Extraction of Lycopene from Tomato Using Hydrophobic Natural Deep Eutectic Solvents Based on Terpenes and Fatty Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards, Reagents and Solvents
2.2. Plant Material
2.3. Preparation of HNADESs
2.4. Characterisation of HNADESs
2.4.1. Density
2.4.2. Rheological Behaviour
2.4.3. Fourier Transform-Infrared (FT-IR) Spectroscopy Analysis
2.5. Screening of HNADESs for the Extraction of Tomato Carotenoids
2.6. Monitoring of Process Efficiency
2.6.1. UV-Vis Spectrophotometry
2.6.2. RP-HPLC-DAD Analysis
2.7. Experimental Design for the Selection of Extraction Parameters
2.8. Recovery of Carotenoids from a HΝADES Extract
2.9. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Characterisation of HNADESs
3.2. Selection of the Most Efficient HNADES
3.3. Optimisation of Extraction Conditions
3.3.1. Selection of Extraction Conditions Using the RSM
3.3.2. Model Fitting for Lycopene Content (mg/100 g fresh weight)
3.3.3. Main Effects of Factors and Interactions to the Experimental Response for Lycopene Content (mg/100 g Fresh Weight)
3.3.4. Predicted and Verified Optimum Conditions for Lycopene Content (mg/100 g Fresh Weight)
3.4. Application of Selected Extraction Conditions to Tomato Fruit Samples
3.5. Recovery of Carotenoids from a HΝADES Extract
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, X.; Yan, J.; Guo, S.; McClements, D.J.; Ma, C.; Liu, X.; Liu, F. Enhancing lycopene stability and bioaccessibility in homogenized tomato pulp using emulsion design principles. Innov. Food Sci. Emerg. Technol. 2021, 67, 102525. [Google Scholar] [CrossRef]
- Sumalan, R.M.; Ciulca, S.I.; Poiana, M.A.; Moigradean, D.; Radulov, I.; Negrea, M.; Crisan, M.E.; Copolovici, L.; Sumalan, R.L. The antioxidant profile evaluation of some tomato landraces with soil salinity tolerance correlated with high nutraceutical and functional value. Agronomy 2020, 10, 500. [Google Scholar] [CrossRef]
- Guerra, A.S.; Hoyos, C.G.; Molina-Ramírez, C.; Velásquez-Cock, J.; Vélez, L.; Gañán, P.; Eceiza, A.; Goff, H.D.; Zuluaga, R. Extraction and preservation of lycopene: A review of the advancements offered by the value chain of nanotechnology. Trends Food Sci. Technol. 2021, 116, 1120–1140. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Use of lycopene as a food colour—Scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food. EFSA J. 2008, 6, 674. [Google Scholar] [CrossRef]
- EUR-Lex—02008R1333-20210808—EN—EUR-Lex. Europa.eu. Available online: http://data.europa.eu/eli/reg/2008/1333/2021-08-08 (accessed on 26 May 2022).
- Deng, Y.; Zhao, S.; Yang, X.; Hou, F.; Fan, L.; Wang, W.; Xu, E.; Cheng, H.; Guo, M.; Liu, D. Evaluation of extraction technologies of lycopene: Hindrance of extraction, effects on isomerization and comparative analysis—A Review. Trends Food Sci. Technol. 2021, 115, 285–296. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Rizou, M.; Aldawoud, T.M.S.; Ucak, I.; Rowan, N.J. Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown Era. Trends Food Sci. Technol. 2021, 110, 193–200. [Google Scholar] [CrossRef]
- Market Data Forecast Ltd. Lycopene Market. Market Data Forecast. Available online: https://www.marketdataforecast.com/market-reports/lycopene-market (accessed on 26 May 2022).
