Adulteration Detection of Edible Bird’s Nests Using Rapid Spectroscopic Techniques Coupled with Multi-Class Discriminant Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Instrumentation
2.2.1. The Hand-Held VIS/SW-NIR
2.2.2. Benchtop FT-IR
2.3. Spectra Acquisition
2.3.1. Near-Infrared
2.3.2. Mid-Infrared
2.4. Spectral Pre-Processing and Chemometrics
2.4.1. Spectral Pre-Processing on Near-Infrared Spectrum
2.4.2. Multivariate Analysis on Near-Infrared Spectrum
2.4.3. Spectral Pre-Processing on Mid-Infrared Spectrum
2.4.4. Multivariate Analysis on Mid-Infrared Spectrum
3. Results and Discussions
3.1. Spectral Analysis
3.2. Adulteration Classification
3.2.1. PCA and OPLS-DA of Near-Infrared Spectrum
3.2.2. PCA and OPLS-DA of Mid-Infrared Spectrum
3.3. Comparison of Handheld VIS/SW-NIR against a Benchtop MIR
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu-Qin, Y.; Liang, X.; Hua, W.; Hui-Xing, Z.; Xin-Fang, Z.; Bu-Sen, L. Determination of edible bird’s nest and its products by gas chromatography. J. Chromatogr. Sci. 2000, 38, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Langham, N. Breeding Biology of The Edible-Nest Swiflet Aerodramus Fuciphagus. Ibis 1980, 122, 447–461. [Google Scholar] [CrossRef]
- Li, Q.; Yuan, Y.; Zhang, R.; Yang, L.; Han, L.; Cai, T.; Cai, Y. Edible bird’s nest: Extraction and pharmacological. SCIREA J. Preclin. Med. 2016, 1, 1–20. [Google Scholar]
- Goh, D.L.M.; Chua, K.Y.; Chew, F.T.; Liang, R.C.M.Y.; Seow, T.K.; Ou, K.L.; Yi, F.C.; Lee, B.W. Immunochemical characterization of edible bird’s nest allergens. J. Allergy Clin. Immunol. 2001, 107, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, Y.; Wang, B.; Bai, L.; Han, W.R.; Ge, Y.; Yuan, F. Application of SYBRgreen PCR and 2DGE methods to authenticate edible bird’s nest food. Food Res. Int. 2010, 43, 2020–2026. [Google Scholar] [CrossRef]
- Zhang, S.; Lai, X.; Liu, X.; Li, Y.; Li, B.; Huang, X.; Zhang, Q.; Chen, W.; Lin, L.; Yang, G. Competitive Enzyme-Linked Immunoassay for Sialoglycoprotein of Edible Bird’s Nest in Food and Cosmetics. J. Agric. Food Chem. 2012, 60, 3580–3585. [Google Scholar] [CrossRef]
- Marcone, M.F. Characterization of the edible bird’s nest the “Caviar of the East”. Food Res. Int. 2005, 38, 1125–1134. [Google Scholar] [CrossRef]
- Quek, M.C.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Law, C.L. Preliminary nitrite, nitrate and colour analysis of Malaysian edible bird’s nest. Inf. Process. Agric. 2015, 2, 1–5. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, J.; Liang, J.; Ma, X.; Xing, R.; Han, J.; Guo, L.; Chen, Y. Authentication of Edible Bird’s Nest (EBN) and its adulterants by integration of shotgun proteomics and scheduled multiple reaction monitoring (MRM) based on tandem mass spectrometry. Food Res. Int. 2019, 125, 108639. [Google Scholar] [CrossRef]
- Huang, X.; Li, Z.; Zou, X.; Shi, J.; Elrasheid Tahir, H.; Xu, Y.; Zhai, X.; Hu, X. A low cost smart system to analyze different types of edible Bird’s nest adulteration based on colorimetric sensor array. J. Food Drug Anal. 2019, 27, 876–886. [Google Scholar] [CrossRef]
