Near-Infrared Reflectance Spectrophotometry (NIRS) Application in the Amino Acid Profiling of Quality Protein Maize (QPM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Materials
2.2. Sampling for Laboratory Analysis
2.3. Spectra Data Collections and Pretreatments
2.4. Laboratory Analysis
2.4.1. Chemicals Used
2.4.2. Derivatization of the Hydrolysate
2.4.3. Preparing a Calibration Standard
2.4.4. Derivatizing the Calibration Standard
2.4.5. Preparing Samples for AccQ•tag Method
2.4.6. Derivatization of Samples
2.4.7. HPLC Analysis
2.5. Calibration Models
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tandzi, L.N.; Mutengwa, C.S.; Ngonkeu, E.L.M.; Woïn, N.; Gracen, V. Breeding for Quality Protein Maize (QPM) Varieties: A Review. Agronomy 2017, 7, 80. [Google Scholar] [CrossRef]
- Darrigues, A.; Lamkey, K.R.; Scott, P.M. Breeding for Grain Amino Acid Composition in Maize. Plant Breed. Arnel R. Hallauer Int. Symp. 2006, 24, 335–344. [Google Scholar]
- Upadhyay, S.R.; Gurung, D.B.; Paudel, D.C.; Koirala, K.B.; Sah, S.N.; Prasad, R.C.; Pokhrel, B.B.; Dhakal, R. Evaluation of Quality Protein Maize (QPM) Genotypes under Rainfed Mid Hill Environments of Nepal. Nepal J. Sci. Technol. 2009, 10, 9–14. [Google Scholar] [CrossRef]
- Akalu, G.; Taffesse, S.; Gunaratna, N.S.; Groote, H.G. The effectiveness of quality protein maize in improving the nutritional status of young children in the Ethiopian highlands. Food Nutr. Bull. 2010, 31, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Alcântara, B.K.; Rizzi, V.; Gaziola, S.A.; Azevedo, R.A. Soluble amino acid profile, mineral nutrient and carbohydrate content of maize kernels harvested from plants submitted to ascorbic acid seed priming. Ann. Braz. Acad. Sci. 2017, 89, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, R.A.; Lancien, M.; Lea, P.J. The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 2006, 30, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Micic-Ignjatovic, D.; Stankovic, G.; Markovic, K.; Lazic-Jancic, V.; Denic, M. Quality protein maize–QPM. Genetika 2008, 40, 205–214. [Google Scholar] [CrossRef]
- Priya, D.; Ram, L.; Srivastava, R.P.; Kumar, A.; Singh, R. Quality protein maize: Overview. J. Biotechnol. Crop Sci. 2014, 3, 4–18. [Google Scholar]
- Maqbool, M.A.; Issa, A.B.; Khokhar, E.S. Quality protein maize (QPM): Importance, genetics, timeline of different events, breeding strategies and varietal adoption. Plant Breed. 2020, 140, 375–399. [Google Scholar] [CrossRef]
- Gunaratna, N.S.; De-Groote, H.; Nestel, P.; Pixley, K.V.; Mccabe, G.P. A meta-analysis of community-based studies on quality protein maize. Food Policy 2010, 35, 202–210. [Google Scholar] [CrossRef]
- Nuss, E.T.; Tanumihardjo, S.A. Quality protein maize for Africa: Closing the protein inadequacy gap in vulnerable populations. Adv. Nutr. 2011, 2, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, H.; Bates, L.S. A Modified Method for Rapid Tryptophan Analysis of Maize. Research Bulletin No. 19, International Maize and Wheat Improvement Centre, Mexico. 1969. Available online: https://repository.cimmyt.org/xmlui/bitstream/handle/10883/19403/1857.pdf?sequence=1&isAllowed=y (accessed on 23 July 2022).
