Effect of the Application of a Green Preservative Strategy on Minced Meat Products: Antimicrobial Efficacy of Olive Mill Wastewater Polyphenolic Extract in Improving Beef Burger Shelf-Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Mill Waste Water Extract and Compositon
2.2. Beef Burger Formulation
2.3. Antioxidant Capacity of PE and Mix Extracts and Beef Burger
2.4. Lipid Oxidation of Beef Burger
2.5. Antimicrobial Activity of Commercial Mix and PE Extract
2.6. Microbial Analysis of Beef Burger
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moghtadaei, M.; Soltanizadeh, N.; Goli, S.A.H. Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Int. Food Res. J. 2018, 108, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Rabadán, A.; Álvarez-Ortí, M.; Martínez, E.; Pardo-Giménez, A.; Zied, D.C.; Pardo, J.E. Effect of replacing traditional ingredients for oils and flours from nuts and seeds on the characteristics and consumer preferences of lamb meat burgers. LWT 2021, 136, 110307. [Google Scholar] [CrossRef]
- Branciari, R.; Ranucci, D.; Urbani, E.; Valiani, A.; Trabalza-Marinucci, M.; Dal Bosco, A.; Franceschini, R. Freshwater fish burgers made from four different fish species as a valuable strategy appreciated by consumers for introducing EPA and DHA into a human diet. J. Aquat. Food Prod. Technol. 2017, 26, 686–694. [Google Scholar] [CrossRef]
- Mancini, S.; Paci, G.; Fratini, F.; Torracca, B.; Nuvoloni, R.; Dal Bosco, A.; Preziuso, G. Improving pork burgers quality using Zingiber officinale Roscoe powder (ginger). Meat Sci. 2017, 129, 161–168. [Google Scholar] [CrossRef]
- Mancini, R.; Hunt, M. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Hygreeva, D.; Pandey, M.C. Novel approaches in improving the quality and safety aspects of processed meat products through high pressure processing technology-A review. Trends Food Sci. Technol. 2016, 54, 175–185. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, Y.L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Overholt, M.F.; Mancini, S.; Galloway, H.O.; Preziuso, G.; Dilger, A.C.; Boler, D.D. Effects of salt purity on lipid oxidation, sensory characteristics, and textural properties of fresh, ground pork patties. LWT 2016, 65, 890–896. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Yang, H.J.; Lee, J.H.; Won, M.; Song, K.B. Antioxidant activities of distiller dried grains with solubles as protein films containing tea extracts and their application in the packaging of pork meat. Food Chem. 2016, 196, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef]
- EC (European Community). Commission regulation (EC) No. 1333/2008: On food additives. Off. J. 2008, 354, 16. [Google Scholar]
- Silva, M.M.; Lidon, F.C. An overview on applications and side effects of antioxidant food additives. Emir. J. Food Agric. 2016, 28, 823–832. [Google Scholar] [CrossRef]
- Etienne, J.; Chirico, S.; McEntaggart, K.; Papoutsis, S.; Millstone, E. EU Insights–Consumer perceptions of emerging risks in the food chain. EFSA Support. Publ. 2018, 15, 1394. [Google Scholar] [CrossRef]
- Aminzare, M.; Hashemi, M.; Ansarian, E.; Bimakr, M.; Hassanzad Azar, H.; Mehrasbi, M.R.; Afshari, A. Using natural antioxidants in meat and meat products as preservatives: A review. Adv. Anim. Vet. 2019, 7, 417–426. [Google Scholar] [CrossRef]
