Pasta with Kiwiberry (Actinidia arguta): Effect on Structure, Quality, Consumer Acceptance, and Changes in Bioactivity during Thermal Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Kiwiberry Characteristics
2.3. Preparation of Pasta
2.4. Proximate Composition of Pasta
2.5. Cooking Properties
2.5.1. Optimal Cooking Time
2.5.2. Cooking Weight
2.5.3. Cooking Loss
2.6. Color Measurements
2.7. Microscopic Structure Determination
2.8. Texture Analysis
2.9. 1H NMR Relaxometry
2.10. Changes of Pasta Antioxidant Activity during Thermal Processing
2.10.1. Extraction Process of Antioxidants
2.10.2. Total Antioxidant Activity and Total Phenolic Content
2.10.3. Polyphenols Profile Composition
2.11. Consumer Acceptance
2.12. Statistical Analysis
3. Results and Discussion
3.1. Kiwiberry Properties
3.2. Proximate Composition and Pasta Cooking Properties
3.3. Color Parameters
3.4. Texture and Microstructure
3.5. Water Behavior
3.6. Changes of Antioxidant Activity and Phenolic Compounds Composition during Thermal Processing
3.7. Consumer Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Latocha, P.; Vereecke, D.; Debersaques, F. Kiwiberry commercial production—What stage are we at? Acta Hortic. 2018, 1218, 559–564. [Google Scholar] [CrossRef]
- Latocha, P. The Nutritional and Health Benefits of Kiwiberry (Actinidia arguta)—A Review. Plant Foods Hum. Nutr. 2017, 72, 325–334. [Google Scholar] [CrossRef]
- Gong, D.-S.; Sharma, K.; Kang, K.-W.; Kim, D.-W.; Oak, M.-H. Endothelium-Dependent Relaxation Effects of Actinidia arguta Extracts in Coronary Artery: Involvement of eNOS/Akt Pathway. J. Nanosci. Nanotechnol. 2020, 20, 5381–5384. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Delerue-Matos, C.; Rodrigues, F. Bioactivity, phytochemical profile and pro-healthy properties of Actinidia arguta: A review. Food Res. Int. 2020, 136, 109449. [Google Scholar] [CrossRef]
- Kim, H.; Lim, S.; Bae, M.-J.; Lee, W.; Kim, S. PG102 Upregulates IL-37 through p38, ERK, and Smad3 Pathways in HaCaT Keratinocytes. Mediat. Inflamm. 2019, 2019, 6085801. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Ryu, S.H.; Lee, S.; Yeon, S.W.; Turk, A.; Han, Y.K.; Lee, K.Y.; Hwang, B.Y.; Lee, M.K. Aromatic Constituents from the Leaves of Actinidia arguta with Antioxidant and α-Glucosidase Inhibitory Activity. Antioxidants 2021, 10, 1896. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Lee, I.-K.; Son, M.-W.; Kim, K.-H. Effects of Orally Administered Actinidia arguta (Hardy Kiwi) Fruit Extract on 2-Chloro-1,3,5-Trinitrobenzene-Induced Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice. J. Med. Food 2009, 12, 1004–1015. [Google Scholar] [CrossRef] [PubMed]
- Takano, F.; Tanaka, T.; Aoi, J.; Yahagi, N.; Fushiya, S. Protective effect of (+)-catechin against 5-fluorouracil-induced myelosuppression in mice. Toxicology 2004, 201, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-Y.; Yuan, Q.; Yang, Y.-L.; Han, Q.-H.; He, J.-L.; Zhao, L.; Zhang, Q.; Liu, S.-X.; Lin, D.-R.; Wu, D.-T.; et al. Phenolic Profiles, Antioxidant Capacities, and Inhibitory Effects on Digestive Enzymes of Different Kiwifruits. Molecules 2018, 23, 2957. [Google Scholar] [CrossRef] [PubMed]
- Bialik, M.; Gondek, E.; Lasota, M.; Latocha, P.; Wiktor, A.; Witrowa-Rajchert, D. Rehydration kinetics of dried kiwiberry (Actinidia arguta). Zesz. Probl. Postępów Nauk Rol. 2017, 591, 3–12. [Google Scholar] [CrossRef]
- Piscitelli, A.; Staiano, M. Food Consumption Associated with Health Status and Lifestyle Factors in the Adult Italian Regional Population: An Analysis Proposal for Official Statistics Data. In Italian Studies on Food and Quality of Life; Facioni, C., Di Francesco, G., Corvo, P., Eds.; Springer: Cham, Switzerland, 2022; pp. 57–75. [Google Scholar]