- Seebauer, J.R.; Moose, S.P.; Bradon, J.; Fabbri, B.J.; Crossland, L.D.; Below, F.E. Amino Acid Metabolism in Maize Ear shoots. Implications for Assimilate Preconditioning and Nitrogen Signaling. Plant Physiol. 2004, 136, 4326–4334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ijarotimi, S.O.; Keshinro, O.O. Determination of Amino Acid, Fatty Acid, Mineral, Functional and Choking Properties of Germinated and Fermented Popcorn (Zea mays everta) Flour. Eur. J. Food Res. Rev. 2011, 1, 102–122. [Google Scholar]
- Abiose, S.H.; Ikujenlola, A.V. Comparison of chemical composition, functional properties and amino acids composition of quality protein maize and common maize (Zea may L.). Afr. J. Food Sci. Technol. 2014, 5, 81–89. [Google Scholar]
- Makanjuola, O.M. Amino Acids Profile of Powdered Fermented Maize Meal (Ogi) Fortified With Powdered Unfermented Locust Bean Seeds (Pakia biglobosa). J. Environ. Sci. Toxicol. Food Technol. 2017, 11, 28–32. [Google Scholar]
- Culea, M.; Scrob, S.; Suvar, S.; Podea, P.; Has, I.; Muste, S. Determination of amino acids in corn seed by gas chromatography–mass spectrometry. Anal. Lett. 2015, 48, 37–46. [Google Scholar] [CrossRef]
- Fontaine, J.; Schirmer, B.; Horr, J. Near-Infrared Reflectance Spectroscopy (NIRS) Enables the Fast and Accurate Prediction of Essential Amino Acid Contents. 2. Results for Wheat, Barley, Corn, Triticale, Wheat Bran/Middlings, Rice Bran, and Sorghum. J. Agric. Food Chem. 2002, 50, 3902–3911. [Google Scholar] [CrossRef]
- Budiastra, I.W.; Andrianyta, H.; Purwadaria, H.K. Non-destructive Nutrient Determination of Maize Using NIR Method. In Proceedings of the 11th International Congress in Engineering and Food, Athens, Greece, 22–26 May 2011; Available online: https://www.researchgate.net/publication/294207101 (accessed on 23 July 2022).
- Rosales, A.; Galicia, L.; Oviedo, E.; Islas, C.; Palacios-Rojas, N. Near-Infrared Reflectance Spectroscopy (NIRS) for Protein, Tryptophan, and Lysine Evaluation in Quality Protein Maize (QPM) Breeding Programs. J. Agric. Food Chem. 2011, 59, 10781–10786. [Google Scholar] [CrossRef]
- Fontaine, J.; Schirmer, B.; Horr, J. Near-Infrared Reflectance Spectroscopy Enables the Fast and Accurate Prediction of the Essential Amino Acid Contents in Soy, Rapeseed Meal, Sunflower Meal, Peas, Fishmeal, Meat Meal Products, and Poultry Meal. J. Agric. Food Chem. 2001, 49, 57–66. [Google Scholar] [CrossRef]
- Tallada, J.G.; Palacios-Rojas, N.; Armstrong, P.R. Prediction of maize seed attributes using a rapid single kernel near infrared instrument. J. Cereal Sci. 2009, 50, 381–387. [Google Scholar] [CrossRef]
- Viljoen, M.; Brand, T.S.; Brandt, D.A.; Hoffman, L.C. Prediction of the chemical composition of winter grain and maize with near infrared reflectance spectroscopy. South Afr. J. Plant Soil 2013, 22, 89–93. [Google Scholar] [CrossRef]
