Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review
Abstract
:1. Introduction
2. Impact of Abiotic Stresses on MAPs
2.1. Water Stress
2.2. Salt Stress
2.3. Low and High Temperatures
2.4. Light
2.5. Pollution
3. Arbuscular Mycorrhizal Fungi Help MAPs to Cope with Abiotic Stress
3.1. AMF Improves MAPs Growth and EOs Yield
Stress Type | Plant Species | AMF Species | Growth | EO Yield | Reference |
---|---|---|---|---|---|
Water stress | Ephedra foliata | Claroideoglomus etunicatum, Funneliformis mosseae, Rhizophagus irregularis | + | n.d. | [33] |
Erythrina variegata | Funneliformis mosseae | + | n.d. | [166] | |
Foeniculum vulgare | Funneliformis mosseae, Rhizophagus irregularis | + | n.d. | [180] | |
Glycyrrhiza uralensis | Rhizophagus irregularis | + | n.d. | [40] | |
Lavandula spica | Funneliformis mosseae, Rhizophagus intraradices | + | n.d. | [32] | |
Matricaria chamomilla | Funneliformis mosseae | + | n.d. | [38] | |
Ocimum gratissimum | Rhizophagus irregularis | + | + | [44] | |
Pelargonium graveolens | Funneliformis mosseae, Rhizophagus irregularis | + | + | [37,173] | |
Ricinus communis | Funneliformis mosseae, Rhizophagus intraradices | + | n.d. | [181] | |
Tagetes erecta | Glomus constrictum | + | n.d. | [182] | |
Salinity | Acacia nilotica | Glomus fasciculatum | + | n.d. | [183] |
Chrysanthemum morifolium | Diversispora versiformis Funneliformis mosseae | + | n.d. | [184] | |
Ephedra aphylla | Claroideoglomus etunicatum, Funneliformis mosseae, Rhizophagus irregularis | + | n.d. | [185] | |
Ricinus communis | Funneliformis mosseae, Rhizophagus intraradices | + | n.d. | [181] | |
Sesbania sesban | Claroideoglomus etunicatum, Funneliformis mosseae, Rhizophagus irregularis | + | n.d. | [43] | |
Valeriana officinalis | Funneliformis mosseae, Rhizophagus irregularis | + | n.d. | [41] | |
High temperature | Cyclamen persicum | Glomus fasciculatum | + | n.d. | [186] |
Trace elements | Ocimum basilicum | Rhizophagus intraradices | + | + | [174] |
Trigonella foenum-graecum | Acaulospora laevis, Gigaspora nigra Glomus monosporum, Glomus clarum | + | + | [187] |
3.2. AMF Improves Mineral Nutrient Uptake
3.3. AMF Improves Plant Water Status
3.4. AMF Modifies Endogenous Hormones
3.5. AMF Mediates Osmotic Adjustments
3.6. AMF Stimulates Plants’ Antioxidant Defense Systems
4. Synergistic Effects of AMF and Other Amendments on MAPs
4.1. Microbial Amendments
4.2. Organic Amendments
4.3. Mineral Amendments
4.4. Biostimulants
5. Conclusions and Future Perspectives
- Most of the previously cited studies were conducted in the laboratory or under greenhouse conditions (i.e., pot experiments). However, further field experiments are required as many factors, including climate and microbial rhizosphere biodiversity, may influence the results compared with those obtained in controlled conditions.
- In studies where different strains were tested, the extent of AMF response on plant growth and root colonization varied with AMF species and also with the type and level of stress. Therefore, choosing the appropriate host plant and AMF species is important for using plant–AMF symbionts successfully. In future research, it will be important to screen indigenous and stress-tolerant AMF isolates to improve the effectiveness of arbuscular mycorrhizal symbiosis.
- More research should focus on the use of AMF in combination with PGPR or with organic or inorganic amendments to obtain more advantages in enhancing MAP growth and productivity. In addition, there is a considerable lack of data underlying the molecular mechanisms involved in the synergistic effects observed, and more generally in the modification of secondary metabolite pathway biosynthesis.
- Finally, various advanced techniques (proteomics, genomics, and metabolomics) could provide new insight into the mechanisms exerted by arbuscular mycorrhizal symbiosis, which confer stronger productivity and enhanced resistance to MAPs under abiotic stresses.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassan, B. Medicinal Plants (Importance and Uses). Pharm. Anal. Acta 2012, 3, 2153–2435. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Lounès – Hadj Sahraoui, A. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020, 9, 365. [Google Scholar] [CrossRef]
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The Role and Place of Medicinal Plants in the Strategies for Disease Prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. [Google Scholar] [CrossRef]
- Samarth, R.M.; Samarth, M.; Matsumoto, Y. Medicinally Important Aromatic Plants with Radioprotective Activity. Future Sci. OA 2017, 3, FSO247. [Google Scholar] [CrossRef] [PubMed]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The Effect of Developmental and Environmental Factors on Secondary Metabolites in Medicinal Plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Mugao, L.G.; Gichimu, B.M.; Muturi, P.W.; Mukono, S.T. Characterization of the Volatile Components of Essential Oils of Selected Plants in Kenya. Biochem. Res. Int. 2020, 2020, e8861798. [Google Scholar] [CrossRef]
- Sujatha, S.; Bhat, R.; Kannan, C.; Balasimha, D. Impact of Intercropping of Medicinal and Aromatic Plants with Organic Farming Approach on Resource Use Efficiency in Arecanut (Areca catechu L.) Plantation in India. Ind. Crops Prod. 2011, 33, 78–83. [Google Scholar] [CrossRef]
- Ekor, M. The Growing Use of Herbal Medicines: Issues Relating to Adverse Reactions and Challenges in Monitoring Safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karunamoorthi, K.; Jegajeevanram, K.; Vijayalakshmi, J.; Mengistie, E. Traditional Medicinal Plants: A Source of Phytotherapeutic Modality in Resource-Constrained Health Care Settings. J. Evid. Based Complement. Altern. Med. 2013, 18, 67–74. [Google Scholar] [CrossRef]
- Hamilton, A.C. Medicinal Plants, Conservation and Livelihoods. Biodivers. Conserv. 2004, 13, 1477–1517. [Google Scholar] [CrossRef]
- He, J.; Yang, B.; Dong, M.; Wang, Y. Crossing the Roof of the World: Trade in Medicinal Plants from Nepal to China. J. Ethnopharmacol. 2018, 224, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Lange, D. International Trade in Medicinal and Aromatic Plants: Actors, Volumes and Commodities. Frontis 2006, 17, 155–170. [Google Scholar]
- Crockett, J.L.; Westerling, A.L. Greater Temperature and Precipitation Extremes Intensify Western U.S. Droughts, Wildfire Severity, and Sierra Nevada Tree Mortality. J. Clim. 2018, 31, 341–354. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef]
- Mahajan, M.; Kuiry, R.; Pal, P. Understanding the Consequence of Environmental Stress for Accumulation of Secondary Metabolites in Medicinal and Aromatic Plants. J. Appl. Res. Med. Aromat. Plants 2020, 18, 100255. [Google Scholar] [CrossRef]
- Das, M.; Jain, V.; Malhotra, S. Impact of Climate Change on Medicinal and Aromatic Plants: Review. Indian J. Agric. Sci. 2016, 86, 1375–1382. [Google Scholar]
- Chrysargyris, A.; Laoutari, S.; Litskas, V.D.; Stavrinides, M.C.; Tzortzakis, N. Effects of Water Stress on Lavender and Sage Biomass Production, Essential Oil Composition and Biocidal Properties against Tetranychus Urticae (Koch). Sci. Hortic. 2016, 213, 96–103. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Daferera, D.; Polissiou, M.G.; Passam, H.C. The Effect of Water Deficit Stress on the Growth, Yield and Composition of Essential Oils of Parsley. Sci. Hortic. 2008, 115, 393–397. [Google Scholar] [CrossRef]
- Zehtab-Salmasi, S.; Javanshir, A.; Omidbaigi, R.; Alyari, H.; Ghassemi-Golezani, K. Effects of Water Supply and Sowing Date on Performance and Essential Oil Production of Anise (Pimpinella anisum L.). Acta Agron. Hung. 2001, 49, 75–81. [Google Scholar] [CrossRef]
- Bettaieb Rebey, I.; Jabri-Karoui, I.; Hamrouni-Sellami, I.; Bourgou, S.; Limam, F.; Marzouk, B. Effect of Drought on the Biochemical Composition and Antioxidant Activities of Cumin (Cuminum cyminum L.) Seeds. Ind. Crops Prod. 2012, 36, 238–245. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef]
- Benaffari, W.; Boutasknit, A.; Anli, M.; Ait-El-Mokhtar, M.; Ait-Rahou, Y.; Ben-Laouane, R.; Ben Ahmed, H.; Mitsui, T.; Baslam, M.; Meddich, A. The Native Arbuscular Mycorrhizal Fungi and Vermicompost-Based Organic Amendments Enhance Soil Fertility, Growth Performance, and the Drought Stress Tolerance of Quinoa. Plants 2022, 11, 393. [Google Scholar] [CrossRef]
- Diagne, N.; Ngom, M.; Djighaly, P.I.; Fall, D.; Hocher, V.; Svistoonoff, S. Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity 2020, 12, 370. [Google Scholar] [CrossRef]
- Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity Stress Alleviation Using Arbuscular Mycorrhizal Fungi. A Review. Agron. Sustain. Dev. 2012, 32, 181–200. [Google Scholar] [CrossRef]
- Shah, A.; Nazari, M.; Antar, M.; Msimbira, L.A.; Naamala, J.; Lyu, D.; Rabileh, M.; Zajonc, J.; Smith, D.L. PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. Front. Sustain. Food Syst. 2021, 5, 667546. [Google Scholar] [CrossRef]
- Sun, R.-T.; Zhang, Z.-Z.; Zhou, N.; Srivastava, A.K.; Kuča, K.; Abd-Allah, E.F.; Hashem, A.; Wu, Q.-S. A Review of the Interaction of Medicinal Plants and Arbuscular Mycorrhizal Fungi in the Rhizosphere. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12454. [Google Scholar] [CrossRef]
- Brown, M.E. Seed and Root Bacterization. Annu. Rev. Phytopathol. 1974, 12, 181–197. [Google Scholar] [CrossRef]