- Khan, I.; Yousif, A.; Johnson, S.K.; Gamlath, S. Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Res. Int. 2013, 54, 578–586. [Google Scholar] [CrossRef]
- Romano, A.; Ferranti, P.; Gallo, V.; Masi, P. New ingredients and alternatives to durum wheat semolina for a high quality dried pasta. Curr. Opin. Food Sci. 2021, 41, 249–259. [Google Scholar] [CrossRef]
- Kowalczewski, P.; Lewandowicz, G.; Makowska, A.; Knoll, I.; Błaszczak, W.; Białas, W.; Kubiak, P. Pasta Fortified with Potato Juice: Structure, Quality, and Consumer Acceptance. J. Food Sci. 2015, 80, S1377–S1382. [Google Scholar] [CrossRef]
- Duda, A.; Adamczak, J.; Chełmińska, P.; Juszkiewicz, J.; Kowalczewski, P. Quality and nutritional/textural properties of durum wheat pasta enriched with cricket powder. Foods 2019, 8, 46. [Google Scholar] [CrossRef]
- Phongthai, S.; D’Amico, S.; Schoenlechner, R.; Homthawornchoo, W.; Rawdkuen, S. Effects of protein enrichment on the properties of rice flour based gluten-free pasta. LWT 2017, 80, 378–385. [Google Scholar] [CrossRef]
- Sykut-Domańska, E.; Zarzycki, P.; Sobota, A.; Teterycz, D.; Wirkijowska, A.; Blicharz-Kania, A.; Andrejko, D.; Mazurkiewicz, J. The potential use of by-products from coconut industry for production of pasta. J. Food Process. Preserv. 2020, 44, e14490. [Google Scholar] [CrossRef]
- Krawęcka, A.; Sobota, A.; Pankiewicz, U.; Zielińska, E.; Zarzycki, P. Stinging Nettle (Urtica dioica L.) as a Functional Component in Durum Wheat Pasta Production: Impact on Chemical Composition, In Vitro Glycemic Index, and Quality Properties. Molecules 2021, 26, 6909. [Google Scholar] [CrossRef]
- Drabińska, N.; Nogueira, M.; Szmatowicz, B. Valorisation of Broccoli By-Products: Technological, Sensory and Flavour Properties of Durum Pasta Fortified with Broccoli Leaf Powder. Molecules 2022, 27, 4672. [Google Scholar] [CrossRef]
- Drabińska, N.; Nogueira, M.; Ciska, E.; Jeleń, H.H. Effect of Drying and Broccoli Leaves Incorporation on the Nutritional Quality of Durum Wheat Pasta. Polish J. Food Nutr. Sci. 2022. [Google Scholar] [CrossRef]
- Kaplan Evlice, A. The effect of durum wheat genotypes on cooking quality of pasta. Eur. Food Res. Technol. 2022, 248, 815–824. [Google Scholar] [CrossRef]
- Bresciani, A.; Pagani, M.A.; Marti, A. Pasta-Making Process: A Narrative Review on the Relation between Process Variables and Pasta Quality. Foods 2022, 11, 256. [Google Scholar] [CrossRef] [PubMed]
- Biegańska-Marecik, R.; Radziejewska-Kubzdela, E.; Marecik, R. Characterization of phenolics, glucosinolates and antioxidant activity of beverages based on apple juice with addition of frozen and freeze-dried curly kale leaves (Brassica oleracea L. var. acephala L.). Food Chem. 2017, 230, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Szutowska, J.; Gwiazdowska, D.; Rybicka, I.; Pawlak-Lemańska, K.; Biegańska-Marecik, R.; Gliszczyńska-Świgło, A. Controlled fermentation of curly kale juice with the use of autochthonous starter cultures. Food Res. Int. 2021, 149, 110674. [Google Scholar] [CrossRef]
- Vallejo, F.; Tomás-Barberán, F.A.; García-Viguera, C. Potential bioactive compounds in health promotion from broccoli cultivars grown in Spain. J. Sci. Food Agric. 2002, 82, 1293–1297. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R. Optimization of a new mobile phase to know the complex and real polyphenolic composition: Towards a total phenolic index using high-performance liquid chromatography. J. Chromatogr. A 2003, 1018, 29–40. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- ISO 20483; 2013 Cereals and Pulses—DETERMINATION of the Nitrogen Content and Calculation of the Crude Protein Content—Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2013.
