Effects of Jet Milling on the Physicochemical Properties of Buckwheat Flour and the Quality Characteristics of Extruded Whole Buckwheat Noodles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Buckwheat Fine Powder by Jet Milling
2.3. Particle Size
2.4. Damaged Starch (DS)
2.5. Color
2.6. Hydration Properties
2.7. Pasting Properties
2.8. Rheological Properties
2.9. Gel texture Properties
2.10. Preparation of Extruded Whole Buckwheat Noodles (WBN)
2.11. Scanning Electron Microscopy (SEM)
2.12. Cooking Properties
2.13. Texture Properties of WBN
2.14. Determination of Dietary Fiber Content
2.15. Statistical Analysis
3. Results and Discussion
3.1. Particle Size and Damaged Starch
3.2. Hydration Properties
3.3. Pasting Properties
3.4. Rheological Properties
3.5. Texture Profile Analysis of Gels
3.6. Color Analysis
3.7. Effects of Jet Milling and Extrusion on Dietary Fiber Content
3.8. Microstructure of WBN
3.9. Cooking Properties of WBN
3.10. Effects of Jet Milling on the Textural Properties of WBN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, R.; Li, M.; Chen, S.; Hui, Y.; Tang, A.; Wei, Y. Effects of flour dynamic viscosity on the quality properties of buckwheat noodles. Carbohydr. Polym. 2019, 207, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Bastida, J.A.; Piskuła, M.; Zieliński, H. Recent advances in development of gluten-free buckwheat products. Trends Food Sci. Technol. 2015, 44, 58–65. [Google Scholar] [CrossRef]
- Fu, B.X. Asian noodles: History, classification, raw materials, and processing. Food Res. Int. 2008, 41, 888–902. [Google Scholar] [CrossRef]
- Javornik, B.; Kreft, I. Characterization of buckwheat protein. Fagopyrum. 1984, 4, 30–38. [Google Scholar]
- Fu, M.; Sun, X.; Wu, D.; Meng, L.; Feng, X.; Cheng, W.; Gao, C.; Yang, Y.; Shen, X.; Tang, X. Effect of partial substitution of buckwheat on cooking characteristics, nutritional composition, and in vitro starch digestibility of extruded gluten-free rice noodles. LWT 2020, 126, 109332. [Google Scholar] [CrossRef]
- Sun, X.; Chen, J.-Y.; Fu, M.; Wu, D.; Gao, C.; Feng, X.; Cheng, W.; Shen, X.; Tang, X. Extruded whole buckwheat noodles: Effects of processing variables on degree of starch gelatinization, changes of nutritional components, cooking characteristics and in vitro starch digestibility. Food Funct. 2019, 10, 6362–6373. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Huang, S.; Peng, W.; Qian, H.; Zhou, H. Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Res. Int. 2010, 43, 943–948. [Google Scholar] [CrossRef]
- Wang, N.; Hou, G.G.; Kweon, M.; Lee, B. Effects of particle size on the properties of whole-grain soft wheat flour and its cracker baking performance. J. Cereal Sci. 2016, 69, 187–193. [Google Scholar] [CrossRef]
- Niu, M.; Hou, G.G.; Wang, L.; Chen, Z. Effects of superfine grinding on the quality characteristics of whole-wheat flour and its raw noodle product. J. Cereal Sci. 2014, 60, 382–388. [Google Scholar] [CrossRef]
- AACC International. Approved Methods of Analysis, 10th ed.; Methods 46-11.02, 30-25.01, 08-01.01 and 76-13.01; American Association of Cereal Chemists International: St. Paul, MN, USA, 2000. [Google Scholar]