- Saia, S.; Amato, G.; Frenda, A.S.; Giambalvo, D.; Ruisi, P. Influence of Arbuscular Mycorrhizae on Biomass Production and Nitrogen Fixation of Berseem Clover Plants Subjected to Water Stress. PLoS ONE 2014, 9, e90738. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: Amsterdam, The Netherland; Boston, MA, USA, 2008; ISBN 978-0-12-370526-6. [Google Scholar]
- Marulanda, A.; Porcel, R.; Barea, J.M.; Azcón, R. Drought Tolerance and Antioxidant Activities in Lavender Plants Colonized by Native Drought-Tolerant or Drought-Sensitive Glomus Species. Microb. Ecol. 2007, 54, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Al-Arjani, A.-B.F.; Hashem, A.; Abd_Allah, E.F. Arbuscular Mycorrhizal Fungi Modulates Dynamics Tolerance Expression to Mitigate Drought Stress in Ephedra Foliata Boiss. Saudi J. Biol. Sci. 2020, 27, 380–394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Shi, Z.; Zhang, S.; Gao, J. A Database on Mycorrhizal Traits of Chinese Medicinal Plants. Front. Plant Sci. 2022, 13, 840343. [Google Scholar] [CrossRef] [PubMed]
- Latef, A.A.H.A.; Hashem, A.; Rasool, S.; Abd_Allah, E.F.; Alqarawi, A.A.; Egamberdieva, D.; Jan, S.; Anjum, N.A.; Ahmad, P. Arbuscular Mycorrhizal Symbiosis and Abiotic Stress in Plants: A Review. J. Plant Biol. 2016, 59, 407–426. [Google Scholar] [CrossRef]
- Parniske, M. Arbuscular Mycorrhiza: The Mother of Plant Root Endosymbioses. Nat. Rev. Microbiol. 2008, 6, 763–775. [Google Scholar] [CrossRef]
- Amiri, R.; Nikbakht, A.; Etemadi, N. Alleviation of Drought Stress on Rose Geranium [Pelargonium graveolens (L.) Herit.] in Terms of Antioxidant Activity and Secondary Metabolites by Mycorrhizal Inoculation. Sci. Hortic. 2015, 197, 373–380. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Salehi, A.; Movahedi Dehnavi, M.; Mirshekari, A.; Hamidian, M.; Hazrati, S. Biochemical Response and Nutrient Uptake of Two Arbuscular Mycorrhiza-Inoculated Chamomile Varieties under Different Osmotic Stresses. Bot. Stud. 2021, 62, 22. [Google Scholar] [CrossRef]
- Pedranzani, H.; Rodríguez-Rivera, M.; Gutiérrez, M.; Porcel, R.; Hause, B.; Ruiz-Lozano, J.M. Arbuscular Mycorrhizal Symbiosis Regulates Physiology and Performance of Digitaria eriantha Plants Subjected to Abiotic Stresses by Modulating Antioxidant and Jasmonate Levels. Mycorrhiza 2016, 26, 141–152. [Google Scholar] [CrossRef]
- Xie, W.; Hao, Z.; Zhou, X.; Jiang, X.; Xu, L.; Wu, S.; Zhao, A.; Zhang, X.; Chen, B. Arbuscular Mycorrhiza Facilitates the Accumulation of Glycyrrhizin and Liquiritin in Glycyrrhiza uralensis under Drought Stress. Mycorrhiza 2018, 28, 285–300. [Google Scholar] [CrossRef]
- Amanifar, S.; Toghranegar, Z. The Efficiency of Arbuscular Mycorrhiza for Improving Tolerance of Valeriana officinalis L. and Enhancing Valerenic Acid Accumulation under Salinity Stress. Ind. Crops Prod. 2020, 147, 112234. [Google Scholar] [CrossRef]
- Bitterlich, M.; Rouphael, Y.; Graefe, J.; Franken, P. Arbuscular Mycorrhizas: A Promising Component of Plant Production Systems Provided Favorable Conditions for Their Growth. Front. Plant Sci. 2018, 9, 1329. [Google Scholar] [CrossRef] [PubMed]
- Abd_Allah, E.F.; Hashem, A.; Alqarawi, A.A.; Bahkali, A.H.; Alwhibi, M.S. Enhancing Growth Performance and Systemic Acquired Resistance of Medicinal Plant Sesbania sesban (L.) Merr Using Arbuscular Mycorrhizal Fungi under Salt Stress. Saudi J. Biol. Sci. 2015, 22, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Hazzoumi, Z.; Moustakime, Y.; Hassan Elharchli, E.; Joutei, K.A. Effect of Arbuscular Mycorrhizal Fungi (AMF) and Water Stress on Growth, Phenolic Compounds, Glandular Hairs, and Yield of Essential Oil in Basil (Ocimum gratissimum L). Chem. Biol. Technol. Agric. 2015, 2, 10. [Google Scholar] [CrossRef]
- Cheng, S.; Zou, Y.-N.; Kuča, K.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.-S. Elucidating the Mechanisms Underlying Enhanced Drought Tolerance in Plants Mediated by Arbuscular Mycorrhizal Fungi. Front. Microbiol. 2021, 12, 809473. [Google Scholar] [CrossRef]
- Abbott, L.K.; Macdonald, L.M.; Wong, M.T.F.; Webb, M.J.; Jenkins, S.N.; Farrell, M. Potential Roles of Biological Amendments for Profitable Grain Production—A Review. Agric. Ecosyst. Environ. 2018, 256, 34–50. [Google Scholar] [CrossRef]
- Bamdad, H.; Papari, S.; Lazarovits, G.; Berruti, F. Soil Amendments for Sustainable Agriculture: Microbial-organic Fertilizers. Soil Use Manag. 2021, 38, 94–120. [Google Scholar] [CrossRef]
- Ullah, N.; Ditta, A.; Imtiaz, M.; Li, X.; Jan, A.U.; Mehmood, S.; Rizwan, M.S.; Rizwan, M. Appraisal for Organic Amendments and Plant Growth-promoting Rhizobacteria to Enhance Crop Productivity under Drought Stress: A Review. J. Agron. Crop Sci. 2021, 207, 783–802. [Google Scholar] [CrossRef]
- Banchio, E.; Xie, X.; Zhang, H.; Paré, P.W. Soil Bacteria Elevate Essential Oil Accumulation and Emissions in Sweet Basil. J. Agric. Food Chem. 2009, 57, 653–657. [Google Scholar] [CrossRef]
- Dehghani Bidgoli, R.; Azarnezhad, N.; Akhbari, M.; Ghorbani, M. Salinity Stress and PGPR Effects on Essential Oil Changes in Rosmarinus officinalis L. Agric. Food Secur. 2019, 8, 2. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Hatami, M.; Kariman, K.; Khavazi, K. Enhanced Efficiency of Medicinal and Aromatic Plants by PGPRs. In Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants; Egamberdieva, D., Shrivastava, S., Varma, A., Eds.; Soil Biology; Springer International Publishing: Cham, Switzerland, 2015; Volume 42, pp. 43–70. ISBN 978-3-319-13400-0. [Google Scholar]
- Putwattana, N.; Kruatrachue, M.; Pokethitiyook, P.; Chaiyarat, R. Immobilization of Cadmium in Soil by Cow Manure and Silicate Fertilizer, and Reduced Accumulation of Cadmium in Sweet Basil (Ocimum basilicum). ScienceAsia 2010, 36, 349–354. [Google Scholar] [CrossRef]
- Nogués, S.; Baker, N.R. Effects of Drought on Photosynthesis in Mediterranean Plants Grown under Enhanced UV-B Radiation. J. Exp. Bot. 2000, 51, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Moeini Alishah, H.; Heidari, R.; Hassani, A.; Dizaji Asadi, A. Effect of Water Stress on Some Morphological and Biochemical Characteristics of Purple Basil ( Ocimum basilicum ). J. Biol. Sci. 2006, 6, 763–767. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.; Tardieu, F. Modelling Water Relations of Horticultural Crops: A Review. Sci. Hortic. 1998, 74, 21–46. [Google Scholar] [CrossRef]
- Laribi, B.; Bettaieb, I.; Kouki, K.; Sahli, A.; Mougou, A.; Marzouk, B. Water Deficit Effects on Caraway (Carum carvi L.) Growth, Essential Oil and Fatty Acid Composition. Ind. Crops Prod. 2009, 30, 372–379. [Google Scholar] [CrossRef]
- Thakur, P.; Thakur, A. Effect of Water Stress on Growth, Physiological and Biochemical Characteristics of Coriander. Indian J. Ecol. 2017, 44, 731–735. [Google Scholar]
- Khorasaninejad, S.; Mousavi, A.; Soltanloo, H.; Hemmati, K.; Khalighi, A. The Effect of Drought Stress on Growth Parameters, Essential Oil Yield and Constituent of Peppermint (Mentha piperita L.). J. Med. Plants Res. 2011, 5, 5360–5365. [Google Scholar] [CrossRef]
- Khalid, K. Influence of Water Stress on Growth, Essential Oil, and Chemical Composition of Herbs (Ocimum Sp.). Int. Agrophysics 2006, 20, 289–296. [Google Scholar]
- Hassan, F.A.S.; Bazaid, S.; Ali, E.F. Effect of Deficit Irrigation on Growth, Yield and Volatile Oil Contenton Rosmarinus officinalis L. Plant. J. Med. Plants Study 2013, 1, 12–21. [Google Scholar]
- García-Caparrós, P.; Romero, M.J.; Llanderal, A.; Cermeño, P.; Lao, M.T.; Segura, M.L. Effects of Drought Stress on Biomass, Essential Oil Content, Nutritional Parameters, and Costs of Production in Six Lamiaceae Species. Water 2019, 11, 573. [Google Scholar] [CrossRef]
- Bettaieb, I.; Zakhama, N.; Wannes, W.A.; Kchouk, M.E.; Marzouk, B. Water Deficit Effects on Salvia officinalis Fatty Acids and Essential Oils Composition. Sci. Hortic. 2009, 120, 271–275. [Google Scholar] [CrossRef]
- Baher, Z.F.; Mirza, M.; Ghorbanli, M.; Bagher Rezaii, M. The Influence of Water Stress on Plant Height, Herbal and Essential Oil Yield and Composition in Satureja hortensis L. Flavour Fragr. J. 2002, 17, 275–277. [Google Scholar] [CrossRef]
- Kim, K.S.; Park, S.H.; Jenks, M.A. Changes in Leaf Cuticular Waxes of Sesame (Sesamum indicum L.) Plants Exposed to Water Deficit. J. Plant Physiol. 2007, 164, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Dunford, N.T.; Vazquez, R.S. Effect of Water Stress on Plant Growth and Thymol and Carvacrol Concentrations in Mexican oregano Grown under Controlled Conditions. J. Appl. Hortic. 2005, 7, 20–22. [Google Scholar] [CrossRef]
- Simon, J.E.; Reiss-Bubenheim, D.; Joly, R.J.; Charles, D.J. Water Stress-Induced Alterations in Essential Oil Content and Composition of Sweet Basil. J. Essent. Oil Res. 1992, 4, 71–75. [Google Scholar] [CrossRef]
- Simon, J.E.; Quinn, J. Characterization of Essential Oil of Parsley. J. Agric. Food Chem. 1988, 36, 467–472. [Google Scholar] [CrossRef]
- Hendawy, S.; Khalid, K. Response of Sage (Salvia officinalis L.) Plants to Zinc Application Under Different Salinity Levels. J. Appl. Sci. Res. 2005, 1, 147–155. [Google Scholar]
- Nacif de Abreu, I.; Mazzafera, P. Effect of Water and Temperature Stress on the Content of Active Constituents of Hypericum Brasiliense Choisy. Plant Physiol. Biochem. 2005, 43, 241–248. [Google Scholar] [CrossRef]
- Wang, W.; Vinocur, B.; Altman, A. Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef]