- AACC. Ash in Farina and Semolina. AACC Int. Approv. Methods 2009. [Google Scholar] [CrossRef]
- AACC. 44-19.01 Moisture—Air-oven method, drying at 135 degrees. In AACC International Approved Methods; AACC International: Washington, DC, USA, 2009. [Google Scholar]
- Zardetto, S.; Di Fresco, S.; Dalla Rosa, M. Effetto di trattamenti termici sulle caratteristiche chimico-fisiche della pasta. Tec. Molit. 2002, 2, 113–130. [Google Scholar]
- Weglarz, W.P.; Haranczyk, H. Two-dimensional analysis of the nuclear relaxation function in the time domain: The program CracSpin. J. Phys. D Appl. Phys. 2000, 33, 1909–1920. [Google Scholar] [CrossRef]
- Baranowska, H.M. Water molecular properties in forcemeats and finely ground sausages containing plant fat. Food Biophys. 2011, 6, 133–137. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Kowalczewski, P.Ł.; Zembrzuska, J.; Drożdżyńska, A.; Smarzyński, K.; Radzikowska, D.; Kieliszek, M.; Jeżowski, P.; Sawinska, Z. Influence of potato variety on polyphenol profile composition and glycoalcaloid contents of potato juice. Open Chem. 2021, 19, 1225–1232. [Google Scholar] [CrossRef]
- Villanueva, N.D.; Petenate, A.J.; Da Silva, M.A.A. Performance of three affective methods and diagnosis of the ANOVA model. Food Qual. Prefer. 2002, 11, 363–370. [Google Scholar] [CrossRef]
- Horák, M. Quality Parameters of Kiwiberries Grown in the Czech Republic. Acta Hortic. Regiotect. 2020, 23, 17–20. [Google Scholar] [CrossRef]
- Latocha, P.; Debersaques, F.; Hale, I. Actinidia arguta (Kiwiberry): Botany, Production, Genetics, Nutritional Value, and Postharvest Handling. In Horticultural Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 37–152. ISBN 9781119750802. [Google Scholar]
- Nishiyama, I.; Yamashita, Y.; Yamanaka, M.; Shimohashi, A.; Fukuda, T.; Oota, T. Varietal Difference in Vitamin C Content in the Fruit of Kiwifruit and Other Actinidia Species. J. Agric. Food Chem. 2004, 52, 5472–5475. [Google Scholar] [CrossRef] [PubMed]
- Benlloch-Tinoco, M.; Igual, M.; Rodrigo, D.; Martínez-Navarrete, N. Superiority of microwaves over conventional heating to preserve shelf-life and quality of kiwifruit puree. Food Control 2015, 50, 620–629. [Google Scholar] [CrossRef]
- Krupa, T.; Latocha, P.; Liwińska, A. Changes of physicochemical quality, phenolics and vitamin C content in hardy kiwifruit (Actinidia arguta and its hybrid) during storage. Sci. Hortic. 2011, 130, 410–417. [Google Scholar] [CrossRef]
- Latocha, P.; Wołosiak, R.; Worobiej, E.; Krupa, T. Clonal differences in antioxidant activity and bioactive constituents of hardy kiwifruit (Actinidia arguta) and its year-to-year variability. J. Sci. Food Agric. 2013, 93, 1412–1419. [Google Scholar] [CrossRef]
- Leontowicz, H.; Leontowicz, M.; Latocha, P.; Jesion, I.; Park, Y.-S.; Katrich, E.; Barasch, D.; Nemirovski, A.; Gorinstein, S. Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa ‘Hayward’ and Actinidia eriantha ‘Bidan’. Food Chem. 2016, 196, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Witkowska-Banaszczak, E.; Radzikowska, D.; Ratajczak, K. Chemical profile and antioxidant activity of Trollius europaeus under the influence of feeding aphids. Open Life Sci. 2018, 13, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Tuladhar, P.; Sasidharan, S.; Saudagar, P. Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses. In Biocontrol Agents and Secondary Metabolites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 419–441. [Google Scholar]