- Ranucci, D.; Miraglia, D.; Branciari, R.; Morganti, G.; Roila, R.; Zhou, K.; Haiyang, J.; Braconi, P. Frankfurters made with pork meat, emmer wheat (Triticum dicoccum Schübler) and almonds nut (Prunus dulcis Mill.): Evaluation during storage of a novel food from an ancient recipe. Meat Sci. 2018, 145, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Bellés, M.; Alonso, V.; Roncalés, P.; Beltrán, J.A. Sulfite-free lamb burger meat: Antimicrobial and antioxidant properties of green tea and carvacrol. J. Sci. Food Agric. 2019, 99, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Preziuso, G.; Dal Bosco, A.; Roscini, V.; Szendrő, Z.; Fratini, F.; Paci, G. Effect of turmeric powder (Curcuma longa L.) and ascorbic acid on physical characteristics and oxidative status of fresh and stored rabbit burgers. Meat Sci. 2015, 110, 93–100. [Google Scholar] [CrossRef]
- Beya, M.M.; Netzel, M.E.; Sultanbawa, Y.; Smyth, H.; Hoffman, L.C. Plant-Based Phenolic Molecules as Natural Preservatives in Comminuted Meats: A Review. Antioxidants 2021, 10, 263. [Google Scholar] [CrossRef]
- Barbieri, S.; Mercatante, D.; Balzan, S.; Esposto, S.; Cardenia, V.; Servili, M.; Rodriguez-Estrada, M.T. Improved Oxidative Stability and Sensory Quality of Beef Hamburgers Enriched with a Phenolic Extract from Olive Vegetation Water. Antioxidants 2021, 10, 1969. [Google Scholar] [CrossRef]
- Fasolato, L.; Cardazzo, B.; Balzan, S.; Carraro, L.; Taticchi, A.; Montemurro, F.; Novelli, E. Minimum bactericidal concentration of phenols extracted from oil vegetation water on spoilers, starters and food-borne bacteria. Ital. J. Food Saf. 2015, 4, 4519. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Sordini, B.; Esposto, S.; Urbani, S.; Veneziani, G.; Maio, I.D.; Selvaggini, R.; Taticchi, A. Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 2013, 3, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, H.; Czajkowska, K.; Cichowska, J.; Lenart, A. What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends Food Sci. Tech. 2017, 67, 150–159. [Google Scholar] [CrossRef]
- Miraglia, D.; Esposto, S.; Branciari, R.; Urbani, S.; Servili, M.; Perucci, S.; Ranucci, D. Effect of a Phenolic extract from olive vegetation water on fresh salmon steak quality during storage. Ital. J. Food Saf. 2016, 5, 6167. [Google Scholar] [CrossRef]
- Roila, R.; Valiani, A.; Ranucci, D.; Ortenzi, R.; Servili, M.; Veneziani, G.; Branciari, R. Antimicrobial efficacy of a polyphenolic extract from olive oil by-product against “Fior di latte” cheese spoilage bacteria. Int. J. Food Microbiol. 2019, 295, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Ianni, F.; Gagliardi, A.; Taticchi, A.; Servili, M.; Pinna, N.; Schoubben, A.; Sardella, R.; Bruscoli, S. Exploiting food-grade mesoporous silica to preserve the antioxidant properties of fresh olive mill wastewaters phenolic extracts. Antioxidants 2021, 10, 1361. [Google Scholar] [CrossRef] [PubMed]
- Zbicinski, I.; Delag, A.; Strumillo, C.; Adamiec, J. Advanced experimental analysis of drying kinetics in spray drying. Chem. Eng. J. 2002, 86, 207–216. [Google Scholar] [CrossRef]
- Selvaggini, R.; Esposto, S.; Taticchi, A.; Urbani, S.; Veneziani, G.; Di Maio, I.; Sordini, B.; Servili, M. Optimization of the temperature and oxygen concentration conditions in the malaxation during the oil mechanical extraction process of four Italian olive cultivars. J. Agric. Food Chem. 2014, 62, 3813–3822. [Google Scholar] [CrossRef] [PubMed]
- EC (European Community). Commission regulation (EC) No. 853/2004; Laying down Specific Hygiene Rules for on the Hygiene of Foodstuffs. Off. J. 2004, L139, 55. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:139:0055:0205:EN:PDF (accessed on 23 May 2022).