- Lee, M.-S.; Huang, J.-Y.; Lien, Y.-Y.; Sheu, S.-C. The rapid and sensitive detection of edible bird’s nest (Aerodramus fuciphagus) in processed food by a loop-mediated isothermal amplification (LAMP) assay. J. Food Drug Anal. 2019, 27, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wu, Y.; Liu, M.; Wang, B.; Ge, Y.; Chen, Y. Determination of edible bird’s nests by FTIR and SDS-PAGE coupled with multivariate analysis. Food Control 2017, 80, 259–266. [Google Scholar] [CrossRef]
- Lee, T.H.; Wani, W.A.; Koay, Y.S.; Kavita, S.; Tan, E.T.T.; Shreaz, S. Recent advances in the identification and authentication methods of edible bird’s nest. Food Res. Int. 2017, 100, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Cen, H.; He, Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci. Technol. 2007, 18, 72–83. [Google Scholar] [CrossRef]
- Li, M.; Qian, Z.; Shi, B.; Medlicott, J.; East, A. Evaluating the performance of a consumer scale SCiO™ molecular sensor to predict quality of horticultural products. Postharvest Biol. Technol. 2018, 145, 183–192. [Google Scholar] [CrossRef]
- Kosmowski, F.; Worku, T. Evaluation of a miniaturized NIR spectrometer for cultivar identification: The case of barley, chickpea and sorghum in Ethiopia. PLoS ONE 2018, 13, e0193620. [Google Scholar] [CrossRef]
- Wilson, B.K.; Kaur, H.; Allan, E.L.; Lozama, A.; Bell, D. A New Handheld Device for the Detection of Falsified Medicines: Demonstration on Falsified Artemisinin-Based Therapies from the Field. Am. J. Trop. Med. Hyg. 2017, 96, 1117–1123. [Google Scholar] [CrossRef]
- Grassi, S.; Casiraghi, E.; Alamprese, C. Handheld NIR device: A non-targeted approach to assess authenticity of fish fillets and patties. Food Chem. 2018, 243, 382–388. [Google Scholar] [CrossRef]
- Urraca, R.; Sanz-Garcia, A.; Tardaguila, J.; Diago, M.P. Estimation of total soluble solids in grape berries using a hand-held NIR spectrometer under field conditions. J. Sci. Food Agric. 2016, 96, 3007–3016. [Google Scholar] [CrossRef]
- Vakili, H.; Wickström, H.; Desai, D.; Preis, M.; Sandler, N. Application of a handheld NIR spectrometer in prediction of drug content in inkjet printed orodispersible formulations containing prednisolone and levothyroxine. Int. J. Pharm. 2017, 524, 414–423. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Principles and Applications of Miniaturized Near-Infrared (NIR) Spectrometers. Chem. Eur. J. 2021, 27, 1514–1532. [Google Scholar] [CrossRef] [PubMed]
- Alander, J.T.; Bochko, V.; Martinkauppi, B.; Saranwong, S.; Mantere, T. A Review of Optical Nondestructive Visual and Near-Infrared Methods for Food Quality and Safety. Int. J. Spectrosc. 2013, 2013, 341402. [Google Scholar] [CrossRef]
- Wu, D.; Feng, S.; He, Y. Short-Wave Near-Infrared Spectroscopy of Milk Powder for Brand Identification and Component Analysis. J. Dairy Sci. 2008, 91, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Rogers, T.M.; Wenz, M.A.; Cavinato, A.G.; Mayes, D.M.; Bledsoe, G.E.; Rasco, B.A. Detection of Sodium Chloride in Cured Salmon Roe by SW−NIR Spectroscopy. J. Agric. Food Chem. 2001, 49, 4161–4167. [Google Scholar] [CrossRef]