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep eutectic solvents for the extraction of bioactive compounds from natural sources and agricultural by-products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Cao, J.; Su, E. Hydrophobic deep eutectic solvents: The new generation of green solvents for diversified and colorful applications in green chemistry. J. Clean. Prod. 2021, 314, 127965. [Google Scholar] [CrossRef]
- Dwamena, A. Recent advances in hydrophobic deep eutectic solvents for extraction. Separations 2019, 6, 9. [Google Scholar] [CrossRef]
- Zainal-Abidin, M.H.; Hayyan, M.; Wong, W.F. Hydrophobic deep eutectic solvents: Current progress and future directions. J. Ind. Eng. Chem. 2021, 97, 142–162. [Google Scholar] [CrossRef]
- Sekharan, T.R.; Chandira, R.M.; Tamilvanan, S.; Rajesh, S.C.; Venkateswarlu, B.S. Deep eutectic solvents as an alternate to other harmful solvents. Biointerface Res. Appl. Chem. 2021, 12, 847–860. [Google Scholar] [CrossRef]
- Makoś, P.; Słupek, E.; Gębicki, J. Hydrophobic deep Eutectic solvents in microextraction techniques–A Review. Microchem. J. 2020, 152, 104384. [Google Scholar] [CrossRef]
- Křížek, T.; Bursová, M.; Horsley, R.; Kuchař, M.; Tůma, P.; Čabala, R.; Hložek, T. Menthol-based hydrophobic deep eutectic solvents: Towards greener and efficient extraction of phytocannabinoids. J. Clean. Prod. 2018, 193, 391–396. [Google Scholar] [CrossRef]
- Wils, L.; Leman-Loubière, C.; Bellin, N.; Clément-Larosière, B.; Pinault, M.; Chevalier, S.; Enguehard-Gueiffier, C.; Bodet, C.; Boudesocque-Delaye, L. Natural deep eutectic solvent formulations for spirulina: Preparation, intensification, and skin impact. Algal Res. 2021, 56, 102317. [Google Scholar] [CrossRef]
- Manurung, R.; Siregar, A.G.A. Performance of menthol based deep eutectic solvents in the extraction of carotenoids from crude palm oil. Int. J. GEOMATE 2020, 19, 131–137. [Google Scholar] [CrossRef]
- Pitacco, W.; Samorì, C.; Pezzolesi, L.; Gori, V.; Grillo, A.; Tiecco, M.; Vagnoni, M.; Galletti, P. Extraction of astaxanthin from Haematococcus Pluvialis with hydrophobic deep eutectic solvents based on oleic acid. Food Chem. 2022, 379, 132156. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; Pereira, C.V.; Leonardo, I.C.; Fernández, N.; Gaspar, F.B.; Silva, J.M.; Reis, R.L.; Duarte, A.R.C.; Paiva, A.; Matias, A.A. Terpene-based natural deep eutectic systems as efficient solvents to recover astaxanthin from brown crab shell residues. ACS Sustain. Chem. Eng. 2020, 8, 2246–2259. [Google Scholar] [CrossRef]
- Fan, C.; Liu, Y.; Shan, Y.; Cao, X. A priori design of new natural deep eutectic solvent for lutein recovery from microalgae. Food Chem. 2021, 376, 131930. [Google Scholar] [CrossRef]
- Stupar, A.; Šeregelj, V.; Ribeiro, B.D.; Pezo, L.; Cvetanović, A.; Mišan, A.; Marrucho, I. Recovery of β-carotene from pumpkin using switchable natural deep eutectic solvents. Ultrason. Sonochem. 2021, 76, 105638. [Google Scholar] [CrossRef]