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L., Jr. A distillation method for the quantitative determination of malonaldehyde in rancid foods. JAOCS J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Di Michele, A.; Pagano, C.; Allegrini, A.; Blasi, F.; Cossignani, L.; Raimo, E.D.; Faieta, M.; Oliva, E.; Pittia, P.; Primavilla, S.; et al. Hazelnut shells as source of active ingredients: Extracts preparation and characterization. Molecules 2021, 26, 6607. [Google Scholar] [CrossRef] [PubMed]
- ISO 4833–1: 2013; 44–Microbiology of the Food Chain-Horizontal Method for the Enumeration of Microorganisms-Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 21528-2: 2017; Microbiology of the Food Chain–Horizontal Method for the Detection and Enumeration of Enterobacteriaceae–Part 2: Colony-Count Technique. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- Gill, C.; Jones, T. Microbiological sampling of carcasses by excision or swabbing. J. Food Prot. 2000, 63, 167–173. [Google Scholar] [CrossRef] [PubMed]
- ISO 6579-1: 2017; Microbiology of the Food Chain–Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella–Part 1: Horizontal Method for the Detection of Salmonella spp. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- EC (European Community). Commission regulation (EC) No. 2073/2005; Microbiological Criteria for Foodstuffs. Off. J. 2005, 338, 1. [Google Scholar]
- ISO 16649; Microbiology of Food and Animal FeedingStuffs—Horizontal Method for the Enumeration of b-Glucuronidase-Positive Escherichia coli. International Organization for Standardization: Geneva, Switzerland, 2001.
- SAS Institute. JMP®9 Basic Analysis and Graphing; SAS Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Ranucci, D.; Branciari, R.; Cobellis, G.; Acuti, G.; Miraglia, D.; Olivieri, O.; Roila, R.; Trabalza-Marinucci, M. Dietary essential oil mix improves oxidative stability and hygienic characteristic of lamb meat. Small Rum. Res. 2019, 175, 104–109. [Google Scholar] [CrossRef]
- Roila, R.; Valiani, A.; Miraglia, D.; Ranucci, D.; Forte, C.; Trabalza-Marinucci, M.; Servili, M.; Codini, M.; Branciari, R. Olive mill wastewater phenolic concentrate as natural antioxidant against lipid-protein oxidative deterioration in chicken meat during storage. Ital. J. Food Saf. 2018, 7, 7342. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Zamora, L.; Ros, G.; Nieto, G. Synthetic vs. Natural Hydroxytyrosol for Clean Label Lamb Burgers. Antioxidants 2020, 9, 851. [Google Scholar] [CrossRef] [PubMed]
- Di Maio, I.; Esposto, S.; Taticchi, A.; Selvaggini, R.; Veneziani, G.; Urbani, S.; Servili, M. HPLC–ESI-MS investigation of tyrosol and hydroxytyrosol oxidation products in virgin olive oil. Food Chem. 2011, 125, 21–28. [Google Scholar] [CrossRef]
- Nieto, G.; Martínez-Zamora, L.; Castillo, J.; Ros, G. Hydroxytyrosol extracts, olive oil and walnuts as functional components in chicken sausages. J. Sci. Food Agric. 2017, 97, 3761–3771. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef]