- Park, Y.-S.; Namiesnik, J.; Vearasilp, K.; Leontowicz, H.; Leontowicz, M.; Barasch, D.; Nemirovski, A.; Trakhtenberg, S.; Gorinstein, S. Bioactive compounds and the antioxidant capacity in new kiwi fruit cultivars. Food Chem. 2014, 165, 354–361. [Google Scholar] [CrossRef]
- Kim, J.G.; Beppu, K.; Kataoka, I. Varietal differences in phenolic content and astringency in skin and flesh of hardy kiwifruit resources in Japan. Sci. Hortic. 2009, 120, 551–554. [Google Scholar] [CrossRef]
- Latocha, P.; Krupa, T.; Wołosiak, R.; Worobiej, E.; Wilczak, J. Antioxidant activity and chemical difference in fruit of different Actinidia sp. Int. J. Food Sci. Nutr. 2010, 61, 381–394. [Google Scholar] [CrossRef]
- Teterycz, D.; Sobota, A.; Przygodzka, D.; Łysakowska, P. Hemp seed (Cannabis sativa L.) enriched pasta: Physicochemical properties and quality evaluation. PLoS ONE 2021, 16, e0248790. [Google Scholar] [CrossRef]
- Zarzycki, P.; Sykut-Domańska, E.; Sobota, A.; Teterycz, D.; Krawęcka, A.; Blicharz-Kania, A.; Andrejko, D.; Zdybel, B. Flaxseed Enriched Pasta—Chemical Composition and Cooking Quality. Foods 2020, 9, 404. [Google Scholar] [CrossRef]
- Ciccoritti, R.; Nocente, F.; Sgrulletta, D.; Gazza, L. Cooking quality, biochemical and technological characteristics of bran-enriched pasta obtained by a novel pasta-making process. LWT 2019, 101, 10–16. [Google Scholar] [CrossRef]
- Bustos, M.C.; Paesani, C.; Quiroga, F.; León, A.E. Technological and sensorial quality of berry-enriched pasta. Cereal Chem. 2019, 96, 967–976. [Google Scholar] [CrossRef]
- Sobota, A.; Zarzycki, P. Effect of Pasta Cooking Time on the Content and Fractional Composition of Dietary Fiber. J. Food Qual. 2013, 36, 127–132. [Google Scholar] [CrossRef]
- Fradinho, P.; Niccolai, A.; Soares, R.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Res. 2020, 45, 101743. [Google Scholar] [CrossRef]
- Raczyk, M.; Polanowska, K.; Kruszewski, B.; Grygier, A.; Michałowska, D. Effect of Spirulina (Arthrospira platensis) Supplementation on Physical and Chemical Properties of Semolina (Triticum durum) Based Fresh Pasta. Molecules 2022, 27, 355. [Google Scholar] [CrossRef]
- SERİN, S.; YARIM, K.; SAYAR, S. Marketteki Spagetti Makarna Fiyatları ile Kalite Parametreleri Arasındaki İlişki. Akad. Gıda 2020, 18, 135–142. [Google Scholar] [CrossRef]
- Dziki, D. Current Trends in Enrichment of Wheat Pasta: Quality, Nutritional Value and Antioxidant Properties. Processes 2021, 9, 1280. [Google Scholar] [CrossRef]
- Debbouz, A.; Pitz, W.; Moore, W.; D’appolonia, B. Effect of Bleaching on Durum Wheat and Spaghetti Quality. Cereal Chem 1995, 72, 128–131. [Google Scholar]
- Paravisini, L.; Peterson, D.G. Mechanisms non-enzymatic browning in orange juice during storage. Food Chem. 2019, 289, 320–327. [Google Scholar] [CrossRef]
- Moon, K.M.; Kwon, E.-B.; Lee, B.; Kim, C.Y. Recent Trends in Controlling the Enzymatic Browning of Fruit and Vegetable Products. Molecules 2020, 25, 2754. [Google Scholar] [CrossRef]