- Lemoine, R.; Camera, S.L.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.-L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L.; et al. Source-to-Sink Transport of Sugar and Regulation by Environmental Factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef]
- Ashraf, M.; Akhtar, N. Influence of Salt Stress on Growth, Ion Accumulation and Seed Oil Content in Sweet Fennel. Biol. Plant. 2004, 48, 461–464. [Google Scholar] [CrossRef]
- Ashraf, M.; Orooj, A. Salt Stress Effects on Growth, Ion Accumulation and Seed Oil Concentration in an Arid Zone Traditional Medicinal Plant Ajwain (Trachyspermum ammi [L.] Sprague). J. Arid Environ. 2006, 2, 209–220. [Google Scholar] [CrossRef]
- Neffati, M.; Marzouk, B. Changes in Essential Oil and Fatty Acid Composition in Coriander (Coriandrum sativum L.) Leaves under Saline Conditions. Ind. Crops Prod. 2008, 28, 137–142. [Google Scholar] [CrossRef]
- Neffati, M.; Sriti, J.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Salinity Impact on Fruit Yield, Essential Oil Composition and Antioxidant Activities of Coriandrum sativum Fruit Extracts. Food Chem. 2011, 124, 221–225. [Google Scholar] [CrossRef]
- Neffati, M.; Marzouk, B. Roots Volatiles and Fatty Acids of Coriander (Coriandrum sativum L.) Grown in Saline Medium. Acta Physiol. Plant. 2009, 31, 455–461. [Google Scholar] [CrossRef]
- Razmjoo, K.; Heydarizadeh, P.; Sabzalian, M. Effect of Salinity and Drought Stresses on Growth Parameters and Essential Oil Content of Matricaria chamomila. Int. J. Agri. Biol. 2008, 10, 1560–8530. [Google Scholar]
- Khalid, K.A.; Teixeira da Silva, J.A. Yield, Essential Oil and Pigment Content of Calendula officinalis L. Flower Heads Cultivated under Salt Stress Conditions. Sci. Hortic. 2010, 126, 297–305. [Google Scholar] [CrossRef]
- Ozturk, A.; Ünlükara, A.; Ipek, A.; Gürbüz, B. Effects of Salt Stress and Water Deficit on Plant Growth and Essential Oil Content of Lemon Balm (Melissa officinalis L.). Pak. J. Bot. 2004, 36, 787–792. [Google Scholar]
- Aziz, E.E.; Al-Amier, H.; Craker, L.E. Influence of Salt Stress on Growth and Essential Oil Production in Peppermint, Pennyroyal, and Apple Mint. J. Herbs Spices Med. Plants 2008, 14, 77–87. [Google Scholar] [CrossRef]
- Tabatabaei, S.J.; Nazari deljou, M. Javad Influence of Nutrient Concentrations and NaCl Salinity on the Growth, Photosynthesis and Essential Oil Content of Peppermint and Lemon Verbena. Turk. J. Agric. For. 2007, 31, 245–253. [Google Scholar]
- Baatour, O.; Kaddour, R.; Aidi Wannes, W.; Lachaâl, M.; Marzouk, B. Salt Effects on the Growth, Mineral Nutrition, Essential Oil Yield and Composition of Marjoram (Origanum majorana). Acta Physiol. Plant. 2009, 32, 45. [Google Scholar] [CrossRef]
- Ben Taarit, M.; Msaada, K.; Hosni, K.; Marzouk, B. Changes in Fatty Acid and Essential Oil Composition of Sage (Salvia officinalis L.) Leaves under NaCl Stress. Food Chem. 2010, 119, 951–956. [Google Scholar] [CrossRef]
- Ben Taarit, M.; Msaada, K.; Hosni, K.; Hammami, M.; Kchouk, M.E.; Marzouk, B. Plant Growth, Essential Oil Yield and Composition of Sage (Salvia officinalis L.) Fruits Cultivated under Salt Stress Conditions. Ind. Crops Prod. 2009, 30, 333–337. [Google Scholar] [CrossRef]
- Najafi, F.; Khavari-Nejad, R.; Ali, M. The Effects of Salt Stress on Certain Physiological Parameters in Summer Savory (Satureja hortensis L.) Plants. J. Stress Physiol. Biochem. 2010, 6, 13–21. [Google Scholar]
- Emami Bistgani, Z.; Ataollah Siadat, S.; Bakhshandeh, A.; Ghasemi Pirbalouti, A.; Hashemi, M.; Maggi, F.; Reza Morshedloo, M. Application of Combined Fertilizers Improves Biomass, Essential Oil Yield, Aroma Profile, and Antioxidant Properties of Thymus daenensis Celak. Ind. Crops Prod. 2018, 121, 434–440. [Google Scholar] [CrossRef]
- Belaqziz, R.; Abderrahmane, R.; Abbad, A. Salt Stress Effects on Germination, Growth and Essential Oil Content of an Endemic Thyme Species in Morocco (Thymus maroccanus Ball.). J. Appl. Sci. Res. 2009, 5, 858–863. [Google Scholar]
- Ezz, A.; Aziz, E.; Hendawy, S.; Omer, E. Response of Thymus vulgaris L. to Salt Stress and Alar (B ) in Newly Reclaimed Soil. J. Appl. Sci. Res. 2009, 5, 2165–2170. [Google Scholar]
- Khadhri, A.; Neffati, M.; Smiti, S.; Nogueira, J.M.F.; Araujo, M.E.M. Influence of Salt Stress on Essential Oil Yield and Composition of Lemon Grass (Cymbopogon schoenanthus L. Spreng. Ssp. Laniger (Hook) Maire et Weil). Nat. Prod. Res. 2011, 25, 108–117. [Google Scholar] [CrossRef]
- Elhindi, K.M.; Al-Suhaibani, N.A.; El-Din, A.F.S.; Yakout, S.M.; Al-Amri, S.M. Effect of Foliar-Applied Iron and Zinc on Growth Rate and Essential Oil in Sweet Basil (Ocimum basilicum L.) under Saline Conditions. Prog. Nutr. 2016, 18, 288–298. [Google Scholar]
- Kordali, S.; Cakir, A.; Mavi, A.; Kilic, H.; Yildirim, A. Screening of Chemical Composition and Antifungal and Antioxidant Activities of the Essential Oils from Three Turkish Artemisia Species. J. Agric. Food Chem. 2005, 53, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Allakhverdiev, S.I.; Kreslavski, V.D.; Klimov, V.V.; Los, D.A.; Carpentier, R.; Mohanty, P. Heat Stress: An Overview of Molecular Responses in Photosynthesis. Photosynth. Res. 2008, 98, 541. [Google Scholar] [CrossRef]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat Tolerance in Plants: An Overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Bita, C.; Gerats, T. Plant Tolerance to High Temperature in a Changing Environment: Scientific Fundamentals and Production of Heat Stress-Tolerant Crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [PubMed]
- Al-Huqail, A.; El-Dakak, R.M.; Sanad, M.N.; Badr, R.H.; Ibrahim, M.M.; Soliman, D.; Khan, F. Effects of Climate Temperature and Water Stress on Plant Growth and Accumulation of Antioxidant Compounds in Sweet Basil (Ocimum basilicum L.) Leafy Vegetable. Scientifica 2020, 2020, 3808909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nourimand, M.; Mohsenzadeh, S.; Teixeira da Silva, J. Physiological Responses of Fennel Seedling to Four Environmental Stresses. Iran. J. Sci. Technol. Trans. Sci. 2012, 36, 37–46. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Moaveni, P.; Dashtbozorg, A.T.; Farahani, H. Effects of Temperature and Varieties on Essential Oil Content and Quantity Features of Chamomile. J. Agric. Ext. Rural. Dev. 2011, 3, 19–22. [Google Scholar]
- Nguyen, C.T.T.; Nguyen, N.H.; Choi, W.S.; Lee, J.H.; Cheong, J.-J. Biosynthesis of Essential Oil Compounds in Ocimum tenuiflorum Is Induced by Abiotic Stresses. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2020, 156, 353–357. [Google Scholar] [CrossRef]
- Jochum, G.M.; Mudge, K.W.; Thomas, R.B. Elevated Temperatures Increase Leaf Senescence and Root Secondary Metabolite Concentrations in the Understory Herb Panax quinquefolius (Araliaceae). Am. J. Bot. 2007, 94, 819–826. [Google Scholar] [CrossRef]
- Lawlor, D.W.; Cornic, G. Photosynthetic Carbon Assimilation and Associated Metabolism in Relation to Water Deficits in Higher Plants. Plant Cell Environ. 2002, 25, 275–294. [Google Scholar] [CrossRef]
- Tardieu, F.; Granier, C.; Muller, B. Water Deficit and Growth. Co-Ordinating Processes without an Orchestrator? Curr. Opin. Plant Biol. 2011, 14, 283–289. [Google Scholar] [CrossRef]
- Bagheri, R.; Dehdari, M.; Salehi, A. Effect of Cold Stress at Flowering Stage on Some Important Characters of Five German Chamomile (Matricaria chamomilla L.) Genotypes in a Pot Experiment. J. Appl. Res. Med. Aromat. Plants 2020, 16, 100228. [Google Scholar] [CrossRef]
- Rastogi, S.; Shah, S.; Kumar, R.; Vashisth, D.; Akhtar, M.Q.; Kumar, A.; Dwivedi, U.N.; Shasany, A.K. Ocimum Metabolomics in Response to Abiotic Stresses: Cold, Flood, Drought and Salinity. PLoS ONE 2019, 14, e0210903. [Google Scholar] [CrossRef] [PubMed]
- Franklin, K.A.; Larner, V.S.; Whitelam, G.C. The Signal Transducing Photoreceptors of Plants. Int. J. Dev. Biol. 2004, 49, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, A.; Zięba, P.; Gabryś, H. Sugar and Light Effects on the Condition of the Photosynthetic Apparatus of Arabidopsis thaliana Cultured in Vitro. J. Plant Growth Regul. 2012, 31, 90–101. [Google Scholar] [CrossRef]
- Chen, M.; Chory, J.; Fankhauser, C. Light Signal Transduction in Higher Plants. Annu. Rev. Genet. 2004, 38, 87–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casal, J.J.; Yanovsky, M.J. Regulation of Gene Expression by Light. Int. J. Dev. Biol. 2005, 49, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Bayat, L.; Arab, M.; Aliniaeifard, S.; Seif, M.; Lastochkina, O.; Li, T. Effects of Growth under Different Light Spectra on the Subsequent High Light Tolerance in Rose Plants. AoB Plants 2018, 10, ply052. [Google Scholar] [CrossRef]
- Sabzalian, M.R.; Heydarizadeh, P.; Zahedi, M.; Boroomand, A.; Agharokh, M.; Sahba, M.R.; Schoefs, B. High Performance of Vegetables, Flowers, and Medicinal Plants in a Red-Blue LED Incubator for Indoor Plant Production. Agron. Sustain. Dev. 2014, 34, 879–886. [Google Scholar] [CrossRef]
- Ahmadi, T.; Shabani, L.; Sabzalian, M.R. LED Light Sources Improved the Essential Oil Components and Antioxidant Activity of Two Genotypes of Lemon Balm (Melissa officinalis L.). Bot. Stud. 2021, 62, 9. [Google Scholar] [CrossRef]
- Naznin, M.T.; Lefsrud, M.; Gravel, V.; Hao, X. Different Ratios of Red and Blue LED Light Effects on Coriander Productivity and Antioxidant Properties. Acta Hortic. 2016. [Google Scholar] [CrossRef]
