Antifungal Activities of Essential Oils in Vapor Phase against Botrytis cinerea and Their Potential to Control Postharvest Strawberry Gray Mold
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. EOs
2.3. Fungal Growth Inhibition Assays
2.3.1. In Vitro Testing of Inhibitory Effect
2.3.2. Determination of Inhibitory Concentrations
2.3.3. In Vivo Evaluation of Antifungal Activity of EOs on Strawberries
2.4. Sensory Analysis
2.5. Statistical Analysis
3. Results
3.1. Evaluation of EOs Inhibitory Properties
3.2. Inhibitory Concentrations of EOs
3.3. Inhibition of B. cinerea on Strawberries
3.4. Sensory Analysis of Strawberries Treated by EOs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mezzetti, B.; Giampieri, F.; Zhang, Y.-T.; Zhong, C.-F. Status of strawberry breeding programs and cultivation systems in Europe and the rest of the world. J. Berry Res. 2018, 8, 205–221. [Google Scholar] [CrossRef]
- Parvez, S.; Wani, I.A. Postharvest biology and technology of strawberry. In Postharvest Biology and Technology of Temperate Fruits; Mir, S., Shah, M., Mir, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 331–348. [Google Scholar] [CrossRef]
- Simpson, D. The economic importance of strawberry crops. In The Genomes of Rosaceous Berries and Their Wild Relatives; Springer: Cham, Germany, 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Trinetta, V.; McDaniel, A.; Batziakas, K.G.; Yucel, U.; Nwadike, L.; Pliakoni, E. Antifungal packaging film to maintain quality and control postharvest diseases in strawberries. Antibiotics 2020, 9, 618. [Google Scholar] [CrossRef] [PubMed]
- Gol, N.B.; Patel, P.R.; Rao, T.V.R. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 2013, 85, 185–195. [Google Scholar] [CrossRef]
- Salami, P.; Ahmadi, H.; Keyhani, A.; Sarsaifee, M. Strawberry post-harvest energy losses in Iran. Researcher 2010, 2, 67–73. [Google Scholar]
- Petrasch, S.; Knapp, S.J.; van Kan, J.A.L.; Blanco-Ulate, B. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol. Plant Pathol. 2019, 20, 877–892. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-H.; Chen, R.-Y.; Chou, J.-Y. Screening and Evaluation of Yeast Antagonists for Biological Control of Botrytis cinerea on Strawberry Fruits. Mycobiology 2018, 46, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wu, H.; Chen, K.; Feng, J.; Zhang, Y. Antifungal Activities and Mode of Action of Cymbopogon citratus, Thymus vulgraris, and Origanum heracleoticum Essential Oil Vapors against Botrytis cinerea and Their Potential Application to Control Postharvest Strawberry Gray Mold. Foods 2021, 10, 2451. [Google Scholar] [CrossRef]
- Tournas, V.; Katsoudas, E. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 2005, 105, 11–17. [Google Scholar] [CrossRef]
- Mari, M.; Bautista-Baños, S.; Sivakumar, D. Decay control in the postharvest system: Role of microbial and plant volatile organic compounds. Postharvest Biol. Technol. 2016, 122, 70–81. [Google Scholar] [CrossRef]
- Adeyinka, A.; Richard, F. Application of phytochemical extracts and essential oils in food products: A review. Int. J. Biotechnol. Food Sci. 2015, 3, 31–35. [Google Scholar]