- Nankar, A.N.; Scott, P.M.; Pratt, R.C. Compositional Analyses Reveal Relationships among Components of Blue Maize Grains. Plants 2020, 9, 1775. [Google Scholar] [CrossRef] [PubMed]
- Legesse, S.; Girmay, T.; Gelila, A. Near-Infrared Reflectance Spectroscopy (NIRS) for Determination of Tryptophan Content in Quality Protein Maize (QPM). Sci. J. Anal. Chem. 2017, 5, 8–11. [Google Scholar]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-trending of Near Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Geladi, P.; MacDougall, D.; Martens, H. Linearization and scatter-correction for NIR reflectance spectra of meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Mustățe, G.; Ungureanu, E.L.; Iorga, E. Protein Acidic Hydrolysis for Amino Acids Analysis in Food-Progress Over Time: A Short Review. J. Hyg. Eng. Des. 2019, 26, 81–87. [Google Scholar]
- AOAC. Methods of the Association of Official Analysis Chemists. In Official Methods of Analysis, 15th ed.; Virginia Association of Analytical Chemistry: Arlington, VA, USA, 1990; p. 1141. [Google Scholar]
- Inyang, U.E.; Akindolu, B.E.; Elijah, A.I. Nutrient Composition, Amino Acid Profile and Antinutritional Factors of Nixtamalized Maize Flour Supplemented with Sprouted Soybean Flour. Eur. J. Nutr. Food Saf. 2019, 9, 41–51. [Google Scholar] [CrossRef]
- FAO/WHO. Carbohydrates in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation, 14–18 April 1997, Rome, Italy; FAO Food and Nutrition: Rome, Italy, 1998. [Google Scholar]
- Lebot, V.; Malapa, R.; Jung, M. Use of NIRS for the rapid prediction of total N, minerals, sugars and starch in tropical root and tuber crops, New Zealand. J. Crop Hortic. Sci. 2013, 41, 144–153. [Google Scholar] [CrossRef]
- Noel, S.J.; Jørgensen, H.J.; Knudsen, K.E.B. Prediction of protein and amino acid composition and digestibility in individual feedstuffs and mixed diets for pigs using near-infrared spectroscopy. Anim. Nutr. 2021, 7, 1242–1252. [Google Scholar] [CrossRef]
- Lu, G.Q.; Huang, H.H.; Zhang, D.P. Application of near-infrared spectroscopy to predict sweet potato starch thermal properties and noodle quality. J. Zhejiang Univ. Sci. B. 2006, 7, 475–481. [Google Scholar] [CrossRef]
- Cohen, S.A. Quantitation of Amino Acids as 6-Aminoquinolyl-N-hydroxysuccinimidyl Carbamate Derivatives. J. Chromatogr. 2005, 70, 242–267. [Google Scholar] [CrossRef]
Constituents | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
ASP | 0.04 | 2.39 | 0.70 | 0.65 |
SER | 0.13 | 2.85 | 0.98 | 0.72 |
GLU | 0.06 | 7.12 | 2.28 | 2.12 |
GLY | 0.02 | 2.68 | 0.80 | 0.76 |
HIS | 0.04 | 10.38 | 1.46 | 1.87 |
ARG | 0.01 | 6.50 | 0.88 | 1.05 |
THR | 0.02 | 2.33 | 0.85 | 0.60 |
ALA | 0.10 | 8.37 | 2.68 | 2.66 |
PRO | 0.02 | 3.33 | 1.14 | 0.98 |
CYS | 0.01 | 1.35 | 0.25 | 0.24 |
