Quantum-Dot-Bead-Based Fluorescence-Linked Immunosorbent Assay for Sensitive Detection of Cry2A Toxin in Cereals Using Nanobodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Expression and Purification of Anti-Cry2A Nanobodies
2.3. Preparation of QBs-PAb
2.4. QBs-Based FLISA
2.5. Cross-Reactivity
2.6. Analysis of Spiked Cereal Samples
3. Results and Discussion
3.1. Preparation and Characterization of the Anti-Cry2A Nanobody
3.2. Nanobody-Based DAS-ELISA
3.3. Characterization of QBs-PAb Conjugates
3.4. Development of QB-FLISA
3.5. Cross-Reactivity
3.6. Sample Analysis and Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.W.; Zhang, W.; Liu, Y.; Wang, J.H.; Wang, G.Y.; Liu, Y.J. Development of monoclonal antibody-based sensitive ELISA for the determination of Cry1Ie protein in transgenic plant. Anal. Bioanal. Chem. 2016, 408, 8231–8239. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.; Gómez, I.; Porta, H.; García-Gómez, B.I.; Rodriguez-Almazan, C.; Pardo, L.; Soberón, M. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb. Biotechnol. 2013, 6, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Gu, Y.; Liu, X.; Lin, Y.; Yu, X.Q. Possible insecticidal mechanisms mediated by immune response related Cry-binding proteins in the midgut juice of Plutella xylostella and Spodoptera exigua. J. Agric. Food Chem. 2017, 65, 2048–2055. [Google Scholar] [CrossRef]
- Pardo-López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 2013, 37, 3–22. [Google Scholar] [CrossRef]
- Lambert, B.; Pefereon, M. Insecticidal promise of Bacillus thuringiensis. BioScience 1992, 42, 112–122. [Google Scholar] [CrossRef]
- de Maagd, R.A.; Bosch, D.; Stiekema, W. Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends Plant Sci. 1999, 4, 9–13. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, X.; Liu, X.; Liu, Y.; Hu, X.; Zhong, J.; Zhang, C.; Liu, X. Selection and application of broad-specificity human domain antibody for simultaneous detection of Bt Cry toxins. Anal. Biochem. 2016, 512, 70–77. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, D.; Yan, J.; Ma, Z.; Luo, X.; Wei, T.; Xu, Y.; He, Q. An ultrasensitive electrochemical immunosensor for Cry1Ab based on phage displayed peptides. Talanta 2018, 179, 646–651. [Google Scholar] [CrossRef]
- Gao, H.; Wen, L.; Wu, Y.; Fu, Z.; Wu, G. An ultrasensitive label-free electrochemiluminescent immunosensor for measuring Cry1Ab level and genetically modified crops content. Biosens. Bioelectron. 2017, 97, 122–127. [Google Scholar] [CrossRef]
- Faheem, A.; Qin, Y.; Nan, W.; Hu, Y. Advances in the immunoassays for detection of Bacillus thuringiensis crystalline toxins. J. Agric. Food Chem. 2021, 69, 10407–10418. [Google Scholar] [CrossRef] [PubMed]
- Kamle, S.; Ali, S. Genetically modified crops: Detection strategies and biosafety issues. Gene 2013, 522, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Albright, V.C., III; Hellmich, R.L.; Coats, J.R. A review of cry protein detection with enzyme-linked immunosorbent assays. J. Agric. Food Chem. 2016, 64, 2175–2189. [Google Scholar] [CrossRef] [PubMed]
- Fraiture, M.A.; Herman, P.; Taverniers, I.; De Loose, M.; Deforce, D.; Roosens, N.H. Current and new approaches in GMO detection: Challenges and solutions. Biomed Res. Int. 2015, 2015, 392872. [Google Scholar] [CrossRef] [PubMed]