- Aguilar-González, A.E.; Palou, E.; López-Malo, A. Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innov. Food Sci. Emerg. Technol. 2015, 32, 181–185. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Herman, R.A.; Ayepa, E.; Shittu, S.; Fometu, S.S.; Wang, J. Essential oils and their applications—A mini review. Adv. Nutr. Food Sci. 2019, 4, 1–13. [Google Scholar]
- Bora, H.; Kamle, M.; Mahato, D.K.; Tiwari, P.; Kumar, P. Citrus essential oils (CEOs) and their applications in food: An overview. Plants 2020, 9, 357. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, M.; Bhandari, B.; Mujumdar, A.S. Edible flower essential oils: A review of chemical compositions, bioactivities, safety and applications in food preservation. Food Res. Int. 2021, 139, 109809. [Google Scholar] [CrossRef]
- Anupama, G.; Netravathi, D.; Avinash, M. Essential oils: A novel source for food preservation. J. Pharmacogn. Phytochem. 2019, 8, 2098–2101. [Google Scholar]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef]
- Ni, Z.-J.; Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci. Technol. 2021, 110, 78–89. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Lopez-reyes, J.G.; Spadaro, D.; Prelle, A.; Garibaldi, A.; Gullino, M.L. Efficacy of Plant Essential Oils on Postharvest Control of Rots Caused by Fungi on Different Stone Fruits In Vivo. J. Food Prot. 2013, 76, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Jurado, F.; Navarro-Cruz, A.R.; Ochoa-Velasco, C.E.; Palou, E.; López-Malo, A.; Ávila-Sosa, R. Essential oils in vapor phase as alternative antimicrobials: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Quintieri, L.; Fancello, F.; Caputo, L.; Sorrentino, A.; Zara, S.; Lippolis, V.; Cervellieri, S.; Fanelli, F.; Corvino, A.; Pace, B.; et al. Effect of Gaseous Citral on Table Grapes Contaminated by Rhizopus oryzae ITEM 18876. Foods 2022, 11, 2478. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-J.; Lin, Y.-L.; Huang, B.-B.; Lin, Y.-T.; Li, H.-K.; Lu, W.-J.; Lin, T.-C.; Tsui, Y.-C.; Lin, H.-T.V. Solid- and vapour-phase antifungal activities of six essential oils and their applications in postharvest fungal control of peach (Prunus persica L. Batsch). LWT 2022, 156, 113031. [Google Scholar] [CrossRef]
- Sumalan, R.M.; Kuganov, R.; Obistioiu, D.; Popescu, I.; Radulov, I.; Alexa, E.; Negrea, M.; Salimzoda, A.F.; Sumalan, R.L.; Cocan, I. Assessment of Mint, Basil, and Lavender Essential Oil Vapor-Phase in Antifungal Protection and Lemon Fruit Quality. Molecules 2020, 25, 1831. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Rousos, C.; Xylia, P.; Tzortzakis, N. Vapour Application of Sage Essential Oil Maintain Tomato Fruit Quality in Breaker and Red Ripening Stages. Plants 2021, 10, 2645. [Google Scholar] [CrossRef]
- Laird, K.; Phillips, C. Vapour phase: A potential future use for essential oils as antimicrobials? Lett. Appl. Microbiol. 2012, 54, 169–174. [Google Scholar] [CrossRef]
- Banani, H.; Olivieri, L.; Santoro, K.; Garibaldi, A.; Gullino, M.L.; Spadaro, D. Thyme and savory essential oil efficacy and induction of resistance against Botrytis cinerea through priming of defense responses in apple. Foods 2018, 7, 11. [Google Scholar] [CrossRef]
- Šernaitė, L.; Rasiukevičiūtė, N.; Valiuškaitė, A. Application of plant extracts to control postharvest gray mold and susceptibility of apple fruits to B. cinerea from different plant hosts. Foods 2020, 9, 1430. [Google Scholar] [CrossRef]