- Yu, D.; Chen, J.; Ma, J.; Sun, H.; Yuan, Y.; Ju, Q.; Teng, Y.; Yang, M.; Li, W.; Fujita, K.; et al. Effects of different milling methods on physicochemical properties of common buckwheat flour. LWT 2018, 92, 220–226. [Google Scholar] [CrossRef]
- AACC International. Approved Methods of Analysis, 11th ed.; Method 76-30A; American Association of Cereal Chemists International: St. Paul, MN, USA, 2010. [Google Scholar]
- Anderson, R.; Conway, H.; Peplinski, A. Gelatinization of Corn Grits by Roll Cooking, Extrusion Cooking and Steaming. Starch-Stärke 2006, 22, 130–135. [Google Scholar] [CrossRef]
- AACC International. Approved Methods of Analysis, 10th ed.; Method 76-21.01; American Association of Cereal Chemists International: St. Paul, MN, USA, 2000. [Google Scholar]
- Liu, Q.; Guo, X.-N.; Zhu, K.-X. Effects of frozen storage on the quality characteristics of frozen cooked noodles. Food Chem. 2019, 283, 522–529. [Google Scholar] [CrossRef] [PubMed]
- AACC International. Approved Methods of Analysis, 10th ed.; Method 66-50; American Association of Cereal Chemists International: St. Paul, MN, USA, 2000. [Google Scholar]
- AOAC International. Official Methods of Analysis, 16th ed.; Method 991.43; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Hatcher, D.; Anderson, M.; Desjardins, R.; Edwards, N.; Dexter, J. Effects of Flour Particle Size and Starch Damage on Processing and Quality of White Salted Noodles. Cereal Chem. 2002, 79, 64–71. [Google Scholar] [CrossRef]
- Kim, M.; Oh, I.; Jeong, S.; Lee, S. Particle size effect of rice flour in a rice-zein noodle system for gluten-free noodles slit from sheeted doughs. J. Cereal Sci. 2019, 86, 48–53. [Google Scholar] [CrossRef]
- Li, E.; Dhital, S.; Hasjim, J. Effects of grain milling on starch structures and flour/starch properties. Starch-Stärke 2014, 66, 15–27. [Google Scholar] [CrossRef]
- Qin, W.; Lin, Z.; Wang, A.; Chen, Z.; He, Y.; Wang, L.; Liu, L.; Wang, F.; Tong, L.-T. Influence of particle size on the properties of rice flour and quality of gluten-free rice bread. LWT 2021, 151, 112236. [Google Scholar] [CrossRef]
- Stone, A.; Hucl, P.; Scanlon, M.; Nickerson, M. Effect of Damaged Starch and NaCl Level on the Dough Handling Properties of a Canadian Western Red Spring Wheat. Cereal Chem. 2017, 94, 970–977. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, M.; Yoon, M.-R.; Lee, S. Preparation and characterization of gluten-free sheeted doughs and noodles with zein and rice flour containing different amylose contents. J. Cereal Sci. 2017, 75, 138–142. [Google Scholar] [CrossRef]
- Wang, N.; Hou, G.G.; Dubat, A. Effects of flour particle size on the quality attributes of reconstituted whole-wheat flour and Chinese southern-type steamed bread. LWT 2017, 82, 147–153. [Google Scholar] [CrossRef]
- Wu, K.; Gan, R.-Y.; Dai, S.; Cai, Y.-Z.; Corke, H.; Zhu, F. Buckwheat and Millet Affect Thermal, Rheological, and Gelling Properties of Wheat Flour. J. Food Sci. 2016, 81, E627–E636. [Google Scholar] [CrossRef]
- Li, C.; You, Y.; Chen, D.; Gu, Z.; Zhang, Y.; Holler, T.P.; Ban, X.; Hong, Y.; Cheng, L.; Li, Z. A systematic review of rice noodles: Raw material, processing method and quality improvement. Trends Food Sci. Technol. 2021, 107, 389–400. [Google Scholar]
