extraction as a Potential Green Technology for the Isolation of Bioactive Compounds from Saffron (Crocus sativus L.) Floral By-Products. Foods. 2022; 11(15):2335. https://doi.org/10.3390/foods11152335
Chicago/Turabian StyleCerdá-Bernad, Débora, João P. Baixinho, Naiara Fernández, and María José Frutos. 2022. "Evaluation of Microwave-Assisted Extraction as a Potential Green Technology for the Isolation of Bioactive Compounds from Saffron (Crocus sativus L.) Floral By-Products" Foods 11, no. 15: 2335. https://doi.org/10.3390/foods11152335
APA StyleCerdá-Bernad, D., Baixinho, J. P., Fernández, N., & Frutos, M. J. (2022). Evaluation of Microwave-Assisted Extraction as a Potential Green Technology for the Isolation of Bioactive Compounds from Saffron (Crocus sativus L.) Floral By-Products. Foods, 11(15), 2335. https://doi.org/10.3390/foods11152335