- Aouadi, G.; Grami, L.K.; Taibi, F.; Bouhlal, R.; Elkahoui, S.; Zaagueri, T.; Jallouli, S.; Chaanbi, M.; Hajlaoui, M.R.; Mediouni Ben Jemâa, J. Assessment of the efficiency of Mentha pulegium essential oil to suppress contamination of stored fruits by Botrytis cinerea. J. Plant Dis. Prot. 2022, 129, 881–893. [Google Scholar] [CrossRef]
- Hou, H.; Zhang, X.; Zhao, T.; Zhou, L. Effects of Origanum vulgare essential oil and its two main components, carvacrol and thymol, on the plant pathogen Botrytis cinerea. PeerJ 2020, 8, e9626. [Google Scholar] [CrossRef] [PubMed]
- Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Amiri, A.; Sourestani, M.M.; Mortazavi, S.M.H.; Kiasat, A.R.; Ramezani, Z. Efficiency of chemical composition of some essential oils against Botrytis cinerea, the pathogen of post-harvest strawberry fruits. J. Food Meas. Charact. 2022, 16, 66–75. [Google Scholar] [CrossRef]
- Wang, L.; Hu, W.; Deng, J.; Liu, X.; Zhou, J.; Li, X. Antibacterial activity of Litsea cubeba essential oil and its mechanism against Botrytis cinerea. RSC Adv. 2019, 9, 28987–28995. [Google Scholar] [CrossRef] [PubMed]
- Reang, S.P.; Mishra, J.; Prasad, R. In vitro antifungal activities of five plant essential oils against Botrytis cinerea causing gray mold of orange. J. Pharmacogn. Phytochem. 2020, 9, 1046–1048. [Google Scholar]
- Wei, Y.; Wei, Y.; Xu, F.; Shao, X. The combined effects of tea tree oil and hot air treatment on the quality and sensory characteristics and decay of strawberry. Postharvest Biol. Technol. 2018, 136, 139–144. [Google Scholar] [CrossRef]
- Ansarifar, E.; Moradinezhad, F. Preservation of strawberry fruit quality via the use of active packaging with encapsulated thyme essential oil in zein nanofiber film. Int. J. Food Sci. Technol. 2021, 56, 4239–4247. [Google Scholar] [CrossRef]
- Freche, E.; Gieng, J.; Pignotti, G.; Ibrahim, S.A.; Feng, X. Applications of lemon or cinnamon essential oils in strawberry fruit preservation: A review. J. Food Process. Preserv. 2022, 46, e16526. [Google Scholar] [CrossRef]
- Kahramanoğlu, İ.; Panfilova, O.; Kesimci, T.G.; Bozhüyük, A.U.; Gürbüz, R.; Alptekin, H. Control of Postharvest Gray Mold at Strawberry Fruits Caused by Botrytis cinerea and Improving Fruit Storability through Origanum onites L. and Ziziphora clinopodioides L. Volatile Essential Oils. Agronomy 2022, 12, 389. [Google Scholar] [CrossRef]
- Kaliamurthi, S.; Selvaraj, G.; Hou, L.; Li, Z.; Wei, Y.; Gu, K.; Wei, D. Synergism of essential oils with lipid based nanocarriers: Emerging trends in preservation of grains and related food products. Grain Oil Sci. Technol. 2019, 2, 21–26. [Google Scholar] [CrossRef]
- Tančinová, D.; Hlebová, M.; Foltinová, D.; Mašková, Z.; Barboráková, Z. Influence of Eight Chosen Essential Oils in the Vapor Phase on the Growth of Rhizopus stolonifer and Rhizopus lyococcus. Slovak J. Food Sci. 2021, 15, 378–386. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Tilaoui, M.; Ait Mouse, H.; Jaafari, A.; Zyad, A. Comparative Phytochemical Analysis of Essential Oils from Different Biological Parts of Artemisia herba alba and Their Cytotoxic Effect on Cancer Cells. PLoS ONE 2015, 10, e0131799. [Google Scholar] [CrossRef] [PubMed]