- Liao, Y.-T.; Fan, Y.-X.; Cheng, F. On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy. Meat Sci. 2010, 86, 901–907. [Google Scholar] [CrossRef]
- Ozen, B.F.; Mauer, L.J. Detection of Hazelnut Oil Adulteration Using FT-IR Spectroscopy. J. Agric. Food Chem. 2002, 50, 3898–3901. [Google Scholar] [CrossRef]
- Cassoli, L.D.; Sartori, B.; Zampar, A.; Machado, P.F. An assessment of Fourier Transform Infrared spectroscopy to identify adulterated raw milk in Brazil. Int. J. Dairy Technol. 2011, 64, 480–485. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, S.; Lee, W.-H.; Kim, M.S.; Mo, C.; Bae, H.; Cho, B.-K. Detection of Starch Adulteration in Onion Powder by FT-NIR and FT-IR Spectroscopy. J. Agric. Food Chem. 2014, 62, 9246–9251. [Google Scholar] [CrossRef]
- Black, C.; Haughey, S.A.; Chevallier, O.P.; Galvin-King, P.; Elliott, C.T. A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach. Food Chem. 2016, 210, 551–557. [Google Scholar] [CrossRef]
- Wilde, A.S.; Haughey, S.A.; Galvin-King, P.; Elliott, C.T. The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper. Food Control 2019, 100, 1–7. [Google Scholar] [CrossRef]
- Lujan-Medina, G.A.; Ventura, J.; Ceniceros, A.C.L.; Ascacio, J.A.; Valdés, D.B.-V.; Aguilar, C.N. Karaya gum: General topics and applications. Macromol. Indian J. 2013, 9, 111–116. [Google Scholar]
- Rodríguez Sánchez, R.A.; Canelón, D.J.; Cosenza, V.A.; Fissore, E.N.; Gerschenson, L.N.; Matulewicz, M.C.; Ciancia, M. Gracilariopsis hommersandii, a red seaweed, source of agar and sulfated polysaccharides with unusual structures. Carbohydr. Polym. 2019, 213, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Wei, Y.; Gao, M.; Yan, X.; Zhu, X.; Guo, W. Detection of Melamine Adulteration in Milk Powder by Using Optical Spectroscopy Technologies in the Last Decade—A Review. Food Anal. Methods 2020, 13, 2059–2069. [Google Scholar] [CrossRef]
- Abedinia, A.; Mohammadi Nafchi, A.; Sharifi, M.; Ghalambor, P.; Oladzadabbasabadi, N.; Ariffin, F.; Huda, N. Poultry gelatin: Characteristics, developments, challenges, and future outlooks as a sustainable alternative for mammalian gelatin. Trends Food Sci. Technol. 2020, 104, 14–26. [Google Scholar] [CrossRef]
- Ahn, H.; Gong, D.J.; Lee, H.H.; Seo, J.Y.; Song, K.-M.; Eom, S.J.; Yeo, S.Y. Mechanical Properties of Porcine and Fish Skin-Based Collagen and Conjugated Collagen Fibers. Polymers 2021, 13, 2151. [Google Scholar] [CrossRef]
- Adenan, M.N.H.; Moosa, S.; Muhammad, S.A.; Abrahim, A.; Jandric, Z.; Islam, M.; Rodionova, O.; Pomerantsev, A.; Perston, B.; Cannavan, A.; et al. Screening Malaysian edible bird’s nests for structural adulterants and geographical origin using Mid-Infrared–Attenuated Total Reflectance (MIR-ATR) spectroscopy combined with chemometric analysis by Data-Driven–Soft Independent Modelling of Class Analogy (DD-SIMCA). Forensic Chem. 2020, 17, 100197. [Google Scholar] [CrossRef]
- Smith, M.J.; Holmes-Smith, A.S.; Lennard, F. Development of non-destructive methodology using ATR-FTIR with PCA to differentiate between historical Pacific barkcloth. J. Cult. Herit. 2019, 39, 32–41. [Google Scholar] [CrossRef]