- Wang, Q.; Li, L.; Wang, T.; Zheng, X. A review of extrusion-modified underutilized cereal flour: Chemical composition, functionality, and its modulation on starchy food quality. Food Chem. 2022, 370, 131361. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.M.; Calviño, A.; Rosell, C.M.; Gómez, M. Effect of Different Extrusion Treatments and Particle Size Distribution on the Physicochemical Properties of Rice Flour. Food Bioprocess Technol. 2014, 7, 2657–2665. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Li, R.; Li, J. Effect of micronization technology on physicochemical and antioxidant properties of dietary fiber from buckwheat hulls. Biocatal. Agric. Biotechnol. 2014, 3, 30–34. [Google Scholar] [CrossRef]
- Spotti, M.J.; Campanella, O.H. Functional modifications by physical treatments of dietary fibers used in food formulations. Curr. Opin. Food Sci. 2017, 15, 70–78. [Google Scholar] [CrossRef]
- Rashid, S.; Rakha, A.; Anjum, F.; Ahmed, W.; Sohail, M. Effects of extrusion cooking on the dietary fibre content and Water Solubility Index of wheat bran extrudates. Int. J. Food Sci. Technol. 2015, 50, 1533–1537. [Google Scholar] [CrossRef]
- Bader Ul Ain, H.; Saeed, F.; Khan, M.; Niaz, B.; Nasir, M.; Tufail, T.; Anbreen, F.; Anjum, F. Modification of barley dietary fiber through thermal treatments. Food Sci. Nutr. 2019, 7, 1816–1820. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Yin, T.; Xiong, S.; Zhang, J.; Din, Z.-U.; Zhang, M. Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling. LWT 2017, 82, 15–22. [Google Scholar]
- Ajila, C.M.; Aalami, M.; Leelavathi, K.; Rao, U.J.S.P. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innov. Food Sci. Emerg. 2010, 11, 219–224. [Google Scholar] [CrossRef]
- Siliveru, K.; Ambrose, R.K.; Vadlani, P.V. Significance of composition and particle size on the shear flow properties of wheat flour. J. Sci. Food Agric. 2017, 97, 2300–2306. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhang, Q.Q.; Guo, Y.Y.; Xu, F. Effect of flour particle size on the qualities of semi-dried noodles and fine dried noodles. J. Food Process Preserv. 2021, 45, 15632. [Google Scholar] [CrossRef]
- Guan, E.; Pang, J.; Yang, Y.; Zhang, T.; Li, M.; Bian, K. Effects of wheat flour particle size on physicochemical properties and quality of noodles. J. Food Sci. 2020, 85, 4209–4214. [Google Scholar] [CrossRef] [PubMed]
Sample | D10 (μm) | D50 (μm) | D90 (μm) | Damaged Starch (%) | WAI (g/g) | WSI (g/g) | SP |
---|---|---|---|---|---|---|---|
BF1 | 15.93 ± 1.10 a | 82.27 ± 2.13 a | 198.20 ± 3.11 a | 11.45 ± 0.49 a | 7.01 ± 0.07 bc | 0.16 ± 0.00 c | 4.02 ± 0.02 cd |
BF2 | 7.40 ± 0.27 b | 65.86 ± 1.23 b | 166.20 ± 2.10 b | 16.56 ± 0.21 b | 7.17 ± 0.01 b | 0.16 ± 0.00 c | 4.21 ± 0.03 c |
BF3 | 6.87 ± 0.11 c | 40.28 ± 1.07 c | 145.70 ± 1.74 c | 19.04 ± 0.56 c | 7.19 ± 0.10 b | 0.17 ± 0.00 b | 4.62 ± 0.06 b |
BF4 | 5.61 ± 0.14 d | 20.57 ± 0.91 d | 132.50 ± 1.19 d | 21.43 ± 0.40 d | 7.65 ± 0.36 a | 0.18 ± 0.01 a | 4.85 ± 0.16 a |
Sample | Peak Viscosity (cp) | Trough (cp) | Breakdown (cp) | Final Viscosity (cp) | Setback (cp) |
---|---|---|---|---|---|
BF1 | 2937 ± 25 b | 2564 ± 8 b | 373 ± 17 a | 4987 ± 121 b | 2424 ± 114 b |
BF2 | 3054 ± 12 a | 2694 ± 74 a | 360 ± 79 b | 5173 ± 40 a | 2479 ± 42 a |