- Freitas, M.; Correr, W.; Cancino-Bernardi, J.; Barroso, M.F.; Delerue-Matos, C.; Zucolotto, V. Impedimetric immunosensors for the detection of Cry1Ab protein from genetically modified maize seeds. Sens. Actuator B Chem. 2016, 237, 702–709. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, X.; Liu, Y.; Zhang, C.; Xie, Y.; Zhong, J.; Xu, C.; Liu, X. Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model. Anal. Bioanal. Chem. 2017, 409, 1985–1994. [Google Scholar] [CrossRef] [PubMed]
- Kamle, S.; Ojha, A.; Kumar, A. Development of an enzyme linked immunosorbant assay for the detection of Cry2Ab protein in transgenic plants. GM Crops 2011, 2, 118–125. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, C.; Zhang, X.; Liu, Y.; Zhong, J.; Xie, Y.; Xu, C.; Ding, Y.; Zhang, L.; Liu, X. Production and characterization of monoclonal antibody broadly recognizing Cry1 toxins by use of designed polypeptide as hapten. Anal. Chem. 2016, 88, 7023–7032. [Google Scholar] [CrossRef]
- Dong, S.; Gao, M.; Bo, Z.; Guan, L.; Hu, X.; Zhang, H.; Liu, B.; Li, P.; He, K.; Liu, X.; et al. Production and characterization of a single-chain variable fragment antibody from a site-saturation mutagenesis library derived from the anti-Cry1A monoclonal antibody. Int. J. Biol. Macromol. 2020, 149, 60–69. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Xie, Y.; Wu, A.; Zai, X.; Liu, X. High-affinity phage-displayed peptide as a recognition probe for the detection of Cry2Ad2-3. Int. J. Biol. Macromol. 2019, 137, 562–567. [Google Scholar] [CrossRef]
- Peyman, B.; Mozafar, M.; Ali, H. ScFv improvement approaches. Protein Pept. Lett. 2018, 25, 222–229. [Google Scholar] [CrossRef]
- Liscano, Y.; Oñate-Garzón, J.; Delgado, J.P. Peptides with Dual Antimicrobial–Anticancer Activity: Strategies to Overcome Peptide Limitations and Rational Design of Anticancer Peptides. Molecules 2020, 25, 4245. [Google Scholar] [CrossRef] [PubMed]
- Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hammers, C.; Songa, E.B.; Bendahman, N.; Hammers, R. Naturally occurring antibodies devoid of light chains. Nature 1993, 363, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Salvador, J.P.; Vilaplana, L.; Marco, M.P. Nanobody: Outstanding features for diagnostic and therapeutic applications. Anal. Bioanal. Chem. 2019, 411, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, C.; Yang, F.; Lin, J.; Wang, Y.; Wu, S.; Sun, Y.; Zhang, B.; Lv, H.; Ji, X.; et al. Selection of Specific Nanobodies against Lupine Allergen Lup an 1 for Immunoassay Development. Foods 2021, 10, 2428. [Google Scholar] [CrossRef]
- Yang, J.; Si, R.; Wu, G.; Wang, Y.; Fang, R.; Liu, F.; Wang, F.; Lei, H.; Shen, Y.; Zhang, Q.; et al. Preparation of Specific Nanobodies and Their Application in the Rapid Detection of Nodularin-R in Water Samples. Foods 2021, 10, 2758. [Google Scholar] [CrossRef]
- Muyldermans, S.; Baral, T.N.; Cortez Retamozzo, V.; De Baetselier, P.; De Genst, E.; Kinne, J.; Leonhardt, H.; Magez, S.; Nguyen, V.K.; Revets, H.; et al. Camelid immunoglobulins and nanobody technology. Vet. Immunol. Immunop. 2009, 128, 178–183. [Google Scholar] [CrossRef]