- De Souza Gondim, C.; Junqueira, R.G.; de Souza, S.V.C.; Ruisánchez, I.; Callao, M.P. Detection of several common adulterants in raw milk by MID-infrared spectroscopy and one-class and multi-class multivariate strategies. Food Chem. 2017, 230, 68–75. [Google Scholar] [CrossRef]
- López, M.I.; Trullols, E.; Callao, M.P.; Ruisánchez, I. Multivariate screening in food adulteration: Untargeted versus targeted modelling. Food Chem. 2014, 147, 177–181. [Google Scholar] [CrossRef]
- Uncu, O.; Ozen, B. A comparative study of mid-infrared, UV–Visible and fluorescence spectroscopy in combination with chemometrics for the detection of adulteration of fresh olive oils with old olive oils. Food Control 2019, 105, 209–218. [Google Scholar] [CrossRef]
- Ma, H.-l.; Wang, J.-w.; Chen, Y.-j.; Cheng, J.-l.; Lai, Z.-t. Rapid authentication of starch adulterations in ultrafine granular powder of Shanyao by near-infrared spectroscopy coupled with chemometric methods. Food Chem. 2017, 215, 108–115. [Google Scholar] [CrossRef] [PubMed]
- McVey, C.; McGrath, T.F.; Haughey, S.A.; Elliott, C.T. A rapid food chain approach for authenticity screening: The development, validation and transferability of a chemometric model using two handheld near infrared spectroscopy (NIRS) devices. Talanta 2021, 222, 121533. [Google Scholar] [CrossRef] [PubMed]
- Saranwong, I.; Sornsrivichai, J.; Kawano, S. Performance of a Portable near Infrared Instrument for Brix Value Determination of Intact Mango Fruit. J. Near Infrared Spectrosc. 2003, 11, 175–181. [Google Scholar] [CrossRef]
- Acharya, U.K.; Subedi, P.P.; Walsh, K.B. Robustness of Tomato Quality Evaluation Using a Portable Vis-SWNIRS for Dry Matter and Colour. Int. J. Anal. Chem. 2017, 2017, 2863454. [Google Scholar] [CrossRef]
- Xiaobo, Z.; Jiewen, Z.; Povey, M.J.W.; Holmes, M.; Hanpin, M. Variables selection methods in near-infrared spectroscopy. Anal. Chim. Acta 2010, 667, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Vongsvivut, J.; Heraud, P.; Zhang, W.; Kralovec, J.A.; McNaughton, D.; Barrow, C.J. Quantitative determination of fatty acid compositions in micro-encapsulated fish-oil supplements using Fourier transform infrared (FTIR) spectroscopy. Food Chem. 2012, 135, 603–609. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef]
- Hamzah, Z.; Jeyaraman, S.; Ibrahim, N.H.; Hashim, O.; Lee, B.-B.; Hussin, K. A rapid technique to determine purity of edible bird nest. Adv. Environ. Biol. 2013, 7, 3758–3766. [Google Scholar]
- Grabska, J.; Be, K.; Kirchler, C.G.; Ozaki, Y.; Huck, C. Distinct Difference in Sensitivity of NIR vs. IR Bands of Melamine to Inter-Molecular Interactions with Impact on Analytical Spectroscopy Explained by Anharmonic Quantum Mechanical Study. Molecules 2019, 24, 1402. [Google Scholar] [CrossRef]
- Barroso-Bogeat, A.; Alexandre-Franco, M.; Fernández-González, C.; Gómez-Serrano, V. Activated carbon surface chemistry: Changes upon impregnation with Al(III), Fe(III) and Zn(II)-metal oxide catalyst precursors from NO3− aqueous solutions. Arab. J. Chem. 2019, 12, 3963–3976. [Google Scholar] [CrossRef]