BF3 | 2841 ± 14 c | 2511 ± 12 c | 318 ± 2 d | 4852 ± 32 c | 2329 ± 44 c |
BF4 | 2747 ± 28 d | 2411 ± 62 d | 337 ± 34 c | 4582 ± 113 d | 2172 ± 52 d |
Sample | Hardness (g) | Springiness | Cohesiveness | Chewiness (g) | Resilience |
---|---|---|---|---|---|
BF1 | 19.78 ± 0.82 c | 0.70 ± 0.03 c | 0.51 ± 0.01 c | 7.03 ± 0.09 c | 0.01 ± 0.00 b |
BF2 | 25.71 ± 0.59 a | 0.90 ± 0.02 a | 0.53 ± 0.03 a | 12.30 ± 0.13 a | 0.02 ± 0.00 a |
BF3 | 20.82 ± 0.75 b | 0.82 ± 0.05 b | 0.52 ± 0.04 b | 8.79 ± 0.48 b | 0.01 ± 0.00 b |
BF4 | 19.15 ± 0.49 c | 0.71 ± 0.01 c | 0.51 ± 0.01 c | 6.94 ± 0.03 cd | 0.01 ± 0.00 b |
Sample | L* | a* | b* |
---|---|---|---|
BF1 | 88.02 ± 0.06 b | 0.67 ± 0.02 e | 9.18 ± 0.11 c |
BF2 | 88.89 ± 0.26 ab | 0.71 ± 0.02 de | 8.91 ± 0.09 cd |
BF3 | 89.12 ± 0.16 a | 0.76 ± 0.03 d | 8.79 ± 0.08 d |
BF4 | 89.51 ± 0.12 a | 0.76 ± 0.01 d | 8.76 ± 0.11 de |
WBN1 | 83.11 ± 0.03 e | 1.60 ± 0.03 b | 9.52 ± 0.12 b |
WBN2 | 84.52 ± 0.07 c | 1.64 ± 0.02 a | 9.68 ± 0.05 b |
WBN3 | 84.11 ± 0.09 d | 1.63 ± 0.01 ab | 9.86 ± 0.04 a |
WBN4 | 84.47 ± 0.10 c | 1.55 ± 0.03 c | 9.53 ± 0.10 b |
Sample | Water Absorption (%) | Cooking Loss (%) | Broken Rate (%) | Cooking Time (min) |
---|---|---|---|---|
WBN1 | 182.97 ± 5.23 a | 9.31 ± 0.12 a | 10.00 ± 1.92 b | 22.21 ± 0.23 b |
WBN2 | 154.21 ± 4.67 c | 7.86 ± 0.24 c | 6.67 ± 1.56 d | 23.29 ± 0.14 a |
WBN3 | 169.07 ± 1.73 b | 8.42 ± 0.16 b | 8.89 ± 1.56 c | 22.45 ± 0.15 b |
WBN4 | 184.19 ± 2.71 a | 9.47 ± 1.78 a | 12.22 ± 1.92 a | 21.12 ± 0.11 c |
Sample | Hardness (g) | Springiness | Cohesiveness | Chewiness (g) | Resilience |
---|---|---|---|---|---|
WBN1 | 3113.5 ± 43.12 c | 0.93 ± 0.01 b | 0.51 ± 0.01 c | 1478.73 ± 21.05 c | 0.23 ± 0.01 b |
WBN2 | 3348.41 ± 47.17 a | 0.95 ± 0.01 a | 0.57 ± 0.02 a | 1818.16 ± 19.01 a | 0.25 ± 0.01 a |
WBN3 | 3213.18 ± 51.70 b | 0.94 ± 0.01 ab | 0.54 ± 0.01 b | 1636.01 ± 27.18 b | 0.24 ± 0.00 ab |
WBN4 | 3079.13 ± 39.31 d | 0.93 ± 0.01 b | 0.51 ± 0.01 c | 1463.43 ± 19.04 c | 0.23 ± 0.00 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Lei, S.; Gao, L.; Zhang, Y.; Cheng, W.; Wang, Z.; Tang, X. Effects of Jet Milling on the Physicochemical Properties of Buckwheat Flour and the Quality Characteristics of Extruded Whole Buckwheat Noodles. Foods 2022, 11, 2722. https://doi.org/10.3390/foods11182722
Cheng J, Lei S, Gao L, Zhang Y, Cheng W, Wang Z, Tang X. Effects of Jet Milling on the Physicochemical Properties of Buckwheat Flour and the Quality Characteristics of Extruded Whole Buckwheat Noodles. Foods. 2022; 11(18):2722. https://doi.org/10.3390/foods11182722
Chicago/Turabian StyleCheng, Jiayu, Sijia Lei, Li Gao, Yingquan Zhang, Weiwei Cheng, Zhenjiong Wang, and Xiaozhi Tang. 2022. "Effects of Jet Milling on the Physicochemical Properties of Buckwheat Flour and the Quality Characteristics of Extruded Whole Buckwheat Noodles" Foods 11, no. 18: 2722. https://doi.org/10.3390/foods11182722
APA StyleCheng, J., Lei, S., Gao, L., Zhang, Y., Cheng, W., Wang, Z., & Tang, X. (2022). Effects of Jet Milling on the Physicochemical Properties of Buckwheat Flour and the Quality Characteristics of Extruded Whole Buckwheat Noodles. Foods, 11(18), 2722. https://doi.org/10.3390/foods11182722