- Michalak-Majewska, M.; Złotek, U.; Szymanowska, U.; Szwajgier, D.; Stanikowski, P.; Matysek, M.; Sobota, A. Antioxidant and Potentially Anti-Inflammatory Properties in Pasta Fortified with Onion Skin. Appl. Sci. 2020, 10, 8164. [Google Scholar] [CrossRef]
- Sobota, A.; Wirkijowska, A.; Zarzycki, P. Application of vegetable concentrates and powders in coloured pasta production. Int. J. Food Sci. Technol. 2020, 55, 2677–2687. [Google Scholar] [CrossRef]
- Jayasena, V.; Nasar-Abbas, S.M. Development and quality evaluation of high-protein and high-dietary-fiber pasta using lupin flour. J. Texture Stud. 2012, 43, 153–163. [Google Scholar] [CrossRef]
- Oduro-Obeng, H.; Fu, B.X.; Beta, T. Influence of cooking duration on carotenoids, physical properties and in vitro antioxidant capacity of pasta prepared from three Canadian durum wheat cultivars. Food Chem. 2021, 363, 130016. [Google Scholar] [CrossRef]
- Mokrzycki, W.; Tatol, M. Color difference Delta E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Dziki, D.; Biernacka, B.; Laskowski, J. Influence of cooking time and common wheat flour addition to semolina on spaghetti mechanical properties. Acta Agropfysica 2012, 19, 277–287. [Google Scholar]
- Del Nobile, M.A.; Baiano, A.; Conte, A.; Mocci, G. Influence of protein content on spaghetti cooking quality. J. Cereal Sci. 2005, 41, 347–356. [Google Scholar] [CrossRef]
- Sissons, M.J.; Egan, N.E.; Gianibelli, M.C. New Insights Into the Role of Gluten on Durum Pasta Quality Using Reconstitution Method. Cereal Chem. J. 2005, 82, 601–608. [Google Scholar] [CrossRef]
- Kim, Y.S.; Wiesenborn, D.P. Starch Noodle Quality as Related to Potato Genotypes. J. Food Sci. 1996, 61, 248–252. [Google Scholar] [CrossRef]
- Lucisano, M.; Pagani, M.A.; Mariotti, M.; Locatelli, D.P. Influence of die material on pasta characteristics. Food Res. Int. 2008, 41, 646–652. [Google Scholar] [CrossRef]
- Resmini, P.; Pagani, M. Ultrastructure studies of pasta. A review. Food Microstruct. 1983, 2, 2. [Google Scholar]
- Makowska, A.; Baranowska, H.M.; Michniewicz, J.; Chudy, S.; Kowalczewski, P.Ł. Triticale extrudates—Changes of macrostructure, mechanical properties and molecular water dynamics during hydration. J. Cereal Sci. 2017, 74, 250–255. [Google Scholar] [CrossRef]
- Płowaś-Korus, I.; Masewicz, Ł.; Szwengiel, A.; Rachocki, A.; Baranowska, H.M.; Medycki, W. A novel method of recognizing liquefied honey. Food Chem. 2018, 245, 885–889. [Google Scholar] [CrossRef]
- Ates, E.G.; Domenici, V.; Florek-Wojciechowska, M.; Gradišek, A.; Kruk, D.; Maltar-Strmečki, N.; Oztop, M.; Ozvural, E.B.; Rollet, A.-L. Field-dependent NMR relaxometry for Food Science: Applications and perspectives. Trends Food Sci. Technol. 2021, 110, 513–524. [Google Scholar] [CrossRef]
- Heck, R.T.; Saldaña, E.; Lorenzo, J.M.; Correa, L.P.; Fagundes, M.B.; Cichoski, A.J.; de Menezes, C.R.; Wagner, R.; Campagnol, P.C.B. Hydrogelled emulsion from chia and linseed oils: A promising strategy to produce low-fat burgers with a healthier lipid profile. Meat Sci. 2019, 156, 174–182. [Google Scholar] [CrossRef]