- Amaki, W.; Yamazaki, N.; Ichimura, M.; Watanabe, H. Effects of Light Quality on the Growth and Essential Oil Content in Sweet Basil. Acta Hortic. 2011, 907, 91–94. [Google Scholar] [CrossRef]
- Maffei, M.; Scannerini, S. Photomorphogenic and Chemical Responses to Blue Light in Mentha Piperita. J. Essent. Oil Res. 1999, 11, 730–738. [Google Scholar] [CrossRef]
- Schoefs, B. Chlorophyll and Carotenoid Analysis in Food Products. Properties of the Pigments and Methods of Analysis. Trends Food Sci. Technol. 2002, 13, 361–371. [Google Scholar] [CrossRef]
- Darko, E.; Heydarizadeh, P.; Schoefs, B.; Sabzalian, M.R. Photosynthesis under Artificial Light: The Shift in Primary and Secondary Metabolism. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014, 369, 20130243. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.; Zeiger, E. Metabolic Energy for Stomatal Opening. Roles of Photophosphorylation and Oxidative Phosphorylation. Planta 1984, 161, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Goins, G.D.; Yorio, N.C.; Sanwo-Lewandowski, M.M.; Brown, C.S. Life Cycle Experiments with Arabidopsis Grown under Red Light-Emitting Diodes (LEDS). Life Support Biosph. Sci. 1998, 5, 143–149. [Google Scholar]
- Fernandes, V.F.; de Almeida, L.B.; Feijó, E.V.R.d.S.; Silva, D.d.C.; de Oliveira, R.A.; Mielke, M.S.; Costa, L.C.d.B. Light Intensity on Growth, Leaf Micromorphology and Essential Oil Production of Ocimum gratissimum. Rev. Bras. Farmacogn. 2013, 23, 419–424. [Google Scholar] [CrossRef]
- Dou, H.; Niu, G.; Gu, M.; Masabni, J.G. Effects of Light Quality on Growth and Phytonutrient Accumulation of Herbs under Controlled Environments. Horticulturae 2017, 3, 36. [Google Scholar] [CrossRef]
- Sakalauskaitė, J.; Viskelis, P.; Duchovskis, P.; Dambrauskienė, E.; Sakalauskienė, S.; Samuoliene, G.; Brazaitytė, A. Supplementary UV-B Irradiation Effects on Basil (Ocimum basilicum L.) Growth and Phytochemical Properties. J. Food Agric. Environ. 2012, 10, 342–346. [Google Scholar]
- Johnson, C.B.; Kirby, J.; Naxakis, G.; Pearson, S. Substantial UV-B-Mediated Induction of Essential Oils in Sweet Basil (Ocimum basilicum L.). Phytochemistry 1999, 51, 507–510. [Google Scholar] [CrossRef]
- Hikosaka, S.; Ito, K.; Goto, E. Effects of Ultraviolet Light on Growth, Essential Oil Concentration, and Total Antioxidant Capacity of Japanese Mint. Environ. Control Biol. 2010, 48, 185–190. [Google Scholar] [CrossRef]
- Karousou, R.; Grammatikopoulos, G.; Lanaras, T.; Manetas, Y.; Kokkini, S. Effects of Enhanced UV-B Radiation on Mentha Spicata Essential Oils. Phytochemistry 1998, 49, 2273–2277. [Google Scholar] [CrossRef]
- Maffei, M.; Scannerini, S. UV-B Effect on Photomorphogenesis and Essential Oil Composition in Peppermint (Mentha piperita L.). J. Essent. Oil Res. 2000, 12, 523–529. [Google Scholar] [CrossRef]
- Pandey, J.; Verma, R.K.; Singh, S. Suitability of Aromatic Plants for Phytoremediation of Heavy Metal Contaminated Areas: A Review. Int. J. Phytoremediat. 2019, 21, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Sarma, H.; Deka, S.; Deka, H.; Saikia, R.R. Accumulation of Heavy Metals in Selected Medicinal Plants. Rev. Environ. Contam. Toxicol. 2011, 214, 63–86. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, D.; Wang, Q. An Overview of Field-Scale Studies on Remediation of Soil Contaminated with Heavy Metals and Metalloids: Technical Progress over the Last Decade. Water Res. 2018, 147, 440–460. [Google Scholar] [CrossRef]
- Lin, Y.; Xiao, W.; Ye, Y.; Wu, C.; Hu, Y.; Shi, H. Adaptation of Soil Fungi to Heavy Metal Contamination in Paddy Fields—a Case Study in Eastern China. Environ. Sci. Pollut. Res. 2020, 27, 27819–27830. [Google Scholar] [CrossRef]
- Stancheva, I.; Geneva, M.; Hristozkova, M.; Boychinova, M.; Markovska, Y. Essential Oil Variation of Salvia officinalis (L.), Grown on Heavy Metals Polluted Soil. Biotechnol. Biotechnol. Equip. 2009, 23, 373–376. [Google Scholar] [CrossRef]
- Prasad, A.; Singh, A.K.; Chand, S.; Chanotiya, C.S.; Patra, D.D. Effect of Chromium and Lead on Yield, Chemical Composition of Essential Oil, and Accumulation of Heavy Metals of Mint Species. Commun. Soil Sci. Plant Anal. 2010, 41, 2170–2186. [Google Scholar] [CrossRef]
- Chand, S.; Kumari, R.; Patra, D.D. Effect of Nickel and Vermicompost on Growth, Yield, Accumulation of Heavy Metals and Essential Oil Quality of Tagetes minuta. J. Essent. Oil Bear. Plants 2015, 18, 767–774. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Jeliazkova, E.A.; Kovacheva, N.; Dzhurmanski, A. Metal Uptake by Medicinal Plant Species Grown in Soils Contaminated by a Smelter. Environ. Exp. Bot. 2008, 64, 207–216. [Google Scholar] [CrossRef]
- Siddiqui, F.; Krishna, S.; Tandon, P.; Srivastava, S. Arsenic Accumulation in Ocimum Spp. and Its Effect on Growth and Oil Constituents. Acta Physiol. Plant. 2012, 35, 1071–1079. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Craker, L.E.; Xing, B. Effects of Cd, Pb, and Cu on Growth and Essential Oil Contents in Dill, Peppermint, and Basil. Environ. Exp. Bot. 2006, 58, 9–16. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Bert, V.; Perlein, A.; Tisserant, B.; Ferrant, P.; Lounès - Hadj Sahraoui, A. In Situ Cultivation of Aromatic Plant Species for the Phytomanagement of an Aged-Trace Element Polluted Soil: Plant Biomass Improvement Options and Techno-Economic Assessment of the Essential Oil Production Channel. Sci. Total Environ. 2021, 789, 147944. [Google Scholar] [CrossRef]
- Stancheva, I.; Geneva, M.; Boychinova, M.; Mitova, I.; Markovska, Y. Physiological Response of Foliar Fertilized Matricaria recutita L. Grown on Industrially Polluted Soil. J. Plant Nutr. 2014, 37, 1952–1964. [Google Scholar] [CrossRef]
- Sá, R.A.; Sá, R.A.; Alberton, O.; Gazim, Z.C.; Laverde, A., Jr.; Caetano, J.; Amorin, A.C.; Dragunski, D.C. Phytoaccumulation and Effect of Lead on Yield and Chemical Composition of Mentha crispa Essential Oil. Desalination Water Treat. 2015, 53, 3007–3017. [Google Scholar] [CrossRef]
- Ali, B.; Song, W.J.; Hu, W.Z.; Luo, X.N.; Gill, R.A.; Wang, J.; Zhou, W.J. Hydrogen Sulfide Alleviates Lead-Induced Photosynthetic and Ultrastructural Changes in Oilseed Rape. Ecotoxicol. Environ. Saf. 2014, 102, 25–33. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, G.-L. Genotypic Difference in Arsenic and Cadmium Accumulation by Rice Seedlings Grown in Hydroponics. J. Plant Nutr. 2008, 31, 2168–2182. [Google Scholar] [CrossRef]
- Dwivedi, S.; Tripathi, R.D.; Srivastava, S.; Singh, R.; Kumar, A.; Tripathi, P.; Dave, R.; Rai, U.N.; Chakrabarty, D.; Trivedi, P.K.; et al. Arsenic Affects Mineral Nutrients in Grains of Various Indian Rice (Oryza sativa L.) Genotypes Grown on Arsenic-Contaminated Soils of West Bengal. Protoplasma 2010, 245, 113–124. [Google Scholar] [CrossRef]
- Finnegan, P.; Chen, W. Arsenic Toxicity: The Effects on Plant Metabolism. Front. Physiol. 2012, 3, 182. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium Toxicity in Plants: Impacts and Remediation Strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef] [PubMed]
- Llamas, A.; Ullrich, C.I.; Sanz, A. Cd2+ Effects on Transmembrane Electrical Potential Difference, Respiration and Membrane Permeability of Rice (Oryza sativa L) Roots. Plant Soil 2000, 219, 21–28. [Google Scholar] [CrossRef]
- Perfus-Barbeoch, L.; Leonhardt, N.; Vavasseur, A.; Forestier, C. Heavy Metal Toxicity: Cadmium Permeates through Calcium Channels and Disturbs the Plant Water Status. Plant J. 2002, 32, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Zhao, X.; Hua, X.; Liu, J.; Gao, M. Investigation of the Potential Mobility of Pb, Cd and Cr(VI) from Moderately Contaminated Farmland Soil to Groundwater in Northeast, China. J. Hazard. Mater. 2009, 162, 1261–1268. [Google Scholar] [CrossRef]
- Kılıc, S.; Kılıc, M. Effects of Cadmium-Induced Stress on Essential Oil Production, Morphology and Physiology of Lemon Balm (Melissa officinalis L., Lamiaceae). Appl. Ecol. Environ. Res. 2017, 15, 1653–1669. [Google Scholar] [CrossRef]
- Fattahi, B.; Arzani, K.; Souri, M.K.; Barzegar, M. Effects of Cadmium and Lead on Seed Germination, Morphological Traits, and Essential Oil Composition of Sweet Basil (Ocimum basilicum L.). Ind. Crops Prod. 2019, 138, 111584. [Google Scholar] [CrossRef]
- Biswas, S. Effect of Arsenic on Trichome Ultrastructure, Essential Oil Yield and Quality of Ocimum basilicum L. Med. Plant Res. 2015, 5, 6. [Google Scholar] [CrossRef]
- Jezler, C.N.; Mangabeira, P.A.O.; Almeida, A.-A.F.d.; Jesus, R.M.d.; Oliveira, R.A.; de Silva, D.d.C.; Costa, L.C.d.B. Pb and Cd on Growth, Leaf Ultrastructure and Essential Oil Yield Mint (Mentha arvensis L.). Ciênc. Rural 2015, 45, 392–398. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, Z.G.; Li, X.-D. The Use of Vetiver Grass (Vetiveria zizanioides) in the Phytoremediation of Soils Contaminated with Heavy Metals. Appl. Geochem. 2004, 19, 1553–1565. [Google Scholar] [CrossRef]
- Shahid, M.; Arshad, M.; Kaemmerer, M.; Pinelli, E.; Probst, A.; Baque, D.; Pradere, P.; Dumat, C. Long-Term Field Metal Extraction by Pelargonium: Phytoextraction Efficiency in Relation to Plant Maturity. Int. J. Phytoremediat. 2012, 14, 493–505. [Google Scholar] [CrossRef]
- Akoumianaki-Ioannidou, A.; Papadimitriou, K.; Barouchas, P.; Moustakas, N. The Effects of Cd and Zn Interactions on the Concentration of Cd and Zn in Sweet Bush Basil (Ocimum basilicum L.) and Peppermint (Mentha piperita L.). Fresenius Environ. Bull. 2015, 24, 77–83. [Google Scholar]