- Li, H.; Zhao, C.; Tian, H.; Yang, Y.; Li, W. Liquid–liquid microextraction based on acid–base-induced deep eutectic solvents for determination of β-carotene and lycopene in fruit juices. Food Anal. Methods 2019, 12, 2777–2784. [Google Scholar] [CrossRef]
- Lazzarini, C.; Casadei, E.; Valli, E.; Tura, M.; Ragni, L.; Bendini, A.; Gallina Toschi, T. Sustainable drying and green deep eutectic extraction of carotenoids from tomato pomace. Foods 2022, 11, 405. [Google Scholar] [CrossRef] [PubMed]
- Vasyliev, G.; Lyudmyla, K.; Hladun, K.; Skiba, M.; Vorobyova, V. Valorization of tomato pomace: Extraction of value-added components by deep eutectic solvents and their application in the formulation of cosmetic emulsions. Biomass Convers. Biorefin. 2022, 12, 95–111. [Google Scholar] [CrossRef]
- Silva, Y.P.A.; Ferreira, T.A.P.C.; Jiao, G.; Brooks, M.S. Sustainable approach for lycopene extraction from tomato processing by-product using hydrophobic eutectic solvents. J. Food Sci. Technol. 2019, 56, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Raymond, M.; Douglas, M.; Anderson-Cook Christine, C. Response Surface Methodology. In Process and Product Optimization Using Designed Experiments; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Benvenutti, L.; Zielinski, A.A.F.; Ferreira, S.R.S. Which is the best food emerging solvent: IL, DES or NADES? Trends Food Sci. Technol. 2019, 90, 133–146. [Google Scholar] [CrossRef]
- Florindo, C.; Romero, L.; Rintoul, I.; Branco, L.C.; Marrucho, I.M. From phase change materials to green solvents: Hydrophobic low viscous fatty acid–based deep eutectic solvents. ACS Sustain. Chem. Eng. 2018, 6, 3888–3895. [Google Scholar] [CrossRef]
- Mantzouridou, F.; Tsimidou, M.Z. On the monitoring of carotenogenesis by Blakeslea trispora using HPLC. Food Chem. 2007, 104, 439–444. [Google Scholar]
- Sed, G.; Cicci, A.; Jessop, P.G.; Bravi, M. A novel switchable-hydrophilicity, natural deep eutectic solvent (NaDES)-based system for bio-safe biorefinery. RSC Adv. 2018, 8, 37092–37097. [Google Scholar] [CrossRef]
- Lemaoui, T.; Darwish, A.S.; Attoui, A.; Abu Hatab, F.; Hammoudi, N.; Benguerba, Y.; Vega, L.F.; AlNashef, I. Predicting the density and viscosity of hydrophobic eutectic solvents: Towards the development of sustainable solvents. Green Chem. 2020, 22, 8511–8530. [Google Scholar] [CrossRef]
- Lalikoglu, M. Separation of butyric acid from aqueous media using menthol-based hydrophobic deep eutectic solvent and modeling by response surface methodology. Biomass Convers. Biorefin. 2022, 12, 1331–1341. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Crespo, E.A.; Pontes, P.V.A.; Silva, L.P.; Bülow, M.; Maximo, G.J.; Batista, E.A.C.; Held, C.; Pinho, S.P.; Coutinho, J.A.P. Tunable hydrophobic eutectic solvents based on terpenes and monocarboxylic acids. ACS Sustain. Chem. Eng. 2018, 6, 8836–8846. [Google Scholar] [CrossRef]