- Kumar, B.; Malhotra, K.; Fuku, R.; Van Houten, J.; Qu, G.Y.; Piunno, P.A.E.; Krull, U.J. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. TrAC Trends Anal. Chem. 2021, 139, 116256. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, P.; Wang, J.; Zhou, L.; Yang, R. A novel electro-driven immunochromatography assay based on upconversion nanoparticles for rapid pathogen detection. Biosens. Bioelectron. 2020, 152, 112037. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, X.; Lu, Z.; Tao, X. Comparative Study of Time-Resolved Fluorescent Nanobeads, Quantum Dot Nanobeads and Quantum Dots as Labels in Fluorescence Immunochromatography for Detection of Aflatoxin B1 in Grains. Biomolecules 2020, 10, 575. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Shen, X.; Li, Z.; Wang, J.; Li, X.; Xu, Z.; Shen, Y.; Lei, Y.; Huang, X.; Wang, X.; et al. Antibody Generation and Rapid Immunochromatography Using Time-Resolved Fluorescence Microspheres for Propiconazole: Fungicide Abused as Growth Regulator in Vegetable. Foods 2022, 11, 324. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Ye, Q.; Sheng, Y.; Li, F.; Zhou, B.; Shao, Y.; Wang, C.; Zhang, J.; Xue, L.; Chen, M.; et al. Quantitative detection of aflatoxin B1 using quantum dots-based immunoassay in a recyclable gravity-driven microfluidic chip. Biosens. Bioelectron. 2021, 190, 113394. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.; Fang, H.; Xiong, H.; Wei, D.; Leng, Y.; Hu, X.; Huang, X.; Xiong, Y. Eco-Friendly Fluorescent ELISA Based on Bifunctional Phage for Ultrasensitive Detection of Ochratoxin A in Corn. Foods 2021, 10, 2429. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Jin, J.; Zhu, W.; Zuo, Y.; Song, Y. Detection of Pyrethroids in Food by Immunofluorescence Enhanced Method Based on Three-Layer Core-Shell Structure Upconversion Materials. Foods 2022, 11, 990. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, L.; Ahmad, W.; Rong, Y.; Li, H.; Hu, Y.; Chen, Q. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chem. 2021, 349, 129157. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Ma, J.; Cheng, Y.; Wang, H.; Sun, J.; Yan, Y. Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B1, dexyonivalenol, and zearalenone in grains. Food Control 2020, 117, 107331. [Google Scholar] [CrossRef]
- Liu, B.; Li, P.; Wang, Y.; Guo, Y.; Zhang, H.; Dong, S.; Xiong, Y.; Zhang, C. Quantum dot submicrobead–based immunochromatographic assay for the determination of parathion in agricultural products. Food Anal. Method. 2020, 13, 1736–1745. [Google Scholar] [CrossRef]
- Li, P.; Yang, C.; Liu, B.; Wu, Q.; Wang, Y.; Dong, S.; Zhang, H.; Vasylieva, N.; Hammock, B.D.; Zhang, C. Sensitive Immunochromatographic Assay Using Highly Luminescent Quantum Dot Nanobeads as Tracer for the Detection of Cyproheptadine Hydrochloride in Animal-Derived Food. Front. Chem. 2020, 8, 575. [Google Scholar] [CrossRef]
- Qie, Z.; Yan, W.; Gao, Z.; Meng, W.; Xiao, R.; Wang, S. Ovalbumin antibody-based fluorometric immunochromatographic lateral flow assay using CdSe/ZnS quantum dot beads as label for determination of T-2 toxin. Microchim. Acta 2019, 186, 816. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, P.; Liu, B.; Liu, Y.; Wang, Y.; Tao, T.; Xu, J.; Hammock, B.D.; Liu, X.; Guan, R.; et al. Phage-displayed nanobody based double antibody sandwich chemiluminescent immunoassay for the detection of Cry2A toxin in cereals. Food Agric. Immunol. 2019, 30, 924–936. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Duan, H.; Guo, L.; Leng, Y.; Lai, W.; Xiong, Y. Quantum dot nanobead-based multiplexed immunochromatographic assay for simultaneous detection of aflatoxin B1 and zearalenone. Anal. Chim. Acta 2018, 1025, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, C.; Zhong, J.; Hu, H.; Luo, S.; Liu, X.; Zhang, X.; Liu, Y.; Liu, X. Construction of an Immunized Rabbit Phage Display Library for Selecting High Activity against Bacillus thuringiensis Cry1F Toxin Single-Chain Antibodies. J. Agric. Food Chem. 2017, 65, 6016–6022. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Duan, Z.; Liu, X.; Deng, X.; Tang, Z. Development of a Nanobody-Based Competitive Dot ELISA for Visual Screening of Ochratoxin A in Cereals. Food Anal. Mehtods 2017, 10, 3558–3564. [Google Scholar] [CrossRef]