- Cichocki, W.; Czerniak, A.; Smarzyński, K.; Jeżowski, P.; Kmiecik, D.; Baranowska, H.M.; Walkowiak, K.; Ostrowska-Ligęza, E.; Różańska, M.B.; Lesiecki, M.; et al. Physicochemical and Morphological Study of the Saccharomyces cerevisiae Cell-Based Microcapsules with Novel Cold-Pressed Oil Blends. Appl. Sci. 2022, 12, 6577. [Google Scholar] [CrossRef]
- Brosio, E.; Gianferri, R. Low-resolution NMR—An analytical tool in food characterization. In Basic NMR in Food Characterization; Brosio, E., Ed.; Research Signpost: Karela, India, 2009; pp. 9–38. [Google Scholar]
- Tananuwong, K.; Reid, D. DSC and NMR relaxation studies of starch?water interactions during gelatinization. Carbohydr. Polym. 2004, 58, 345–358. [Google Scholar] [CrossRef]
- Hoseney, R.C.; Rogers, D.E. Mechanism of sugar functionality in cookies. In The Science of Cookie and Cracker Production; Faridi, H., Ed.; Chapman & Hall: New York, NY, USA, 1994; pp. 203–225. [Google Scholar]
- Assifaoui, A.; Champion, D.; Chiotelli, E.; Verel, A. Characterization of water mobility in biscuit dough using a low-field 1H NMR technique. Carbohydr. Polym. 2006, 64, 197–204. [Google Scholar] [CrossRef]
- Wang, X.; Choi, S.-G.; Kerr, W.L. Water dynamics in white bread and starch gels as affected by water and gluten content. LWT—Food Sci. Technol. 2004, 37, 377–384. [Google Scholar] [CrossRef]
- Grant, A.; Belton, P.S.; Colquhoun, I.J.; Parker, M.L.; Plijter, J.J.; Shewry, P.R.; Tatham, A.S.; Wellner, N. Effects of Temperature on Sorption of Water by Wheat Gluten Determined Using Deuterium Nuclear Magnetic Resonance. Cereal Chem. J. 1999, 76, 219–226. [Google Scholar] [CrossRef]
- Fu, B.; Chiremba, C.; Pozniak, C.; Wang, K.; Nam, S. Total Phenolic and Yellow Pigment Contents and Antioxidant Activities of Durum Wheat Milling Fractions. Antioxidants 2017, 6, 78. [Google Scholar] [CrossRef]
- Fares, C.; Platani, C.; Baiano, A.; Menga, V. Effect of processing and cooking on phenolic acid profile and antioxidant capacity of durum wheat pasta enriched with debranning fractions of wheat. Food Chem. 2010, 119, 1023–1029. [Google Scholar] [CrossRef]
- Starowicz, M.; Zieliński, H. How Maillard Reaction Influences Sensorial Properties (Color, Flavor and Texture) of Food Products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Singh, K.; Tripathi, S.; Chandra, R. Maillard reaction product and its complexation with environmental pollutants: A comprehensive review of their synthesis and impact. Bioresour. Technol. Reports 2021, 15, 100779. [Google Scholar] [CrossRef]
- Kadiri, O. A review on the status of the phenolic compounds and antioxidant capacity of the flour: Effects of cereal processing. Int. J. Food Prop. 2017, 20, S798–S809. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Świeca, M.; Gawlik-Dziki, U. Changes of antioxidant potential of pasta fortified with parsley (Petroselinum crispum mill.) leaves in the light of protein-phenolics interactions. Acta Sci. Pol. Technol. Aliment. 2015, 14, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Kowalczewski, P.Ł.; Pauter, P.; Smarzyński, K.; Różańska, M.B.; Jeżowski, P.; Dwiecki, K.; Mildner-Szkudlarz, S. Thermal processing of pasta enriched with black locust flowers affect quality, phenolics, and antioxidant activity. J. Food Process. Preserv. 2019, 43, e14106. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Świeca, M.; Gawlik-Dziki, U. Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chem. 2016, 194, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Sun-Waterhouse, D.; Wadhwa, S.S. Industry-Relevant Approaches for Minimising the Bitterness of Bioactive Compounds in Functional Foods: A Review. Food Bioprocess Technol. 2013, 6, 607–627. [Google Scholar] [CrossRef]