- Angelova, V.R.; Grekov, D.F.; Kisyov, V.K.; Ivanov, K.I. Potential of Lavender (Lavandula vera L.) for Phytoremediation of Soils Contaminated with Heavy Metals. Int. J. Agric. Biosyst. Eng. 2015, 9, 522–529. [Google Scholar] [CrossRef]
- Angelova, V.R.; Ivanova, R.V.; Todorov, G.M.; Ivanov, K.I. Potential of Salvia Sclarea L. for Phytoremediation of Soils Contaminated with Heavy Metals. Int. J. Agric. Biosyst. Eng. 2016, 10, 780–790. [Google Scholar]
- Divrikli, U.; Horzum, N.; Soylak, M.; Elci, L. Trace Heavy Metal Contents of Some Spices and Herbal Plants from Western Anatolia-Turkey. Int. J. Food Sci. Technol. 2006, 41, 712–716. [Google Scholar] [CrossRef]
- Perlein, A.; Zdanevitch, I.; Gaucher, R.; Robinson, B.; Papin, A.; Lounès-Hadj Sahraoui, A.; Bert, V. Phytomanagement of a Metal(Loid)-Contaminated Agricultural Site Using Aromatic and Medicinal Plants to Produce Essential Oils: Analysis of the Metal(Loid) Fate in the Value Chain. Environ. Sci. Pollut. Res. Int. 2021, 28, 62155–62173. [Google Scholar] [CrossRef]
- Pandey, J.; Chand, S.; Pandey, S.; Rajkumari; Patra, D.D. Palmarosa [Cymbopogon martinii (Roxb.) Wats.] as a Putative Crop for Phytoremediation, in Tannery Sludge Polluted Soil. Ecotoxicol. Environ. Saf. 2015, 122, 296–302. [Google Scholar] [CrossRef]
- Affholder, M.-C.; Prudent, P.; Masotti, V.; Coulomb, B.; Rabier, J.; Nguyen-The, B.; Laffont-Schwob, I. Transfer of Metals and Metalloids from Soil to Shoots in Wild Rosemary (Rosmarinus officinalis L.) Growing on a Former Lead Smelter Site: Human Exposure Risk. Sci. Total Environ. 2013, 454–455, 219–229. [Google Scholar] [CrossRef]
- Madejón, P.; Burgos, P.; Cabrera, F.; Madejón, E. Phytostabilization of Amended Soils Polluted with Trace Elements Using the Mediterranean Shrub: Rosmarinus officinalis. Int. J. Phytoremediat. 2009, 11, 542–557. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef]
- Rizvi, A.; Zaidi, A.; Ameen, F.; Ahmed, B.; AlKahtani, M.D.F.; Khan, M.S. Heavy Metal Induced Stress on Wheat: Phytotoxicity and Microbiological Management. RSC Adv. 2020, 10, 38379–38403. [Google Scholar] [CrossRef]
- Freeman, J.L.; Persans, M.W.; Nieman, K.; Albrecht, C.; Peer, W.; Pickering, I.J.; Salt, D.E. Increased Glutathione Biosynthesis Plays a Role in Nickel Tolerance in Thlaspi Nickel Hyperaccumulators [W]. Plant Cell 2004, 16, 2176–2191. [Google Scholar] [CrossRef] [PubMed]
- Mithöfer, A.; Schulze, B.; Boland, W. Biotic and Heavy Metal Stress Response in Plants: Evidence for Common Signals. FEBS Lett. 2004, 566, 1–5. [Google Scholar] [CrossRef]
- Yadav, S.K. Heavy Metals Toxicity in Plants: An Overview on the Role of Glutathione and Phytochelatins in Heavy Metal Stress Tolerance of Plants. South Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef]
- Manoharan, P.; Vellasamy, S.; Balasubramanian, N.; Gomathinayagam, S.; Sharma, M.; Muthuchelian, K. Influence of AM Fungi on the Growth and Physiological Status of Erythrina variegata Linn. Grown under Different Water Stress Conditions. Eur. J. Soil Biol. 2010, 46, 151–156. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A. Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annu. Rev. Plant Biol. 2011, 62, 227–250. [Google Scholar] [CrossRef]
- Jia, P.; Liu, H.; Gao, T.; Xin, H. Glandular Trichomes and Essential Oil of Thymus quinquecostatus. Sci. World J. 2013, 2013, e387952. [Google Scholar] [CrossRef]
- Rehman, R.; Hanif, M.A.; Mushtaq, Z.; Mochona, B.; Qi, X. Biosynthetic Factories of Essential Oils: The Aromatic Plants. Nat. Prod. Chem. Res. 2016, 4, 1000227. [Google Scholar] [CrossRef]
- Morone-Fortunato, I.; Avato, P. Plant Development and Synthesis of Essential Oils in Micropropagated and Mycorrhiza Inoculated Plants of Origanum vulgare L. Ssp. Hirtum (Link) Ietswaart. Plant Cell Tissue Organ Cult. 2008, 93, 139. [Google Scholar] [CrossRef]
- Copetta, A.; Lingua, G.; Berta, G. Effects of Three AM Fungi on Growth, Distribution of Glandular Hairs, and Essential Oil Production in Ocimum basilicum L. Var. Genovese. Mycorrhiza 2006, 16, 485–494. [Google Scholar] [CrossRef]
- Kapoor, R.; Chaudhary, V.; Bhatnagar, A.K. Effects of Arbuscular Mycorrhiza and Phosphorus Application on Artemisinin Concentration in Artemisia annua L. Mycorrhiza 2007, 17, 581–587. [Google Scholar] [CrossRef]
- Amiri, R.; Nikbakht, A.; Etemadi, N.; Sabzalian, M.R. Nutritional Status, Essential Oil Changes and Water-Use Efficiency of Rose geranium in Response to Arbuscular Mycorrhizal Fungi and Water Deficiency Stress. Symbiosis 2017, 73, 15–25. [Google Scholar] [CrossRef]
- Prasad, A.; Kumar, S.; Khaliq, A.; Pandey, A. Heavy Metals and Arbuscular Mycorrhizal (AM) Fungi Can Alter the Yield and Chemical Composition of Volatile Oil of Sweet Basil (Ocimum basilicum L.). Biol. Fertil. Soils 2011, 47, 853–861. [Google Scholar] [CrossRef]
- Mozafar, A.; Ruh, R.; Klingel, P.; Gamper, H.; Egli, S.; Frossard, E. Effect of Heavy Metal Contaminated Shooting Range Soils on Mycorrhizal Colonization of Roots and Metal Uptake by Leek. Environ. Monit. Assess. 2002, 79, 177–191. [Google Scholar] [CrossRef]
- Dhalaria, R.; Kumar, D.; Kumar, H.; Nepovimova, E.; Kuča, K.; Torequl Islam, M.; Verma, R. Arbuscular Mycorrhizal Fungi as Potential Agents in Ameliorating Heavy Metal Stress in Plants. Agronomy 2020, 10, 815. [Google Scholar] [CrossRef]
- Tavarini, S.; Passera, B.; Martini, A.; Avio, L.; Sbrana, C.; Giovannetti, M.; Angelini, L.G. Plant Growth, Steviol Glycosides and Nutrient Uptake as Affected by Arbuscular Mycorrhizal Fungi and Phosphorous Fertilization in Stevia Rebaudiana Bert. Ind. Crops Prod. 2018, 111, 899–907. [Google Scholar] [CrossRef]
- Lazzara, S.; Militello, M.; Carrubba, A.; Napoli, E.; Saia, S. Arbuscular Mycorrhizal Fungi Altered the Hypericin, Pseudohypericin, and Hyperforin Content in Flowers of Hypericum Perforatum Grown under Contrasting P Availability in a Highly Organic Substrate. Mycorrhiza 2017, 27, 345–354. [Google Scholar] [CrossRef]
- Pozo, M.J.; Van Loon, L.C.; Pieterse, C.M.J. Jasmonates—Signals in Plant-Microbe Interactions. J. Plant Growth Regul. 2004, 23, 211–222. [Google Scholar] [CrossRef]
- Gheisari Zardak, S.; Movahhedi Dehnavi, M.; Salehi, A.; Gholamhoseini, M. Responses of Field Grown Fennel (Foeniculum vulgare Mill.) to Different Mycorrhiza Species under Varying Intensities of Drought Stress. J. Appl. Res. Med. Aromat. Plants 2017, 5, 16–25. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, Y.; Zhang, K.; Tian, C.; Guo, J. Arbuscular Mycorrhizal Fungi Improve Plant Growth of Ricinus communis by Altering Photosynthetic Properties and Increasing Pigments under Drought and Salt Stress. Ind. Crops Prod. 2018, 117, 13–19. [Google Scholar] [CrossRef]
- Asrar, A.-W.A.; Elhindi, K.M. Alleviation of Drought Stress of Marigold (Tagetes erecta) Plants by Using Arbuscular Mycorrhizal Fungi. Saudi J. Biol. Sci. 2011, 18, 93–98. [Google Scholar] [CrossRef]
- Giri, B.; Kapoor, R.; Mukerji, K.G. Improved Tolerance of Acacia Nilotica to Salt Stress by Arbuscular Mycorrhiza, Glomus Fasciculatum May Be Partly Related to Elevated K/Na Ratios in Root and Shoot Tissues. Microb. Ecol. 2007, 54, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Alqarawi, A.A.; Abd Allah, E.F.; Hashem, A. Alleviation of Salt-Induced Adverse Impact via Mycorrhizal Fungi in Ephedra Aphylla Forssk. J. Plant Interact. 2014, 9, 802–810. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Li, Y.; Wu, A.; Huang, J. Effects of Arbuscular Mycorrhizal Fungi on Growth and Nitrogen Uptake of Chrysanthemum morifolium under Salt Stress. PLoS ONE 2018, 13, e0196408. [Google Scholar] [CrossRef]
- Maya, M.A.; Matsubara, Y. Influence of Arbuscular Mycorrhiza on the Growth and Antioxidative Activity in Cyclamen under Heat Stress. Mycorrhiza 2013, 23, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Abdelhameed, R.E.; Metwally, R.A. Alleviation of Cadmium Stress by Arbuscular Mycorrhizal Symbiosis. Int. J. Phytoremediation 2019, 21, 663–671. [Google Scholar] [CrossRef]
- Mandal, S.; Upadhyay, S.; Wajid, S.; Ram, M.; Jain, D.C.; Singh, V.P.; Abdin, M.Z.; Kapoor, R. Arbuscular Mycorrhiza Increase Artemisinin Accumulation in Artemisia Annua by Higher Expression of Key Biosynthesis Genes via Enhanced Jasmonic Acid Levels. Mycorrhiza 2015, 25, 345–357. [Google Scholar] [CrossRef]
- Li, H.; Xu, L.; Li, Z.; Zhao, S.; Guo, D.; Rui, L.; Zhou, N. Mycorrhizas Affect Polyphyllin Accumulation of Paris Polyphylla var. Yunnanensis through Promoting PpSE Expression. Phyton 2021, 90, 1535–1547. [Google Scholar] [CrossRef]
- Duc, N.H.; Vo, A.T.; Haddidi, I.; Daood, H.; Posta, K. Arbuscular Mycorrhizal Fungi Improve Tolerance of the Medicinal Plant Eclipta prostrata (L.) and Induce Major Changes in Polyphenol Profiles Under Salt Stresses. Front. Plant Sci. 2021, 11, 612299. [Google Scholar] [CrossRef]
- Liu, F.; Xu, Y.; Han, G.; Wang, W.; Li, X.; Cheng, B. Identification and Functional Characterization of a Maize Phosphate Transporter Induced by Mycorrhiza Formation. Plant Cell Physiol. 2018, 59, 1683–1694. [Google Scholar] [CrossRef]
- Delaux, P.-M.; Séjalon-Delmas, N.; Bécard, G.; Ané, J.-M. Evolution of the Plant–Microbe Symbiotic ‘Toolkit. ’ Trends Plant Sci. 2013, 18, 298–304. [Google Scholar] [CrossRef]