- Simonova, D.; Karamancheva, I. Application of Fourier Transform Infrared Spectroscopy for Tumor Diagnosis. Biotechnol. Biotechnol. Equip. 2013, 27, 4200–4207. [Google Scholar] [CrossRef]
- Ximenes, F.; Evans, P. Protection of wood using oxy-aluminum compounds. For. Prod. J. 2006, 56, 116–122. [Google Scholar]
- Duygu, D.; Udoh, A.U.; Özer, T.; Akbulut, A.; Erkaya, I.A.; Yildiz, K.; Guler, D. Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Afr. J. Biotechnol. 2012, 11, 3817–3824. [Google Scholar]
- Mecozzi, M.; Sturchio, E. Computer Assisted Examination of Infrared and Near Infrared Spectra to Assess Structural and Molecular Changes in Biological Samples Exposed to Pollutants: A Case of Study. J. Imaging 2017, 3, 11. [Google Scholar] [CrossRef]
- Murdock, J.; Wetzel, D. FT-IR Microspectroscopy Enhances Biological and Ecological Analysis of Algae. Appl. Spectrosc. Rev. 2009, 44, 335–361. [Google Scholar] [CrossRef]
States | Locations | Year |
---|---|---|
Terengganu | Kuala Terengganu | 2015/2016 |
Sarawak | Betong, Kuching, Miri, Mukah, Samarahan, Sibu | 2015/2016 |
Sabah | Beauford, Kudat, Tongod, Tuaran | 2015/2016 |
Pahang | Bandar Tun Razak, Kuantan | 2015/2016 |
Negeri Sembilan | Kuala Pilah, Port Dickson, Seremban | 2015/2016 |
Kelantan | Gua Musang | 2015/2016 |
Johor | Batu Pahat, Kuala Rompin, Kulai, Masai, Muar, Pontian Kecil, Senai | 2015/2016 |
Wavelength (nm) | Functional Group | Harmonic |
---|---|---|
770–790 | R-NH2, R-NH-R | 3rd harmonic |
835–840 | O-H | 3rd harmonic |
850–860 | Aromatic | 3rd harmonic |
900–920 | CH3 | 3rd harmonic |
910–950 | O-H | 2nd harmonic |
Wavelength (nm) | Functional Group | Compound |
---|---|---|
13,889–13,514 | C-H | mono-di-substituted |
13,514–13,158 | C-H | tri-substituted benzene |
13,158–12,579 | C-H | alkane |
11,236–11,111 | C-H | tri-substituted benzene |
10,309–10,000 | HC=CH | alkene |
9901–9709 | C-N | amine |
8333–8197 | CH2, C-O | vinyl ether |
6757–6711 | N-O | nitro compound |
6757–6667 | CH2 | methyl group, alkane |
5917–5882 | C=O | ester acid |
3788–3774 | S-H | thiol |
3534–3509 | C-H | aldehyde |
2817–2809 | O-H | alcohol |
A | Authentic | Non-Authentic | Total | p Value |
Quantity | 98 | 8 | 106 | 2.85 × 10−19 |
Correct classification | 100% | 75% | 99.1% | |
1% adulteration | / | |||
5% adulteration | / | |||
10% adulteration | / | |||
B | Authentic | Non-authentic | Total | p value |
Quantity | 98 | 10 | 108 | 4.51 × 10−11 |
Correct classification | 100% | 40% | 94.4% | |
1% adulteration | / | |||
5% adulteration | / | |||
10% adulteration | / | |||
C | Authentic | Non-authentic | Total | p value |
Quantity | 98 | 12 | 110 | 1.81 × 10−29 |
Correct classification | 100% | 83.3% | 98.18% | |
1% adulteration | / | |||
5% adulteration | / | |||
10% adulteration | / | |||
D | Authentic | Non-authentic | Total | p value |
Quantity | 98 | 10 | 108 | 1.12 × 10−15 |
Correct classification | 100% | 100% | 100% | |
1% adulteration | / | |||
5% adulteration | / | |||
10% adulteration | / | |||
E | Authentic | Non-authentic | Total | p value |