- Zamuz, S.; López-Pedrouso, M.; Barba, F.J.; Lorenzo, J.M.; Domínguez, H.; Franco, D. Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 2018, 112, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.D.P.P.; Trindade, M.A.; Lorenzo, J.M.; Munekata, P.E.S.; De Melo, M.P. Effects of oregano extract on oxidative, microbiological and sensory stability of sheep burgers packed in modified atmosphere. Food Control 2016, 63, 65–75. [Google Scholar] [CrossRef]
- Hayes, J.E.; Stepanyan, V.; Allen, P.; O’grady, M.N.; Kerry, J.P. Effect of lutein, sesamol, ellagic acid and olive leaf extract on the quality and shelf-life stability of packaged raw minced beef patties. Meat Sci. 2010, 84, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Comi, G.; Tirloni, E.; Andyanto, D.; Manzano, M.; Iacumin, L. Use of bio-protective cultures to improve the shelf-life and the sensorial characteristics of commercial hamburgers. LWT-Food Sci. Technol. 2015, 62, 1198–1202. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Bhandari, B.; Bai, B. Nanoemulsion-based edible coatings loaded with fennel essential oil/cinnamaldehyde: Characterization, antimicrobial property and advantages in pork meat patties application. Food Control 2021, 127, 108151. [Google Scholar] [CrossRef]
- Branciari, R.; Galarini, R.; Trabalza-Marinucci, M.; Miraglia, D.; Roila, R.; Acuti, G.; Giuseppone, D.; Dal Bosco, A.; Ranucci, D. Effects of olive mill vegetation water phenol metabolites transferred to muscle through animal diet on rabbit meat microbial quality. Sustainability 2021, 13, 4522. [Google Scholar] [CrossRef]
- Andrés, A.I.; Petrón, M.J.; Adámez, J.D.; López, M.; Timón, M.L. Food by-products as potential antioxidant and antimicrobial additives in chill stored raw lamb patties. Meat Sci. 2017, 129, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Parafati, L.; Palmeri, R.; Trippa, D.; Restuccia, C.; Fallico, B. Quality maintenance of beef burger patties by direct addiction or encapsulation of a prickly pear fruit extract. Front. Microbiol. 2019, 10, 1760. [Google Scholar] [CrossRef] [PubMed]
- Marrone, R.; Smaldone, G.; Ambrosio, R.L.; Festa, R.; Ceruso, M.; Chianese, A.; Anastasio, A. Effect of beetroot (Beta vulgaris) extract on Black Angus burgers shelf life. Ital. J. Food Saf. 2021, 10, 9031. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Rizzello, C.G.; Taticchi, A.; Esposto, S.; Urbani, S.; Mazzacane, F.; Di Maio, I.; Selvaggini, M.; Gobbetti, R.; Di Cagno, R. Functional milk beverage fortified with phenolic compounds extracted from olive vegetation water, and fermented with functional lactic acid bacteria. Int. J. Food Microbiol. 2011, 147, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Mexis, S.F.; Chouliara, E.; Kontominas, M.G. Shelf life extension of ground chicken meat using an oxygen absorber and a citrus extract. LWT 2012, 49, 21–27. [Google Scholar] [CrossRef]
- Manuel, V.M.; Yolanda, R.N.; Juana, F.L.; José Angel, P.A. Effect of packaging conditions on shelf-life of Mortadella made with citrus fibre washing water and thyme or rosemary essential oil. Food Nutr. Sci. 2011, 2, 1–10. [Google Scholar] [CrossRef]