TYR | 0.02 | 2.68 | 0.86 | 0.72 |
VAL | 0.06 | 5.91 | 2.01 | 1.93 |
MET | 0.02 | 3.94 | 0.31 | 0.53 |
LYS | 0.07 | 5.67 | 0.91 | 0.73 |
ILE | 0.23 | 7.33 | 3.81 | 1.76 |
LUE | 0.51 | 19.82 | 6.10 | 6.22 |
PHE | 0.51 | 8.01 | 3.20 | 2.28 |
Calibration | Validation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
N = 63 | (N = 20; Outliers = 9) | |||||||||
Constituent | SEC | R2Cal | SECV | Outliers | Pred | Lab | SEP | Bias | Slope | R2pred |
ASP | 0.22 | 0.86 | 0.37 | 4 | 0.65 | 0.52 | 0.24 | 0.13 | 0.24 | 0.90 |
SER | 0.35 | 0.71 | 0.55 | 6 | 1.08 | 0.76 | 0.49 | 0.32 | 1.01 | 0.61 |
GLU | 0.62 | 0.91 | 1.17 | 4 | 0.76 | 1.96 | 1.16 | −0.32 | 1.24 | 0.70 |
GLY | 0.30 | 0.81 | 0.45 | 4 | 0.75 | 0.65 | 0.39 | 0.17 | 0.39 | 0.80 |
HIS | 1.00 | 0.07 | 1.87 | 4 | 2.01 | 1.12 | 2.22 | 0.88 | 3.12 | 0.12 |
ARG | 0.32 | 0.78 | 0.95 | 5 | 0.70 | 0.50 | 0.24 | 0.14 | 1.18 | 0.94 |
THR | 0.35 | 0.51 | 0.53 | 6 | 0.95 | 0.65 | 0.52 | 0.29 | 1.04 | 0.35 |
ALA | 0.71 | 0.93 | 1.27 | 3 | 2.17 | 2.46 | 0.93 | −0.28 | 0.99 | 0.90 |
PRO | 0.26 | 0.93 | 0.48 | 3 | 1.07 | 1.09 | 0.47 | −0.02 | 0.79 | 0.80 |
CYS | 0.09 | 0.13 | 0.23 | 5 | 0.22 | 0.22 | 0.08 | 0.03 | 0.18 | 0.18 |
TYR | 0.37 | 0.68 | 0.55 | 5 | 0.76 | 0.69 | 0.34 | 0.13 | 1.24 | 0.83 |
VAL | 0.87 | 0.79 | 1.31 | 3 | 2.05 | 1.57 | 0.78 | 0.48 | 1.03 | 0.82 |
MET | 0.14 | 0.09 | 0.54 | 5 | 0.10 | 0.20 | 0.14 | −0.02 | −0.58 | 0.08 |
LYS | 0.36 | 0.20 | 0.72 | 1 | 1.02 | 0.88 | 0.40 | 0.13 | 0.73 | 0.20 |
ILE | 1.68 | 0.09 | 1.78 | 0 | 4.43 | 3.74 | 0.84 | 0.68 | 0.84 | 0.13 |
LUE | 1.75 | 0.91 | 2.88 | 4 | 5.19 | 4.34 | 2.20 | 0.84 | 2.20 | 0.90 |
PHE | 1.12 | 0.75 | 1.45 | 2 | 2.70 | 2.66 | 0.77 | 0.10 | 1.16 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamu, E.O.; Menkir, A.; Adesokan, M.; Fawole, S.; Maziya-Dixon, B. Near-Infrared Reflectance Spectrophotometry (NIRS) Application in the Amino Acid Profiling of Quality Protein Maize (QPM). Foods 2022, 11, 2779. https://doi.org/10.3390/foods11182779
Alamu EO, Menkir A, Adesokan M, Fawole S, Maziya-Dixon B. Near-Infrared Reflectance Spectrophotometry (NIRS) Application in the Amino Acid Profiling of Quality Protein Maize (QPM). Foods. 2022; 11(18):2779. https://doi.org/10.3390/foods11182779
Chicago/Turabian StyleAlamu, Emmanuel Oladeji, Abebe Menkir, Michael Adesokan, Segun Fawole, and Busie Maziya-Dixon. 2022. "Near-Infrared Reflectance Spectrophotometry (NIRS) Application in the Amino Acid Profiling of Quality Protein Maize (QPM)" Foods 11, no. 18: 2779. https://doi.org/10.3390/foods11182779
APA StyleAlamu, E. O., Menkir, A., Adesokan, M., Fawole, S., & Maziya-Dixon, B. (2022). Near-Infrared Reflectance Spectrophotometry (NIRS) Application in the Amino Acid Profiling of Quality Protein Maize (QPM). Foods, 11(18), 2779. https://doi.org/10.3390/foods11182779