Parameter | Amount |
---|---|
Vitamin C [mg/100 g f.m.] | 54.658 ± 3.796 |
Carotenoids content (μg/100 g f.m.): | |
Neoxanthin | 3.412 ± 0.407 |
Violaxanthin | 4.780 ± 0.499 |
Anteraxanthin | 4.339 ± 0.442 |
Lutein | 19.003 ± 2.122 |
Zeaxanthin | 1.618 ± 0.223 |
β-carotene | 19.447 ± 2.601 |
Not identified | 1.468 ± 0.358 |
Individual polyphenolic compound (mg/100 g f.m.): | |
Hydroxybenzoic acid | 3.311 ± 0.131 |
Catechin | 2.056 ± 0.150 |
Procyanidin B | 3.742 ± 0.323 |
Epicatechin | 2.064 ± 0.142 |
Procyanidins | 4.525 ± 0.241 |
Neochlorogenic acid | 10.537 ± 0.795 |
p-Coumaric acid | 2.656 ± 0.293 |
Chlorogenic acid | 11.138 ± 0.881 |
Crypto-chlorogenic acid | 3.517 ± 0.189 |
Caffeic acid | 0.475 ± 0.048 |
Rutin | 12.402 ± 2.226 |
Quercetin | 4.231 ± 0.824 |
Kaempferol | 3.951 ± 0.271 |
Antioxidant activity * [μmol TEAC/1 g f.m.] | 84.70 ± 3.36 |
Parameter | R | K5 | K10 | K15 |
---|---|---|---|---|
Protein content (%) | 11.0 ± 0.2 a | 10.8 ± 0.1 ab | 10.1 ± 0.2 b | 9.9 ± 0.5 b |
Ash content (%) | 0.763 ± 0.005 d | 0.828 ± 0.006 c | 0.916 ± 0.007 b | 1.025 ± 0.015 a |
Moisture content (%) | 6.77 ± 0.11 a | 6.74 ± 0.21 a | 6.62 ± 0.17 a | 6.83 ± 0.22 a |
Optimal cooking time (min) | 6.30 ± 0.05 a | 4.30 ± 0.10 b | 4.00 ± 0.02 c | 3.30 ± 0.03 d |
Cooking weight (g/g) | 2.17 ± 0.21 a | 2.07 ± 0.11 a | 1.77 ± 0.06 b | 1.36 ± 0.07 c |
Cooking loss (%) | 6.42 ± 0.83 b | 7.22 ± 1.02 b | 10.04 ± 2.14 ab | 14.11 ± 1.72 a |
Parameter | Fresh Pasta | Cooked Pasta | ||||||
---|---|---|---|---|---|---|---|---|
R | K5 | K10 | K15 | R | K5 | K10 | K15 | |
L* | 77.6 ± 0.4 a | 67.9 ± 1.2 b | 60.2 ± 0.5 c | 56.0 ± 0.2 d | 74.2 ± 0.2 A | 68.7 ± 0.2 B | 64.3 ± 0.2 C | 59.2 ± 0.3 D |
a* | 0.50 ± 0.12 a | −2.58 ± 0.27 b | −2.29 ± 0.06 c | −2.34 ± 0.10 bc | −2.94 ± 0.07 D | −2.05 ± 0.07 C | −0.98 ± 0.08 B | 1.05 ± 0.02 A |
b* | 31.8 ± 0.3 b | 32.9 ± 1.6 a | 33.6 ± 0.3 ab | 38.0 ± 0.3 c | 13.6 ± 0.2 C | 19.3 ± 0.6 B | 22.3 ± 0.9 A | 21.2 ± 1.6 AB |
ΔE | - | 10.34 | 17.67 | 22.10 | - | 7.92 | 13.31 | 17.27 |
Parameter | R | K5 | K10 | K15 |
---|---|---|---|---|
Firmness [N] | 2.82 ± 0.41 a | 1.72 ± 0.44 b | 1.57 ± 0.21 bc | 1.39 ± 0.13 c |
Total work of shear [N/mm × s] | 0.143 ± 0.027 a | 0.101 ± 0.029 ab | 0.097 ± 0.012 bc | 0.079 ± 0.010 c |
Parameter | Fresh Pasta | Cooked Pasta | ||||||
---|---|---|---|---|---|---|---|---|
R | K5 | K10 | K15 | R | K5 | K10 | K15 | |
T1 (ms) | 56.7 ± 0.3 a | 49.9 ± 1.7 b | 39.3 ± 3.9 c | 34.6 ± 2.8 d | 264.0 ± 0.8 A | 254.1 ± 1.2 B | 154.1 ± 1.3 C | 131.5 ± 0.8 D |
T21 (ms) | 1.21 ± 0.09 a | 0.83 ± 0.02 b | 0.68 ± 0.04 c | 0.60 ± 0.04 c | 18.1 ± 0.5 A | 13.0 ± 0.3 B | 9.8 ± 0.7 C | 7.7 ± 0.2 D |
T22 (ms) | 2.09 ± 0.05 c | 2.21 ± 0.05 b | 2.32 ± 0.03 a | 2.38 ± 0.04 a | 66.1 ± 1.1 D | 76.7 ± 0.9 C | 79.0 ± 0.2 B | 81.2 ± 0.6 A |
Parameter | Dry Pasta | Cooked Pasta | ||||||
---|---|---|---|---|---|---|---|---|
R | K5 | K10 | K15 | R | K5 | K10 | K15 | |