- Altieri, C.; Scrocco, C.; Sinigaglia, M.; Del Nobile, M.A. Use of chitosan to prolong mozzarella cheese shelf life. J. Dairy Sci. 2005, 88, 2683–2688. [Google Scholar] [CrossRef]
- Medina, E.; Brenes, M.; Garcia, A.; Romero, C.; de Castro, A. Bactericidal activity of glutaraldehyde-like compounds from olive products. J. Food Prot. 2009, 72, 2611–2614. [Google Scholar] [CrossRef]
- Lim, C.K.; Penesyan, A.; Hassan, K.A.; Loper, J.E.; Paulsen, I.T. Effect of tannic acid on the transcriptome of the soil bacterium Pseudomonas protegens Pf-5. Appl. Environ. Microbiol. 2013, 79, 3141–3145. [Google Scholar] [CrossRef]
- Belaqziz, M.; Tan, S.P.; El-Abbassi, A.; Kiai, H.; Hafidi, A.; O’Donovan, O.; McLoughlin, P. Assessment of the antioxidant and antibacterial activities of different olive processing wastewaters. PLoS ONE 2017, 12, e0182622. [Google Scholar] [CrossRef]
Crude PE (mg/g) | |
---|---|
3,4-DHPEA * | 9.2 ± 0.2 |
p-HPEA | 4.3 ± 0.0 |
Verbascoside | 5.9 ± 0.2 |
3,4-DHPEA-EDA | 8.1 ± 0.2 |
Sum of phenols | 27.6 ± 0.3 |
Purity | 2.7% |
Days of Storage | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 2 | 5 | 7 | T | S | TXS | |||
TBARS (mg MDA/kg) | C | 0.13 a | 0.34 bW | 0.47 cW | 0.63 dW | ||||
A | 0.14 a | 0.20 bX | 0.25 cX | 0.30 dX | 0.012 | <0.001 | <0.001 | <0.001 | |
AP | 0.14 a | 0.17 abXZ | 0.19 bZ | 0.29 cX | |||||
P | 0.15 a | 0.16 aZ | 0.18 aZ | 0.24 bZ | |||||
ORACFL (µg TE /100 g) | C | 24.44 W | 24.43 W | 24.44 W | 24.41 W | ||||
A | 34.19 aX | 32.11 bX | 27.08 cX | 25.59 dW | 0.475 | <0.001 | <0.001 | <0.001 | |
AP | 38.87 aY | 38.18 aY | 36.17 bY | 35.89 bX | |||||
P | 44.45 aZ | 43.89 aZ | 40.01 cZ | 38.73 bY |
Days of Storage | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 2 | 5 | 7 | T | S | TXS | |||
TVC | C | 4.29 a | 5.50 b | 6.85 cW | 7.41 dW | ||||
A | 4.37 a | 5.48 b | 6.82 cW | 7.38 dW | 0.124 | <0.001 | <0.001 | 0.002 | |
AP | 4.61 a | 5.31 b | 6.36 cX | 6.98 dWX | |||||
P | 4.48 a | 5.11 b | 6.24 cX | 6.52 cX | |||||
Staphylococcus spp. | C | 1.46 a | 2.07 b | 2.78 cW | 2.89 c | ||||
A | 1.28 a | 1.90 b | 2.67 cW | 2.87 c | 0.159 | <0.001 | 0.005 | 0.671 | |
AP | 1.32 a | 1.78 a | 2.47 bWX | 2.67 b | |||||
P | 1.38 a | 1.67 ab | 2.05 bcX | 2.49 c | |||||
Pseudomonas spp. | C | 4.02 a | 5.18 b | 6.67 cW | 7.05 dW | ||||
A | 4.11 a | 5.23 b | 6.75 cW | 7.20 dW | 0.199 | <0.001 | <0.001 | 0.163 | |
AP | 4.09 a | 4.74 b | 5.96 cX | 6.91 dWX | |||||
P | 3.98 a | 4.47 a | 5.63 bX | 6.11 bX | |||||
LAB | C | 4.15 a | 4.46 ab | 4.83 b | 4.96 b | ||||
A | 4.20 a | 4.48 ab | 4.79 b | 4.88 b | 0.142 | <0.001 | 0.508 | 0.999 | |
AP | 4.04 a | 4.39 ab | 4.82 b | 4.94 c | |||||
P | 3.98 a | 4.29 ab | 4.75 b | 4.83 c | |||||
Enterobacteriaceae | C | 1.38 a | 1.80 ab | 2.58 c | 3.60 dW | ||||
A | 1.30 a | 1.66 a | 2.53 b | 3.58 cW | 0.182 | <0.001 | <0.001 | 0.102 | |
AP | 1.24 a | 1.46 a | 2.27 b | 3.17 cW | |||||
P | 1.28 a | 1.36 a | 2.10 b | 2.36 bX |
Micro-Organism and Parameters | C | A | AP | P |
---|---|---|---|---|
TVC | ||||
λ | 8.97 ± 3.45 a | 6.12 ± 3.45 a | 15.84 ± 8.20 ab | 23.27 ± 11.74 c |
µmax | 0.0286 ± 0.0014 b | 0.0286 ± 0.0013 b | 0.0218 ± 0.0024 a | 0.0248 ± 0.0048 b |