Detection Method | Antibody | LOD | Working Range | Cry Toxin | Matrix | Reference |
---|---|---|---|---|---|---|
Colorimetric ELISA | Traditional antibody | 0.27–0.51 ng/mL | 0.45–15.71 ng/mL | Cry 1Ie | maize | [2] |
Colorimetric IC-ELISA | Human domain antibody | 0.029–0.074 μg/mL | 0.258–1.407 μg/mL | Cry1Ab, Cry1Ac, Cry1B, Cry1C, and Cry1F | wheat | [8] |
Electrochemiluminescent immunosensor | Traditional antibody | 3.0 pg/mL | 0.010–1.0 ng/mL | Cry1Ab | rice and maize | [10] |
Colorimetric ELISA | Traditional antibody | 0.47 ng/mL | 2.5–100 ng/mL | Cry1Ab | rice | [16] |
Colorimetric ELISA | Traditional antibody | 15 ng/mL | 0.015–32 μg/mL | Cry1 | – | [18] |
Colorimetric ELISA | ScFv | 4.6–9.2 ng/mL | 12–250 ng/mL | Cry1Aa, Cry1Ab, and Cry1Ac | – | [19] |
Colorimetric ELISA | Phage-displayed peptide | 8 ng/mL | 10–50.625 ng/mL | Cry2Ad2-3 | corn | [20] |
QB-FLISA | Nanobody | 0.41 ng/mL | 2.6–1000 ng/mL | Cry2A | corn and rice | This work |
Matrix | Spike Level (ng/g) | Intra-Assay (n = 3) | Inter-Assay (n = 3) | Commercial ELISA Kit (n = 3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD (ng/g) | Recovery (%) | CV (%) | Mean ± SD (ng/g) | Recovery (%) | CV (%) | Mean ± SD (ng/g) | Recovery (%) | CV (%) | ||
Corn | 200 | 231.2 ± 16.6 | 115.6 | 7.2 | 223.5 ± 15.7 | 117.3 | 7.0 | 222.8 ± 15.2 | 111.4 | 6.8 |
1000 | 962.4 ± 52.8 | 96.2 | 5.5 | 941.1 ± 64.5 | 94.1 | 6.9 | 976.2 ± 57.5 | 97.6 | 5.9 | |
5000 | 4545 ± 327 | 90.9 | 7.2 | 4480 ± 346 | 89.6 | 7.7 | 4525 ± 371 | 90.5 | 8.2 | |
Rice | 200 | 210.8 ± 16.5 | 105.4 | 7.8 | 221.9 ± 18.3 | 109.5 | 8.2 | 233.8 ± 20.4 | 116.9 | 8.7 |
1000 | 1027 ± 76.2 | 102.7 | 7.4 | 1018 ± 76.1 | 101.8 | 7.5 | 1082 ± 72.6 | 108.2 | 6.7 | |
5000 | 4330 ± 269 | 86.6 | 6.2 | 4412 ± 301 | 88.2 | 6.8 | 4635 ± 329 | 92.7 | 7.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; You, A.; Fu, X.; Zhang, M.; Cui, H.; Zhang, B.; Qin, W.; Ye, Z.; Yu, X. Quantum-Dot-Bead-Based Fluorescence-Linked Immunosorbent Assay for Sensitive Detection of Cry2A Toxin in Cereals Using Nanobodies. Foods 2022, 11, 2780. https://doi.org/10.3390/foods11182780
Qiu Y, You A, Fu X, Zhang M, Cui H, Zhang B, Qin W, Ye Z, Yu X. Quantum-Dot-Bead-Based Fluorescence-Linked Immunosorbent Assay for Sensitive Detection of Cry2A Toxin in Cereals Using Nanobodies. Foods. 2022; 11(18):2780. https://doi.org/10.3390/foods11182780
Chicago/Turabian StyleQiu, Yulou, Ajuan You, Xianshu Fu, Mingzhou Zhang, Haifeng Cui, Biao Zhang, Weiwei Qin, Zihong Ye, and Xiaoping Yu. 2022. "Quantum-Dot-Bead-Based Fluorescence-Linked Immunosorbent Assay for Sensitive Detection of Cry2A Toxin in Cereals Using Nanobodies" Foods 11, no. 18: 2780. https://doi.org/10.3390/foods11182780
APA StyleQiu, Y., You, A., Fu, X., Zhang, M., Cui, H., Zhang, B., Qin, W., Ye, Z., & Yu, X. (2022). Quantum-Dot-Bead-Based Fluorescence-Linked Immunosorbent Assay for Sensitive Detection of Cry2A Toxin in Cereals Using Nanobodies. Foods, 11(18), 2780. https://doi.org/10.3390/foods11182780