- Bakirtzi, C.; Triantafyllidou, K.; Makris, D.P. Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 120–127. [Google Scholar] [CrossRef]
- Mišan, A.; Nađpal, J.; Stupar, A.; Pojić, M.; Mandić, A.; Verpoorte, R.; Choi, Y.H. The perspectives of natural deep eutectic solvents in agri-food sector. Crit. Rev. Food Sci. Nutr. 2020, 60, 2564–2592. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, L.; Ren, G.; Liu, Q.; Xu, Z.; Sun, D. A fatty acid solvent of switchable miscibility. J. Colloid Interface Sci. 2017, 504, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.S.; Pathak, A.; Rathod, V.K. Optimization and kinetic study of ultrasound assisted deep eutectic solvent based extraction: A greener route for extraction of curcuminoids from Curcuma longa. Ultrason. Sonochem. 2021, 70, 105267. [Google Scholar] [CrossRef]
- Longeras, O.; Gautier, A.; Ballerat-Busserolles, K.; Andanson, J.-M. Deep eutectic solvent with thermo-switchable hydrophobicity. ACS Sustain. Chem. Eng. 2020, 8, 12516–12520. [Google Scholar] [CrossRef]
HBA | HBD | Abbreviation | Molar Ratio | Density * | Flow Behaviour Index (n) * | Flow Consistency Index (b) * | RP-HPLC-DAD | UV-Vis | ||
---|---|---|---|---|---|---|---|---|---|---|
Lycopene Content (473 nm) **,*** | β-Carotene Content (453 nm) **,*** | Total Carotenoids Content (473 nm) **,***,# | Total Carotenoids Content (473 nm) **,***,# | |||||||
mg/100 g Fresh Weight | ||||||||||
Menthol | Capric Acid | Ment/Cap | 1:1 | 0.877 | 1.259 | 0.016 | 2.73 ± 0.07 c | 0.17 ± 0.01 e | 2.97 ± 0.06 c | 2.55 ± 0.03 c |
Ment/Cap | 1:2 | 0.879 | 1.593 | 0.009 | 1.34 ± 0.04 b | 0.10 ± 0.01 c | 1.46 ± 0.05 a | 1.32 ± 0.02 a | ||
Ment/Cap | 2:1 | 0.876 | 1.203 | 0.020 | 1.06 ± 0.08 a | 0.08 ± 0.01 b | 1.19 ± 0.08 a | 1.07 ± 0.01 a | ||
Menthol | Lauric Acid | Ment/Lau | 1:1 | 0.881 | 2.051 | 0.007 | 4.93 ± 0.56 g | 0.13 ± 0.03 d | 5.39 ± 0.64 g | 4.97 ± 0.01 e |
Ment/Lau | 1:2 | 0.876 | 2.201 | 0.006 | 2.89 ± 0.28 c | 0.07 ± 0.02 d | 3.18 ± 0.33 c, d | 2.89 ± 0.04 c | ||
Ment/Lau | 2:1 | 0.887 | 2.251 | 0.005 | 1.44 ± 0.02 b | 0.10 ± 0.02 c | 2.47 ± 0.77 b | 1.99 ± 0.02 b | ||
Thymol | Capric Acid | Thym/Cap | 1:1 | 0.909 | 1.531 | 0.008 | 3.40 ± 0.18 e | 0.19 ± 0.01 g | 3.64 ± 0.24 d | 3.54 ± 0.06 d |
Thym/Cap | 1:2 | 0.918 | 1.549 | 0.008 | 4.58 ± 0.06 f | 0.19 ± 0.03 g | 5.28 ± 0.66 f, g | 4.97 ± 0.05 e | ||
Thym/Cap | 2:1 | 0.925 | 1.540 | 0.008 | 4.42 ± 0.17 f | 0.24 ± 0.01 h | 4.81 ± 0.23 e, f | 4.76 ± 0.05 e | ||
Thymol | Lauric Acid | Thym/Lau | 1:1 | 0.912 | 2.055 | 0.005 | 4.53 ± 0.37 f | 0.25 ± 0.03 i | 4.88 ± 0.44 e, f | 4.69 ± 0.02 e |
Thym/Lau | 1:2 | 0.893 | 1.384 | 0.020 | 5.41 ± 0.69 i | 0.19 ± 0.01 g | 5.87 ± 0.75 i | 5.58 ± 0.04 f | ||
Thym/Lau | 2:1 | 0.911 | 2.094 | 0.005 | 5.15 ± 0.12 h, i | 0.28 ± 0.05 j | 5.66 ± 0.17 g, h | 5.49 ± 0.03 f | ||