- Ben Farhat, M.; Jordán, M.J.; Chaouch-Hamada, R.; Landoulsi, A.; Sotomayor, J.A. Phenophase effects on sage (Salvia officinalis L.) yield and composition of essential oil. J. Appl. Res. Med. Aromat. Plants 2016, 3, 87–93. [Google Scholar] [CrossRef]
- Dušková, E.; Dušek, K.; Indrák, P.; Smékalová, K. Postharvest changes in essential oil content and quality of lavender flowers. Ind. Crops Prod. 2016, 79, 225–231. [Google Scholar] [CrossRef]
- Méndez-Tovar, I.; Novak, J.; Sponza, S.; Herrero, B.; Asensio-S-Manzanera, M.C. Variability in essential oil composition of wild populations of Labiatae species collected in Spain. Ind. Crops Prod. 2016, 79, 18–28. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control 2008, 19, 1130–1138. [Google Scholar] [CrossRef]
- Kujur, A.; Kumar, A.; Singh, P.P.; Prakash, B. Fabrication, Characterization, and Antifungal Assessment of Jasmine Essential Oil-Loaded Chitosan Nanomatrix against Aspergillus flavus in Food System. Food Bioprocess Technol. 2021, 14, 554–571. [Google Scholar] [CrossRef]
- El-Baz, A.M.; Mosbah, R.A.; Goda, R.M.; Mansour, B.; Sultana, T.; Dahms, T.E.; El-Ganiny, A.M. Back to nature: Combating candida albicans biofilm, phospholipase and hemolysin using plant essential oils. Antibiotics 2021, 10, 81. [Google Scholar] [CrossRef]
- Nerilo, S.B.; Rocha, G.H.O.; Tomoike, C.; Mossini, S.A.G.; Grespan, R.; Mikcha, J.M.G.; Machinski Jr, M. Antifungal properties and inhibitory effects upon aflatoxin production by Zingiber officinale essential oil in Aspergillus flavus. Int. J. Food Sci. Technol. 2016, 51, 286–292. [Google Scholar] [CrossRef]
- Davari, M.; Ezazi, R. Chemical composition and antifungal activity of the essential oil of Zhumeria majdae, Heracleum persicum and Eucalyptus sp. against some important phytopathogenic fungi. J. Mycol. Médicale 2017, 27, 463–468. [Google Scholar] [CrossRef]
- Sharma, A.; Rajendran, S.; Srivastava, A.; Sharma, S.; Kundu, B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J. Biosci. Bioeng. 2017, 123, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Souissi, M.; Azelmat, J.; Chaieb, K.; Grenier, D. Antibacterial and anti-inflammatory activities of cardamom (Elettaria cardamomum) extracts: Potential therapeutic benefits for periodontal infections. Anaerobe 2020, 61, 102089. [Google Scholar] [CrossRef] [PubMed]
- Heimesaat, M.M.; Mousavi, S.; Weschka, D.; Bereswill, S. Anti-Pathogenic and Immune-Modulatory Effects of Peroral Treatment with Cardamom Essential Oil in Acute Murine Campylobacteriosis. Microorganisms 2021, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Mutlu-Ingok, A.; Karbancioglu-Guler, F. Cardamom, cumin, and dill weed essential oils: Chemical compositions, antimicrobial activities, and mechanisms of action against Campylobacter spp. Molecules 2017, 22, 1191. [Google Scholar] [CrossRef]
- Achar, P.N.; Quyen, P.; Adukwu, E.C.; Sharma, A.; Msimanga, H.Z.; Nagaraja, H.; Sreenivasa, M.Y. Investigation of the antifungal and anti-aflatoxigenic potential of plant-based essential oils against Aspergillus flavus in peanuts. J. Fungi 2020, 6, 383. [Google Scholar] [CrossRef]
- Krzyśko-Łupicka, T.; Sokół, S.; Piekarska-Stachowiak, A. Evaluation of fungistatic activity of eight selected essential oils on four heterogeneous fusarium isolates obtained from cereal grains in Southern Poland. Molecules 2020, 25, 292. [Google Scholar] [CrossRef]