- Volpe, V.; Chitarra, W.; Cascone, P.; Volpe, M.G.; Bartolini, P.; Moneti, G.; Pieraccini, G.; Di Serio, C.; Maserti, B.; Guerrieri, E.; et al. The Association With Two Different Arbuscular Mycorrhizal Fungi Differently Affects Water Stress Tolerance in Tomato. Front. Plant Sci. 2018, 9, 1480. [Google Scholar] [CrossRef] [PubMed]
- Balestrini, R.; Rosso, L.C.; Veronico, P.; Melillo, M.T.; De Luca, F.; Fanelli, E.; Colagiero, M.; di Fossalunga, A.S.; Ciancio, A.; Pentimone, I. Transcriptomic Responses to Water Deficit and Nematode Infection in Mycorrhizal Tomato Roots. Front. Microbiol. 2019, 10, 1807. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Ezawa, T.; Cheng, W.; Tawaraya, K. Release of Acid Phosphatase from Extraradical Hyphae of Arbuscular Mycorrhizal Fungus Rhizophagus Clarus. Soil Sci. Plant Nutr. 2015, 61, 269–274. [Google Scholar] [CrossRef]
- Augé, R. Arbuscular Mycorrhizae and Soil/Plant Water Relations. Can. J. Soil Sci. 2004, 84, 373–381. [Google Scholar] [CrossRef]
- Bowles, T.M.; Jackson, L.E.; Cavagnaro, T.R. Mycorrhizal Fungi Enhance Plant Nutrient Acquisition and Modulate Nitrogen Loss with Variable Water Regimes. Glob. Change Biol. 2018, 24, e171–e182. [Google Scholar] [CrossRef]
- Augé, R.M.; Stodola, A.J.W.; Tims, J.E.; Saxton, A.M. Moisture Retention Properties of a Mycorrhizal Soil. Plant Soil 2001, 230, 87–97. [Google Scholar] [CrossRef]
- Augé, R.M.; Toler, H.D.; Sams, C.E.; Nasim, G. Hydraulic Conductance and Water Potential Gradients in Squash Leaves Showing Mycorrhiza-Induced Increases in Stomatal Conductance. Mycorrhiza 2008, 18, 115–121. [Google Scholar] [CrossRef]
- Neumann, E.; Schmid, B.; Römheld, V.; George, E. Extraradical Development and Contribution to Plant Performance of an Arbuscular Mycorrhizal Symbiosis Exposed to Complete or Partial Rootzone Drying. Mycorrhiza 2009, 20, 13–23. [Google Scholar] [CrossRef]
- Bowles, T.M.; Barrios-Masias, F.H.; Carlisle, E.A.; Cavagnaro, T.R.; Jackson, L.E. Effects of Arbuscular Mycorrhizae on Tomato Yield, Nutrient Uptake, Water Relations, and Soil Carbon Dynamics under Deficit Irrigation in Field Conditions. Sci. Total Environ. 2016, 566–567, 1223–1234. [Google Scholar] [CrossRef]
- Marulanda, A.; Azcón, R.; Ruiz-Lozano, J.M. Contribution of Six Arbuscular Mycorrhizal Fungal Isolates to Water Uptake by Lactuca Sativa Plants under Drought Stress. Physiol. Plant. 2003, 119, 526–533. [Google Scholar] [CrossRef]
- Ouziad, F.; Wilde, P.; Schmelzer, E.; Hildebrandt, U.; Bothe, H. Analysis of Expression of Aquaporins and Na+/H+ Transporters in Tomato Colonized by Arbuscular Mycorrhizal Fungi and Affected by Salt Stress. Environ. Exp. Bot. 2006, 57, 177–186. [Google Scholar] [CrossRef]
- Luu, D.-T.; Maurel, C. Aquaporins in a Challenging Environment: Molecular Gears for Adjusting Plant Water Status. Plant Cell Environ. 2005, 28, 85–96. [Google Scholar] [CrossRef]
- Maurel, C.; Verdoucq, L.; Luu, D.-T.; Santoni, V. Plant Aquaporins: Membrane Channels with Multiple Integrated Functions. Annu. Rev. Plant Biol. 2008, 59, 595–624. [Google Scholar] [CrossRef] [PubMed]
- Maurel, C.; Boursiac, Y.; Luu, D.-T.; Santoni, V.; Shahzad, Z.; Verdoucq, L. Aquaporins in Plants. Physiol. Rev. 2015, 95, 1321–1358. [Google Scholar] [CrossRef]
- Li, G.; Santoni, V.; Maurel, C. Plant Aquaporins: Roles in Plant Physiology. Biochim. Biophys. Acta BBA Gen. Subj. 2014, 1840, 1574–1582. [Google Scholar] [CrossRef]
- Aroca, R.; Porcel, R.; Ruiz-Lozano, J.M. How Does Arbuscular Mycorrhizal Symbiosis Regulate Root Hydraulic Properties and Plasma Membrane Aquaporins in Phaseolus vulgaris under Drought, Cold or Salinity Stresses? New Phytol. 2007, 173, 808–816. [Google Scholar] [CrossRef]
- Jahromi, F.; Aroca, R.; Porcel, R.; Ruiz-Lozano, J.M. Influence of Salinity on the In Vitro Development of Glomus intraradices and on the In Vivo Physiological and Molecular Responses of Mycorrhizal Lettuce Plants. Microb. Ecol. 2007, 55, 45. [Google Scholar] [CrossRef]
- Porcel, R.; Aroca, R.; Azcón, R.; Ruiz-Lozano, J.M. PIP Aquaporin Gene Expression in Arbuscular Mycorrhizal Glycine max and Lactuca sativa Plants in Relation to Drought Stress Tolerance. Plant Mol. Biol. 2006, 60, 389–404. [Google Scholar] [CrossRef]
- Xu, H.; Cooke, J.E.K.; Kemppainen, M.; Pardo, A.G.; Zwiazek, J.J. Hydraulic Conductivity and Aquaporin Transcription in Roots of Trembling Aspen (Populus tremuloides) Seedlings Colonized by Laccaria bicolor. Mycorrhiza 2016, 26, 441–451. [Google Scholar] [CrossRef]
- Sun, R.-T.; Zhang, Z.-Z.; Feng, X.-C.; Zhou, N.; Feng, H.-D.; Liu, Y.-M.; Harsonowati, W.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.-S. Endophytic Fungi Accelerate Leaf Physiological Activity and Resveratrol Accumulation in Polygonum cuspidatum by Up-Regulating Expression of Associated Genes. Agronomy 2022, 12, 1220. [Google Scholar] [CrossRef]
- Boldt-Burisch, K.; Pörs, Y.; Haupt, B.; Bitterlich, M.; Kühn, C.; Grimm, B.; Franken, P. Photochemical Processes, Carbon Assimilation and RNA Accumulation of Sucrose Transporter Genes in Tomato Arbuscular Mycorrhiza. J. Plant Physiol. 2011, 168, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; Pascale, S.D.; Bonini, P.; Colla, G. Arbuscular Mycorrhizal Fungi Act as Biostimulants in Horticultural Crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Augé, R. Water Relation, Drought and VA Mycorrhizal Symbiosis. Mycorrhiza. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Wu, Q.-S.; Xia, R.-X. Arbuscular Mycorrhizal Fungi Influence Growth, Osmotic Adjustment and Photosynthesis of Citrus under Well-Watered and Water Stress Conditions. J. Plant Physiol. 2006, 163, 417–425. [Google Scholar] [CrossRef]
- Wani, S.H.; Kumar, V.; Shriram, V.; Sah, S.K. Phytohormones and Their Metabolic Engineering for Abiotic Stress Tolerance in Crop Plants. Crop J. 2016, 4, 162–176. [Google Scholar] [CrossRef]
- Vishal, B.; Kumar, P.P. Regulation of Seed Germination and Abiotic Stresses by Gibberellins and Abscisic Acid. Front. Plant Sci. 2018, 9, 838. [Google Scholar] [CrossRef]
- Chen, K.; Li, G.-J.; Bressan, R.A.; Song, C.-P.; Zhu, J.-K.; Zhao, Y. Abscisic Acid Dynamics, Signaling, and Functions in Plants. J. Integr. Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef]
- Bharath, P.; Gahir, S.; Raghavendra, A.S. Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. Front. Plant Sci. 2021, 12, 615114. [Google Scholar] [CrossRef]
- Tuteja, N. Abscisic Acid and Abiotic Stress Signaling. Plant Signal. Behav. 2007, 2, 135–138. [Google Scholar] [CrossRef]
- Kagaya, Y.; Hobo, T.; Murata, M.; Ban, A.; Hattori, T. Abscisic Acid-Induced Transcription Is Mediated by Phosphorylation of an Abscisic Acid Response Element Binding Factor, TRAB1. Plant Cell 2002, 14, 3177–3189. [Google Scholar] [CrossRef]
- Yamaguchi-Shinozaki, K.; Shinozaki, K. Transcriptional Regulatory Networks in Cellular Responses and Tolerance to Dehydration and Cold Stresses. Annu. Rev. Plant Biol. 2006, 57, 781–803. [Google Scholar] [CrossRef]
- Yamaguchi-Shinozaki, K.; Shinozaki, K. Organization of Cis-Acting Regulatory Elements in Osmotic- and Cold-Stress-Responsive Promoters. Trends Plant Sci. 2005, 10, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Luna, A.A.; Davies, F.T. Arbuscular Mycorrhizal Fungi Influence Water Relations, Gas Exchange, Abscisic Acid and Growth of Micropropagated Chile Ancho Pepper (Capsicum annuum) Plantlets during Acclimatization and Post-Acclimatization. J. Plant Physiol. 2003, 160, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, T.K.; Bashir, T.; Hashem, A.; Abd Allah, E.F. Systems Biology Approach in Plant Abiotic Stresses. Plant Physiol. Biochem. PPB 2017, 121, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Sun, Y.; Ruan, Y.; Xu, L.; Hu, Y.; Hao, Z.; Zhang, X.; Li, H.; Wang, Y.; Yang, L.; et al. Potential Role of D-Myo-Inositol-3-Phosphate Synthase and 14-3-3 Genes in the Crosstalk between Zea Mays and Rhizophagus Intraradices under Drought Stress. Mycorrhiza 2016, 26, 879–893. [Google Scholar] [CrossRef]
- Zivcak, M.; Brestic, M.; Sytar, O. Osmotic Adjustment and Plant Adaptation to Drought Stress. In Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry, 1st ed.; Hossain, M.A., Wani, S.H., Bhattacharjee, S., Burritt, D.J., Tran, L.-S.P., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 105–143. ISBN 978-3-319-28897-0. [Google Scholar]
- Turner, N.C. Turgor Maintenance by Osmotic Adjustment: 40 Years of Progress. J. Exp. Bot. 2018, 69, 3223–3233. [Google Scholar] [CrossRef]
- Bakr, J.; Pék, Z.; Helyes, L.; Posta, K. Mycorrhizal Inoculation Alleviates Water Deficit Impact on Field-Grown Processing Tomato. Pol. J. Environ. Stud. 2018, 27, 1949–1958. [Google Scholar] [CrossRef]
- Sun, R.-T.; Feng, X.-C.; Zhang, Z.-Z.; Zhou, N.; Feng, H.-D.; Liu, Y.-M.; Hashem, A.; Al-Arjani, A.-B.F.; Abd_Allah, E.F.; Wu, Q.-S. Root Endophytic Fungi Regulate Changes in Sugar and Medicinal Compositions of Polygonum cuspidatum. Front. Plant Sci. 2022, 13, 818909. [Google Scholar] [CrossRef]
- Evelin, H.; Kapoor, R.; Giri, B. Arbuscular Mycorrhizal Fungi in Alleviation of Salt Stress: A Review. Ann. Bot. 2009, 104, 1263–1280. [Google Scholar] [CrossRef]
- García-Rodríguez, S.; Pozo, M.J.; Azcón-Aguilar, C.; Ferrol, N. Expression of a Tomato Sugar Transporter Is Increased in Leaves of Mycorrhizal or Phytophthora Parasitica-Infected Plants. Mycorrhiza 2005, 15, 489–496. [Google Scholar] [CrossRef]