Final value | 7.44 ± 0.03 b | 7.44 ± 0.03 b | 7.11 ± 0.07 b | 6.62 ± 0.10 a |
R2 | 0.999 | 0.999 | 0.995 | 0.98 |
SE of Fit | 0.041 | 0.0397 | 0.080 | 0.139 |
Staphylococcus spp. | ||||
λ | 10.78 ± 5.35 a | 11.86 ± 3.64 a | 17.95 ± 3.82 ab | 20.84 ± 6.03 b |
µmax | 0.0163 ± 0.0015 bc | 0.0171 ± 0.0010 c | 0.0151 ± 0.0009 b | 0.0092 ± 0.0001 a |
Final value | 2.92 ± 0.02 b | 2.89 ± 0.02 b | 2.69 ± 0.02 a | 2.66 ± 0.00 a |
R2 | 0.997 | 0.999 | 0.998 | 0.998 |
SE of Fit | 0.0346 | 0.0262 | 0.0263 | 0.065 |
Pseudomonas spp. | ||||
λ | 12.33 ± 9.84 a | 14.33 ± 8.32 a | 20.38 ± 9.25 ab | 29.73 ± 2.07 b |
µmax | 0.0324 ± 0.004 b | 0.033 ± 0.004 b | 0.024 ± 0.003 a | 0.025 ± 0.000 a |
Final value | 7.16 ± 0.10 b | 7.30 ± 0.09 b | 7.07 ± 0.11 b | 6.10 ± 0.02 a |
R2 | 0.99 | 0.993 | 0.998 | 0.999 |
SE of Fit | 0.136 | 0.12 | 0.11 | 0.025 |
LAB | ||||
λ | 10.66 ± 8.58 | 9.86 ± 4.44 | 11.33 ± 3.19 | 17.03 ± 4.67 |
µmax | 0.0083 ± 0.0010 a | 0.0071 ± 0.0000 a | 0.0095 ± 0.0040 b | 0.0102 ± 0.0002 b |
Final value | 4.94 ± 0.02 | 4.89 ± 0.09 | 4.95 ± 0.08 | 4.83 ± 0.12 |
R2 | 0.993 | 0.998 | 0.999 | 0.997 |
SE of Fit | 0.0294 | 0.013 | 0.0128 | 0.0209 |
Enterobacteriaceae | ||||
λ | 34.38 ± 10.82 | 38.59 ± 6.21 | 44.40 ± 2.55 | 49.036 ± 10.74 |
µmax | 0.0205 ± 0.0026 | 0.022 ± 0.0015 | 0.0201 ± 0.0006 | 0.0176 ± 0.0035 |
Final value | 3.80 ± 0.12 c | 3.88 ± 0.07 c | 3.38 ± 0.025 b | 2.41 ± 0.05 a |
R2 | 0.989 | 0.996 | 0.999 | 0.987 |
SE of Fit | 0.112 | 0.0672 | 0.0238 | 0.063 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roila, R.; Sordini, B.; Esposto, S.; Ranucci, D.; Primavilla, S.; Valiani, A.; Taticchi, A.; Branciari, R.; Servili, M. Effect of the Application of a Green Preservative Strategy on Minced Meat Products: Antimicrobial Efficacy of Olive Mill Wastewater Polyphenolic Extract in Improving Beef Burger Shelf-Life. Foods 2022, 11, 2447. https://doi.org/10.3390/foods11162447
Roila R, Sordini B, Esposto S, Ranucci D, Primavilla S, Valiani A, Taticchi A, Branciari R, Servili M. Effect of the Application of a Green Preservative Strategy on Minced Meat Products: Antimicrobial Efficacy of Olive Mill Wastewater Polyphenolic Extract in Improving Beef Burger Shelf-Life. Foods. 2022; 11(16):2447. https://doi.org/10.3390/foods11162447
Chicago/Turabian StyleRoila, Rossana, Beatrice Sordini, Sonia Esposto, David Ranucci, Sara Primavilla, Andrea Valiani, Agnese Taticchi, Raffaella Branciari, and Maurizio Servili. 2022. "Effect of the Application of a Green Preservative Strategy on Minced Meat Products: Antimicrobial Efficacy of Olive Mill Wastewater Polyphenolic Extract in Improving Beef Burger Shelf-Life" Foods 11, no. 16: 2447. https://doi.org/10.3390/foods11162447
APA StyleRoila, R., Sordini, B., Esposto, S., Ranucci, D., Primavilla, S., Valiani, A., Taticchi, A., Branciari, R., & Servili, M. (2022). Effect of the Application of a Green Preservative Strategy on Minced Meat Products: Antimicrobial Efficacy of Olive Mill Wastewater Polyphenolic Extract in Improving Beef Burger Shelf-Life. Foods, 11(16), 2447. https://doi.org/10.3390/foods11162447