Capric acid | Lauric Acid | Cap/Lau | 1:1 | 0.881 | 1.355 | 0.012 | 2.98 ± 0.06 c, d | 0.18 ± 0.03 f | 3.32 ± 0.07 d | 3.01 ± 0.13 d |
Cap/Lau | 1:2 | 0.859 | 1.000 | 0.008 | 7.51 ± 0.10 j | 0.32 ± 0.05 k | 8.04 ± 0.10 j | 7.74 ± 0.07 g | ||
Cap/Lau | 2:1 | 0.865 | 1.547 | 0.024 | 3.19 ± 0.04 d | 0.17 ± 0.01 e | 3.52 ± 0.04 d | 3.45 ± 0.07 d | ||
Acetone | 8.15 ± 0.14 k | 0.37 ± 0.01 l | 8.86 ± 0.17 k | 8.75 ± 0.03 h |
Symbols | Factors | Level | ||||
---|---|---|---|---|---|---|
Coded value * | ||||||
−a ** | −1 | 0 | +1 | +a ** | ||
Actual value | ||||||
Χ1 | Duration (min) | 30 | 41 | 60 | 81 | 90 |
Χ2 | Solvent:solid ratio (v/w) | 20 | 35 | 70 | 105 | 120 |
Run. | Duration (min) | Solvent:Solid Ratio (v/w) | Lycopene Content (mg/100 g Fresh Weight) (n = 3) |
---|---|---|---|
X1 | X2 | ||
1 | 60 | 20 | 4.09 ± 0.32 |
2 | 60 | 70 | 7.87 |
3 | 60 | 70 | 8.14 |
4 | 30 | 70 | 5.12 ± 0.51 * |
5 | 90 | 70 | 6.45 ± 0.61 * |
6 | 60 | 70 | 8.09 |
7 | 41 | 35 | 5.87 ± 0.15 |
8 | 41 | 105 | 2.38 ± 0.45 |
9 | 81 | 105 | 3.69 ± 0.16 |
10 | 81 | 35 | 4.99 ± 0.12 |
11 | 60 | 120 | 3.04 ± 0.34 |
12 | 60 | 70 | 8.02 |
13 | 60 | 70 | 7.41 |
Sample | Extraction Conditions * | Lycopene Content ** | β-Carotene Content ** | Total Carotenoids Content ** |
---|---|---|---|---|
1 | (a) | 10.88 ± 0.57 a | 0.33 ± 0.01 a | 11.91 ± 0.58 a |
(b) | 11.01 ± 0.69 a | 0.35 ± 0.02 a | 12.44 ± 0.73 b | |
2 | (a) | 14.92 ± 0.33 a | 0.91 ± 0.11 a | 15.98 ± 0.17 a |
(b) | 15.04 ± 0.34 a | 0.92 ± 0.10 a | 16.53 ± 0.42 b | |
3 | (a) | 11.68 ± 0.47 a | 0.69 ± 0.04 a | 12.48 ±0.55 a |
(b) | 11.27 ± 0.76 a | 0.65 ± 0.06 a | 12.09 ± 0.82 a | |
4 | (a) | 11.13 ± 0.50 a | 0.59 ± 0.01 a | 11.82 ± 0.49 a |
(b) | 10.24 ± 0.56 b | 0.53 ± 0.03 a | 10.88 ± 0.59 a | |
5 | (a) | 11.82 ± 0.35 a | 0.65 ± 0.06 a | 12.59 ± 0.35 a |
(b) | 11.01 ± 0.74 a | 0.61 ± 0.03 a | 11.73 ± 0.76 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakoudi, A.; Tsiouras, A.; Mourtzinos, I. Extraction of Lycopene from Tomato Using Hydrophobic Natural Deep Eutectic Solvents Based on Terpenes and Fatty Acids. Foods 2022, 11, 2645. https://doi.org/10.3390/foods11172645
Kyriakoudi A, Tsiouras A, Mourtzinos I. Extraction of Lycopene from Tomato Using Hydrophobic Natural Deep Eutectic Solvents Based on Terpenes and Fatty Acids. Foods. 2022; 11(17):2645. https://doi.org/10.3390/foods11172645
Chicago/Turabian StyleKyriakoudi, Anastasia, Alexandros Tsiouras, and Ioannis Mourtzinos. 2022. "Extraction of Lycopene from Tomato Using Hydrophobic Natural Deep Eutectic Solvents Based on Terpenes and Fatty Acids" Foods 11, no. 17: 2645. https://doi.org/10.3390/foods11172645
APA StyleKyriakoudi, A., Tsiouras, A., & Mourtzinos, I. (2022). Extraction of Lycopene from Tomato Using Hydrophobic Natural Deep Eutectic Solvents Based on Terpenes and Fatty Acids. Foods, 11(17), 2645. https://doi.org/10.3390/foods11172645