Antioxidant activity and total phenolic compound content | ||||||||
TPC (mg FAE/g) | 0.31 ± 0.03 d | 0.57 ± 0.01 c | 0.72 ± 0.04 b | 1.03 ± 0.05 a | 0.61 ± 0.02 D | 1.16 ± 0.02 C | 1.93 ± 0.03 B | 2.41 ± 0.06 A |
TEAC (mmol/g) | 12.25 ± 0.26 b | 13.31 ± 0.74 b | 14.23 ± 0.42 ab | 15.86 ± 2.50 a | 10.95 ± 0.06 C | 14.86 ± 0.73 B | 16.35 ± 0.75 A | 18.04 ± 1.96 A |
Phenolic compounds composition | ||||||||
Chlorogenic acid (μg/g) | 98.9 ± 28.0 c | 1791 ± 41 b | 3856 ± 83 ab | 8133 ± 443 a | 70.9 ± 29.4 D | 2348 ± 42 C | 5700 ± 749 B | 10870 ± 948 A |
Quercetin (μg/g) | N/D | 765.6 ± 13.5 c | 987.8 ± 31.6 b | 1349 ± 82 a | N/D | 1099 ± 19 C | 1580 ± 51 B | 2076 ± 73 A |
Rutin (μg/g) | 164.2 ± 6.1 d | 2496 ± 43 c | 5083 ± 80 b | 9888 ± 199 a | 432.9 ± 429.8 D | 2440 ± 439 C | 5456 ± 16 B | 9901 ± 464 A |
Kaempferol (μg/g) | N/D | N/D | N/D | N/D | N/D | N/D | N/D | 438.30 ± 37.22 |
Caffeic acid (μg/g) | N/D | 355.7 ± 12.3 c | 610.4 ± 52.5 b | 1271 ± 188 a | N/D | 784.7 ± 28.4 C | 1510 ± 158 B | 2408 ± 98 A |
p-Coumaric acid (μg/g) | 582.0 ± 37.4 c | 1031 ± 11 b | 1212 ± 136 b | 1660 ± 178 a | 477.1 ± 77.8 C | 1279 ± 146 B | 1608 ± 373 AB | 2134 ± 207 A |
Vitexin (μg/g) | 2748 ± 27 b | 2825 ± 78 b | 3360 ± 69 a | 3969 ± 104 a | 2409 ± 100 C | 3077 ± 230 B | 3340 ± 64 B | 3758 ± 182 A |
Ferulic acid (μg/g) | 1762 ± 27 c | 1848 ± 71 bc | 1987 ± 11 b | 2752 ± 57 a | 1606 ± 16 C | 1957 ± 116 B | 2043 ± 193 B | 2714 ± 166 A |
Sinapic acid (μg/g) | 82.7 ± 1.5 c | 223.9 ± 5.9 b | 237.1 ± 13.1 b | 343.0 ± 24.8 a | 89.5 ± 4.8 C | 261.1 ± 24.3 B | 275.6 ± 29.9 B | 357.7 ± 23.8 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osoś, A.; Jankowska, P.; Drożdżyńska, A.; Różańska, M.B.; Biegańska-Marecik, R.; Baranowska, H.M.; Ruszkowska, M.; Kačániová, M.; Tomkowiak, A.; Kieliszek, M.; et al. Pasta with Kiwiberry (Actinidia arguta): Effect on Structure, Quality, Consumer Acceptance, and Changes in Bioactivity during Thermal Treatment. Foods 2022, 11, 2456. https://doi.org/10.3390/foods11162456
Osoś A, Jankowska P, Drożdżyńska A, Różańska MB, Biegańska-Marecik R, Baranowska HM, Ruszkowska M, Kačániová M, Tomkowiak A, Kieliszek M, et al. Pasta with Kiwiberry (Actinidia arguta): Effect on Structure, Quality, Consumer Acceptance, and Changes in Bioactivity during Thermal Treatment. Foods. 2022; 11(16):2456. https://doi.org/10.3390/foods11162456
Chicago/Turabian StyleOsoś, Agata, Patrycja Jankowska, Agnieszka Drożdżyńska, Maria Barbara Różańska, Róża Biegańska-Marecik, Hanna Maria Baranowska, Millena Ruszkowska, Miroslava Kačániová, Agnieszka Tomkowiak, Marek Kieliszek, and et al. 2022. "Pasta with Kiwiberry (Actinidia arguta): Effect on Structure, Quality, Consumer Acceptance, and Changes in Bioactivity during Thermal Treatment" Foods 11, no. 16: 2456. https://doi.org/10.3390/foods11162456
APA StyleOsoś, A., Jankowska, P., Drożdżyńska, A., Różańska, M. B., Biegańska-Marecik, R., Baranowska, H. M., Ruszkowska, M., Kačániová, M., Tomkowiak, A., Kieliszek, M., & Kowalczewski, P. Ł. (2022). Pasta with Kiwiberry (Actinidia arguta): Effect on Structure, Quality, Consumer Acceptance, and Changes in Bioactivity during Thermal Treatment. Foods, 11(16), 2456. https://doi.org/10.3390/foods11162456