Quantity | 98 | 16 | 114 | 5.16 × 10−35 |
Correct classification | 100% | 100% | 100% | |
1% adulteration | / | |||
5% adulteration | / | |||
10% adulteration | / |
A | Authentic | Non-authentic | Total | p Value |
Quantity | 98 | 8 | 106 | 4.87 × 10−22 |
Correct classification | 100% | 87.5% | 99.1% | |
1% adulteration | / | |||
5% adulteration | / | |||
10% adulteration | / | / | ||
B | Authentic | Non-authentic | Total | p value |
Quantity | 98 | 10 | 108 | 1.34 × 10−24 |
Correct classification | 100% | 100% | 100% | |
1% adulteration | / | |||
5% adulteration | / | |||
10% adulteration | / | |||
C | Authentic | Non-authentic | Total | p value |
Quantity | 98 | 100% | 110 | 3.89 × 10−16 |
Correct classification | 100% | 75% | 97.3% | |
1% adulteration | / | |||
5% adulteration | / | |||
10% adulteration | / | |||
D | Authentic | Non-authentic | Total | p value |
Quantity | 98 | 10 | 108 | 1.74 × 10−10 |
Correct classification | 100% | 40% | 94.4% | |
1% adulteration | / | |||
5% adulteration | / | |||
10% adulteration | / | |||
E | Authentic | Non-authentic | Total | p value |
Quantity | 98 | 16 | 114 | 1.80 × 10−28 |
Correct classification | 100% | 87.5% | 98.2% | |
1% adulteration | / | |||
5% adulteration | / | |||
10% adulteration | / |
VIS/SW-NIR | MIR | |||
---|---|---|---|---|
Adulterants | Specificity | Sensitivity | Specificity | Sensitivity |
Melamine | 100% | 75% | 100% | 87.5% |
Karaya gum | 100% | 40% | 100% | 100% |
Gelatine | 100% | 83.3% | 100% | 75% |
Collagen | 100% | 100% | 100% | 40% |
Nutrient agar | 100% | 100% | 100% | 87.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, J.S.; Muhammad, S.A.; Yong, C.H.; Mohd Rodhi, A.; Ibrahim, B.; Adenan, M.N.H.; Moosa, S.; Othman, Z.; Abdullah Salim, N.A.; Sharif, Z.; et al. Adulteration Detection of Edible Bird’s Nests Using Rapid Spectroscopic Techniques Coupled with Multi-Class Discriminant Analysis. Foods 2022, 11, 2401. https://doi.org/10.3390/foods11162401
Ng JS, Muhammad SA, Yong CH, Mohd Rodhi A, Ibrahim B, Adenan MNH, Moosa S, Othman Z, Abdullah Salim NA, Sharif Z, et al. Adulteration Detection of Edible Bird’s Nests Using Rapid Spectroscopic Techniques Coupled with Multi-Class Discriminant Analysis. Foods. 2022; 11(16):2401. https://doi.org/10.3390/foods11162401
Chicago/Turabian StyleNg, Jing Sheng, Syahidah Akmal Muhammad, Chin Hong Yong, Ainolsyakira Mohd Rodhi, Baharudin Ibrahim, Mohd Noor Hidayat Adenan, Salmah Moosa, Zainon Othman, Nazaratul Ashifa Abdullah Salim, Zawiyah Sharif, and et al. 2022. "Adulteration Detection of Edible Bird’s Nests Using Rapid Spectroscopic Techniques Coupled with Multi-Class Discriminant Analysis" Foods 11, no. 16: 2401. https://doi.org/10.3390/foods11162401
APA StyleNg, J. S., Muhammad, S. A., Yong, C. H., Mohd Rodhi, A., Ibrahim, B., Adenan, M. N. H., Moosa, S., Othman, Z., Abdullah Salim, N. A., Sharif, Z., Ismail, F., Kelly, S. D., & Cannavan, A. (2022). Adulteration Detection of Edible Bird’s Nests Using Rapid Spectroscopic Techniques Coupled with Multi-Class Discriminant Analysis. Foods, 11(16), 2401. https://doi.org/10.3390/foods11162401