- Salmeron-Santiago, I.A.; Martínez-Trujillo, M.; Valdez-Alarcón, J.J.; Pedraza-Santos, M.E.; Santoyo, G.; Pozo, M.J.; Chávez-Bárcenas, A.T. An Updated Review on the Modulation of Carbon Partitioning and Allocation in Arbuscular Mycorrhizal Plants. Microorganisms 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Apel, K.; Hirt, H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Roychoudhury, A. Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-Scavengers during Environmental Stress in Plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Meloni, D.A.; Oliva, M.A.; Martinez, C.A.; Cambraia, J. Photosynthesis and Activity of Superoxide Dismutase, Peroxidase and Glutathione Reductase in Cotton under Salt Stress. Environ. Exp. Bot. 2003, 49, 69–76. [Google Scholar] [CrossRef]
- Kong, W.; Liu, F.; Zhang, C.; Zhang, J.; Feng, H. Non-Destructive Determination of Malondialdehyde (MDA) Distribution in Oilseed Rape Leaves by Laboratory Scale NIR Hyperspectral Imaging. Sci. Rep. 2016, 6, 35393. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, D.M.; Umbach, A.L.; Subbaiah, C.C.; Siedow, J.N. Mitochondrial Reactive Oxygen Species. Contribution to Oxidative Stress and Interorganellar Signaling. Plant Physiol. 2006, 141, 357–366. [Google Scholar] [CrossRef]
- Hashem, A.; Abd_Allah, E.F.; Alqarawi, A.A.; Aldubise, A.; Egamberdieva, D. Arbuscular Mycorrhizal Fungi Enhances Salinity Tolerance of Panicum turgidum Forssk by Altering Photosynthetic and Antioxidant Pathways. J. Plant Interact. 2015, 10, 230–242. [Google Scholar] [CrossRef]
- Alqarawi, A.; Hashem, A.; Abd_Allah, E.; Alshahrani, T.; Huqail, A. Effect of Salinity on Moisture Content, Pigment System, and Lipid Composition in Ephedra Alata Decne. Acta Biol. Hung. 2014, 65, 61–71. [Google Scholar] [CrossRef]
- Fester, T.; Hause, G. Accumulation of Reactive Oxygen Species in Arbuscular Mycorrhizal Roots. Mycorrhiza 2005, 15, 373–379. [Google Scholar] [CrossRef]
- Corradi, N.; Ruffner, B.; Croll, D.; Colard, A.; Horák, A.; Sanders, I.R. High-Level Molecular Diversity of Copper-Zinc Superoxide Dismutase Genes among and within Species of Arbuscular Mycorrhizal Fungi. Appl. Environ. Microbiol. 2009, 75, 1970–1978. [Google Scholar] [CrossRef]
- Woźniak, M.; Gałązka, A.; Tyśkiewicz, R.; Jaroszuk-ściseł, J. Endophytic Bacteria Potentially Promote Plant Growth by Synthesizing Different Metabolites and Their Phenotypic/Physiological Profiles in the Biolog Gen Iii MicroplateTM Test. Int. J. Mol. Sci. 2019, 20, 5283. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.W.; Li, X.W.; Wang, T.T.; Gong, Y.; Zhang, C.M.; Xing, K.; Qin, S. Root Exudates-Driven Rhizosphere Recruitment of the Plant Growth-Promoting Rhizobacterium bacillus Flexus KLBMP 4941 and Its Growth-Promoting Effect on the Coastal Halophyte Limonium Sinense under Salt Stress. Ecotoxicol. Environ. Saf. 2020, 194, 110374. [Google Scholar] [CrossRef] [PubMed]
- Novo, L.A.B.; Castro, P.M.L.; Alvarenga, P.; da Silva, E.F. Plant Growth-Promoting Rhizobacteria-Assisted Phytoremediation of Mine Soils; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128129876. [Google Scholar]
- Pathania, P.; Rajta, A.; Singh, P.C.; Bhatia, R. Role of Plant Growth-Promoting Bacteria in Sustainable Agriculture. Biocatal. Agric. Biotechnol. 2020, 30, 101842. [Google Scholar] [CrossRef]
- Asghari, B.; Khademian, R.; Sedaghati, B. Plant Growth Promoting Rhizobacteria (PGPR) Confer Drought Resistance and Stimulate Biosynthesis of Secondary Metabolites in Pennyroyal (Mentha pulegium L.) under Water Shortage Condition. Sci. Hortic. 2020, 263, 109132. [Google Scholar] [CrossRef]
- Jochum, M.D.; McWilliams, K.L.; Borrego, E.J.; Kolomiets, M.V.; Niu, G.; Pierson, E.A.; Jo, Y.-K. Bioprospecting Plant Growth-Promoting Rhizobacteria That Mitigate Drought Stress in Grasses. Front. Microbiol. 2019, 10, 2106. [Google Scholar] [CrossRef]
- Yousefi, S.; Kartoolinejad, D.; Bahmani, M.; Naghdi, R. Effect of Azospirillum Lipoferum and Azotobacter Chroococcum on Germination and Early Growth of Hopbush Shrub (Dodonaea viscosa L.) under Salinity Stress. J. Sustain. For. 2017, 36, 107–120. [Google Scholar] [CrossRef]
- Saleem, M.; Arshad, M.; Hussain, S.; Bhatti, A.S. Perspective of Plant Growth Promoting Rhizobacteria (PGPR) Containing ACC Deaminase in Stress Agriculture. J. Ind. Microbiol. Biotechnol. 2007, 34, 635–648. [Google Scholar] [CrossRef]
- Mishra, M.; Kumar, U.; Mishra, P.K.; Prakash, V. Efficiency of Plant Growth Promoting Rhizobacteria for the Enhancement of Cicer arietinum L. Growth and Germination under Salinity. Adv. Biol. Res. 2010, 4, 92–96. [Google Scholar]
- Narula, N.; Deubel, A.; Gans, W.; Behl, R.K.; Merbach, W. Paranodules and Colonization of Wheat Roots by Phytohormone Producing Bacteria in Soil. Plant Soil Environ. 2006, 52, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Ortíz-Castro, R.; Valencia-Cantero, E.; López-Bucio, J. Plant Growth Promotion by Bacillus megaterium Involves Cytokinin Signaling. Plant Signal. Behav. 2008, 3, 263–265. [Google Scholar] [CrossRef]
- Chiappero, J.; Cappellari, L.d.R.; Palermo, T.B.; Giordano, W.; Khan, N.; Banchio, E. Antioxidant Status of Medicinal and Aromatic Plants under the Influence of Growth-Promoting Rhizobacteria and Osmotic Stress. Ind. Crops Prod. 2021, 167, 113541. [Google Scholar] [CrossRef]
- Bidgoli, R.D. Providing a Strategy to Confronting the Salinity Stress by Using the PGPR in a Desert Species (Calligonum comosum L‘Her) in Greenhouse Conditions. Desert Ecosyst. Eng. J. 2019, 2, 13–22. [Google Scholar] [CrossRef]
- Alipour, A.; Rahimi, M.M.; Hosseini, S.M.A.; Bahrani, A. Mycorrhizal Fungi and Growth-Promoting Bacteria Improves Fennel Essential Oil Yield under Water Stress. Ind. Crops Prod. 2021, 170, 113792. [Google Scholar] [CrossRef]
- Banchio, E.; Bogino, P.C.; Santoro, M.; Torres, L.; Zygadlo, J.; Giordano, W. Systemic Induction of Monoterpene Biosynthesis in Origanum × Majoricum by Soil Bacteria. J. Agric. Food Chem. 2010, 58, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Diagne, N.; Ndour, M.; Djighaly, P.I.; Ngom, D.; Ngom, M.C.N.; Ndong, G.; Svistoonoff, S.; Cherif-Silini, H. Effect of Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi (AMF) on Salt Stress Tolerance of Casuarina obesa (Miq.). Front. Sustain. Food Syst. 2020, 4, 601004. [Google Scholar] [CrossRef]
- Moreira, H.; Pereira, S.I.A.; Vega, A.; Castro, P.M.L.; Marques, A.P.G.C. Synergistic Effects of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Bacteria Benefit Maize Growth under Increasing Soil Salinity. J. Environ. Manage. 2020, 257, 109982. [Google Scholar] [CrossRef]
- Şirin, E.; Ertürk, Y.; Kazankaya, A. Effects of PGPR, AMF and Trichoderma Applications on Adaptation Abilities to Different Biotic and Abiotic Conditions in Medicinal and Aromatic Plants. Turk. J. Agric. Food Sci. Technol. 2022, 10, 166–173. [Google Scholar] [CrossRef]
- Azizi, S.; Tabari Kouchaksaraei, M.; Hadian, J.; Fallah Nosrat Abad, A.R.; Modarres Sanavi, S.A.M.; Ammer, C.; Bader, M.K.F. Dual Inoculations of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Boost Drought Resistance and Essential Oil Yield of Common Myrtle. For. Ecol. Manag. 2021, 497, 119478. [Google Scholar] [CrossRef]
- Mishra, V.; Gupta, A.; Kaur, P.; Singh, S.; Singh, N.; Gehlot, P.; Singh, J. Synergistic Effects of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria in Bioremediation of Iron Contaminated Soils. Int. J. Phytoremediat. 2016, 18, 697–703. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Manivannan, P.; Sankar, B.; Kishorekumar, A.; Gopi, R.; Somasundaram, R.; Panneerselvam, R. Pseudomonas Fluorescens Enhances Biomass Yield and Ajmalicine Production in Catharanthus roseus under Water Deficit Stress. Colloids Surf. B Biointerfaces 2007, 60, 7–11. [Google Scholar] [CrossRef]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Response of PGPR and AM Fungi Toward Growth and Secondary Metabolite Production in Medicinal and Aromatic Plants. In Plant, Soil and Microbes: Volume 2: Mechanisms and Molecular Interactions; Hakeem, K.R., Akhtar, M.S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 145–168. ISBN 978-3-319-29573-2. [Google Scholar]
- Touceda-González, M.; Álvarez-López, V.; Prieto-Fernández; Rodríguez-Garrido, B.; Trasar-Cepeda, C.; Mench, M.; Puschenreiter, M.; Quintela-Sabarís, C.; Macías-García, F.; Kidd, P.S. Aided Phytostabilisation Reduces Metal Toxicity, Improves Soil Fertility and Enhances Microbial Activity in Cu-Rich Mine Tailings. J. Environ. Manage. 2017, 186, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Dishani, P.T.N.; De Silva, C.S. Effect of Simulated Temperature and Water Stress on Growth, Physiological and Yield Parameters of Tomato [Lycopersicon esculentum Var: Thilina] Grown with Mulch. OUSL J. 2016, 11, 37–51. [Google Scholar] [CrossRef]
- Fracchiolla, M.; Renna, M.; D’Imperio, M.; Lasorella, C.; Santamaria, P.; Cazzato, E. Living Mulch and Organic Fertilization to Improve Weed Management, Yield and Quality of Broccoli Raab in Organic Farming. Plants 2020, 9, 177. [Google Scholar] [CrossRef]
- Matković, A.; Božić, D.; Filipović, V.; Radanović, D.; Vrbničanin, S.; Marković, T.; Ana, M.; Dragana, B.; Vladimir, F.; Dragoja, R.; et al. Mulching as a Physical Weed Control Method Applicable in Medicinal Plants Cultivations. Lek. Sirovine 2016, 35, 37–51. [Google Scholar] [CrossRef]
- Forouzandeh, M.; Fanoudi, M.; Arazmjou, E.; Tabiei, H. Effect of Drought Stress and Types of Fertilizers on the Quantity and Quality of Medicinal Plant Basil ( Ocimum basilicum L.). Indian J. Innov. Dev 2012, 1, 696–699. [Google Scholar]
- Alves, P.A.C.; Gross, E.; Costa, L.C.d.B.; Silva, V.C.; Corrêa, F.M.; Oliveira, R.A. Biomass and Essential Oil Production from Menthe Is Influenced by Compost and Lime. J. Med. Plants Res. 2014, 8, 468–474. [Google Scholar] [CrossRef]
- Nigam, N.; Khare, P.; Ahsan, M.; Yadav, V.; Shanker, K.; Singh, R.P.; Pandey, V.; Das, P.; Anupama, A.; Yadav, R.; et al. Biochar Amendment Reduced the Risk Associated with Metal Uptake and Improved Metabolite Content in Medicinal Herbs. Physiol. Plant. 2021, 173, 321–339. [Google Scholar] [CrossRef]
- Saha, A.; Basak, B.B.; Gajbhiye, N.A.; Kalariya, K.A.; Manivel, P. Sustainable Fertilization through Co-Application of Biochar and Chemical Fertilizers Improves Yield, Quality of Andrographis Paniculata and Soil Health. Ind. Crops Prod. 2019, 140, 111607. [Google Scholar] [CrossRef]
- de Assis, R.M.A.; Carneiro, J.J.; Medeiros, A.P.R.; de Carvalho, A.A.; da Cunha Honorato, A.; Carneiro, M.A.C.; Bertolucci, S.K.V.; Pinto, J.E.B.P. Arbuscular Mycorrhizal Fungi and Organic Manure Enhance Growth and Accumulation of Citral, Total Phenols, and Flavonoids in Melissa officinalis L. Ind. Crops Prod. 2020, 158, 112981. [Google Scholar] [CrossRef]
- Koozehgar Kaleji, M.; Ardakani, M.R.; Khodabandeh, N.; Alavi Fazel, M. Effects of Mycorrhizal Symbiosis along with Vermicompost and Tea Compost on Quantity and Quality Yield of Mentha aquatic L. J. Crop Ecophysiol. 2018, 12, 461–476. [Google Scholar]
- Tanu; Prakash, A.; Adholeya, A. Effect of Different Organic Manures/Composts on the Herbage and Essential Oil Yield of Cymbopogon Winterianus and Their Influence on the Native AM Population in a Marginal Alfisol. Bioresour. Technol. 2004, 92, 311–319. [Google Scholar] [CrossRef]
- Lermen, C.; Cruz, M.; Silva de Souza, J.; Marchi, B.; Alberton, O. Growth of Lippia alba (Mill.) N. E. Brown Inoculated with Arbuscular Mycorrhizal Fungi with Different Levels of Humic Substances and Phosphorus in the Soil. J. Appl. Res. Med. Aromat. Plants 2017, 7, 48–53. [Google Scholar] [CrossRef]
- Papafotiou, M.; Martini, A.N.; Papanikolaou, E.; Stylias, E.G.; Kalantzis, A. Hybrids Development between Greek Salvia Species and Their Drought Resistance Evaluation along with Salvia fruticosa, under Attapulgite-Amended Substrate. Agronomy 2021, 11, 2401. [Google Scholar] [CrossRef]
- Yang, T.; Xing, X.; Gao, Y.; Ma, X. An Environmentally Friendly Soil Amendment for Enhancing Soil Water Availability in Drought-Prone Soils. Agronomy 2022, 12, 133. [Google Scholar] [CrossRef]
- Soltanbeigi, A.; Yıldız, M.; Dıraman, H.; Terzi, H.; Sakartepe, E.; Yıldız, E. Growth Responses and Essential Oil Profile of Salvia officinalis L. Influenced by Water Deficit and Various Nutrient Sources in the Greenhouse. Saudi J. Biol. Sci. 2021, 28, 7327–7335. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Soundararajan, P.; Manivannan, A. Mechanisms of Silicon-Mediated Amelioration Of. Plants 2019, 8, 307. [Google Scholar] [CrossRef]
- Xu, C.; Qi, J.; Yang, W.; Chen, Y.; Yang, C.; He, Y.; Wang, J.; Lin, A. Immobilization of Heavy Metals in Vegetable-Growing Soils Using Nano Zero-Valent Iron Modified Attapulgite Clay. Sci. Total Environ. 2019, 686, 476–483. [Google Scholar] [CrossRef]
- Fard, S.E.; Yarnia, M.; Farahvash, F.; Behrouzyar, E.K.; Rashidi, V. Arbuscular Mycorrhizas and Phosphorus Fertilizer Affect Photosynthetic Capacity and Antioxidant Enzyme Activity in Peppermint Under Different Water Conditions. Acta Agrobot. 2020, 73, 13. [Google Scholar]
- Mierzwa-Hersztek, M.; Gondek, K.; Klimkowicz-Pawlas, A.; Kopeć, M. Effect of Coapplication of Poultry Litter Biochar and Mineral Fertilisers on Soil Quality and Crop Yield. Zemdirbyste 2018, 105, 203–210. [Google Scholar] [CrossRef]
- Hussain, M.M.; Bibi, I.; Niazi, N.K.; Shahid, M.; Iqbal, J.; Shakoor, M.B.; Ahmad, A.; Shah, N.S.; Bhattacharya, P.; Mao, K.; et al. Arsenic Biogeochemical Cycling in Paddy Soil-Rice System: Interaction with Various Factors, Amendments and Mineral Nutrients. Sci. Total Environ. 2021, 773, 145040. [Google Scholar] [CrossRef]
- Almutairi, K.F.; Abdel-Sattar, M.; Mahdy, A.M.; El-Mahrouky, M.A. Co-Application of Mineral and Organic Fertilizers under Deficit Irrigation Improves the Fruit Quality of the Wonderful Pomegranate. PeerJ 2021, 9, e11328. [Google Scholar] [CrossRef] [PubMed]
- Ainalidou, A.; Bouzoukla, F.; Menkissoglu-Spiroudi, U.; Vokou, D.; Karamanoli, K. Impacts of Decaying Aromatic Plants on the Soil Microbial Community and on Tomato Seedling Growth and Metabolism: Suppression or Stimulation? Plants 2021, 10, 1848. [Google Scholar] [CrossRef] [PubMed]
- Ait Elallem, K.; Sobeh, M.; Boularbah, A.; Yasri, A. Chemically Degraded Soil Rehabilitation Process Using Medicinal and Aromatic Plants: Review. Environ. Sci. Pollut. Res. 2021, 28, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Momeni, M.; Pirbalouti, A.G.; Mousavi, A.; Badi, H.N. Effect of Foliar Applications of Salicylic Acid and Chitosan on the Essential Oil of Thymbra spicata L. under Different Soil Moisture Conditions. J. Essent. Oil Bear. Plants 2020, 23, 1142–1153. [Google Scholar] [CrossRef]
- Taha, R.S.; Alharby, H.F.; Bamagoos, A.A.; Medani, R.A.; Rady, M.M. Elevating Tolerance of Drought Stress in Ocimum Basilicum Using Pollen Grains Extract; a Natural Biostimulant by Regulation of Plant Performance and Antioxidant Defense System. South Afr. J. Bot. 2020, 128, 42–53. [Google Scholar] [CrossRef]
- Dianat, M.; Saharkhiz, M.J.; Tavassolian, I. Salicylic Acid Mitigates Drought Stress in Lippia citriodora L.: Effects on Biochemical Traits and Essential Oil Yield. Biocatal. Agric. Biotechnol. 2016, 8, 286–293. [Google Scholar] [CrossRef]
- Paulert, R.; Ascrizzi, R.; Malatesta, S.; Berni, P.; Noseda, M.D.; Mazetto de Carvalho, M.; Marchioni, I.; Pistelli, L.; Rabello Duarte, M.E.; Mariotti, L.; et al. Ulva Intestinalis Extract Acts as Biostimulant and Modulates Metabolites and Hormone Balance in Basil (Ocimum basilicum L.) and Parsley (Petroselinum crispum L.). Plants 2021, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, H.; Saeedi, S.; Hazrati, S.; Brestic, M. Physiological and Phytochemical Responses of Lemon Balm (Melissa officinalis L.) to Pluramin Application and Inoculation with Pseudomonas Fluorescens PF-135 under Water-Deficit Stress. Russ. J. Plant Physiol. 2021, 68, 909–922. [Google Scholar] [CrossRef]
- Shirkhodaei, M.; Taghi Darzi, M.; Haj Seyed Hadi, M. Influence of Vermicompost and Biostimulant on The Growth and Biomass of Coriander (Coriandrum sativum L.). Int. J. Adv. Biol. Biomed. Res. 2014, 2, 706–714. [Google Scholar]
Family | Plant Species | Growth | EOs | Reference | |
---|---|---|---|---|---|
Yield | Plant Part Used for EOs Distillation | ||||
Apiaceae | Carum carvi | – | + | Seeds | [56] |
Coriandrum sativum | – | n.d. | n.d. | [57] | |
Cuminum cyminum | – | – | Seeds | [22] | |
Petroselinum crispum | – | + | Roots; Leaves | [20] | |
Pimpinella anisum | – | – | Seeds | [21] | |
Lamiaceae | Lavandula angustifolia | – | = | Leaves | [19] |
Lavandula stoechas | – | n.d. | n.d. | [53] | |
Mentha piperita | – | – | Aerial parts | [58] | |
Ocimum basilicum | – | + | Aerial parts | [59] | |
Ocimum americanum | |||||
Ocimum basilicum | – | n.d. | n.d. | [54] | |
Rosmarinus officinalis | – | – | Leaves | [60] | |
Salvia sclarea | – | – | Arial parts | [61] | |
Saliva officinalis | – | + | Arial parts | [62] | |
Salvia fruticosa | – | + | Leaves | [19] | |
Sureja hortensis | – | + | Aerial parts | [63] |
Family | Plant Species | Growth | EO | Reference | |
---|---|---|---|---|---|
Yield | Plant Part Used for EO Distillation | ||||
Apiaceae | Coriandrum sativum | n.d. | – | Leaves | [74] |
Coriandrum sativum | – | + | Fruits | [75] | |
Coriandrum sativum | – | + | Roots | [76] | |
Foeniculum vulgare | – | + | Seeds | [72] | |
Trachyspermum ammi | – | = | Seeds | [73] | |
Asteraceae | Matricaria chamomila | – | – | Flowers | [77] |
Lamiaceae | Calendula officinalis | – | + | Flowers | [78] |
Melissa officinalis | – | – | Aerial parts | [79] | |
Mentha x piperita | – | – | Aerial parts | [80] | |
Menhta piperita | n.d. | – | Aerial parts | [81] | |
Mentha suaveolens | – | – | Aerial parts | [80] | |
Ocimum basilicum | – | + | Aerial parts | [81] | |
Origanum majorana | – | – | Shoots | [82] | |
Saliva officinalis | – | – | Leaves; Fruits | [83,84] | |
Satureja hortensis | – | = | Aerial parts | [85] | |
Thymus daenensis | – | n.d. | n.d. | [86] | |
Thymus maroccanus | – | = | Aerial parts | [87] | |
Thymus vulgaris | – | n.d. | n.d. | [86] | |
Thymus vulgaris | – | + | Aerial parts | [88] | |
Poaceae | Cymbopogon schoenanthus | – | + | Aerial parts | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Israel, A.; Langrand, J.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review. Foods 2022, 11, 2591. https://doi.org/10.3390/foods11172591
Israel A, Langrand J, Fontaine J, Lounès-Hadj Sahraoui A. Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review. Foods. 2022; 11(17):2591. https://doi.org/10.3390/foods11172591
Chicago/Turabian StyleIsrael, Abir, Julien Langrand, Joël Fontaine, and Anissa Lounès-Hadj Sahraoui. 2022. "Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review" Foods 11, no. 17: 2591. https://doi.org/10.3390/foods11172591
APA StyleIsrael, A., Langrand, J., Fontaine, J., & Lounès-Hadj Sahraoui, A. (2022). Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review. Foods, 11(17), 2591. https://doi.org/10.3390/foods11172591