- Ben-Jabeur, M.; Ghabri, E.; Myriam, M.; Hamada, W. Thyme essential oil as a defense inducer of tomato against gray mold and Fusarium wilt. Plant Physiol. Biochem. 2015, 94, 35–40. [Google Scholar] [CrossRef]
- Ben Jabeur, M.; Somai-Jemmali, L.; Hamada, W. Thyme essential oil as an alternative mechanism: Biofungicide-causing sensitivity of Mycosphaerella graminicola. J. Appl. Microbiol. 2017, 122, 932–939. [Google Scholar] [CrossRef]
- Shi, C.; Song, K.; Zhang, X.; Sun, Y.; Sui, Y.; Chen, Y.; Jia, Z.; Sun, H.; Sun, Z.; Xia, X. Antimicrobial Activity and Possible Mechanism of Action of Citral against Cronobacter sakazakii. PLoS ONE 2016, 11, e0159006. [Google Scholar] [CrossRef]
- Leite, M.C.; Bezerra, A.P.; de Sousa, J.P.; Guerra, F.Q.; Lima Ede, O. Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans. Evid. Based Complement. Altern. Med. eCAM 2014, 2014, 378280. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Shao, X.; Wei, Y.; Li, Y.; Xu, F.; Wang, H. Solidago canadensis L. Essential Oil Vapor Effectively Inhibits Botrytis cinerea Growth and Preserves Postharvest Quality of Strawberry as a Food Model System. Front. Microbiol. 2016, 7, 1179. [Google Scholar] [CrossRef] [PubMed]
- Shehata, S.A.; Abdeldaym, E.A.; Ali, M.R.; Mohamed, R.M.; Bob, R.I.; Abdelgawad, K.F. Effect of some citrus essential oils on post-harvest shelf life and physicochemical quality of strawberries during cold storage. Agronomy 2020, 10, 1466. [Google Scholar] [CrossRef]
- Perumal, A.B.; Huang, L.; Nambiar, R.B.; He, Y.; Li, X.; Sellamuthu, P.S. Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chem. 2022, 375, 131810. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Sharma, L.; Maity, T. Chapter 34—Enrichment of edible coatings and films with plant extracts or essential oils for the preservation of fruits and vegetables. In Biopolymer-Based Formulations; Pal, K., Banerjee, I., Sarkar, P., Kim, D., Deng, W.-P., Dubey, N.K., Majumder, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 859–880. [Google Scholar] [CrossRef]
- Zhang, X.; Ismail, B.B.; Cheng, H.; Jin, T.Z.; Qian, M.; Arabi, S.A.; Liu, D.; Guo, M. Emerging chitosan-essential oil films and coatings for food preservation—A review of advances and applications. Carbohydr. Polym. 2021, 273, 118616. [Google Scholar] [CrossRef]
- Wang, D.; Yang, H.; Lu, X.; Wu, Y.; Blasi, F. The Inhibitory Effect of Chitosan Based Films, Incorporated with Essential Oil of Perilla frutescens Leaves, against Botrytis cinerea during the Storage of Strawberries. Processes 2022, 10, 706. [Google Scholar] [CrossRef]
- Tian, Q.; Zhou, W.; Cai, Q.; Ma, G.; Lian, G. Concepts, processing, and recent developments in encapsulating essential oils. Chin. J. Chem. Eng. 2021, 30, 255–271. [Google Scholar] [CrossRef]
- Phothisarattana, D.; Harnkarnsujarit, N. Migration, aggregations and thermal degradation behaviors of TiO2 and ZnO incorporated PBAT/TPS nanocomposite blown films. Food Packag. Shelf Life 2022, 33, 100901. [Google Scholar] [CrossRef]
Essential Oil | Plant | Compound | Occurrence in % |
---|---|---|---|
Cardamom | Elettaria cardamomum L. | α-Terpineol acetate | 43.7 |
1,8-Cineole | 33.1 | ||
Eucalyptus | Eucalyptus globulus L. | 1,8-Cineole | 79.30 |
(R)-(+)-Limonene | 6.90 | ||
p-Cymene | 6.30 | ||
Ginger | Zingiber officinale Roscoe | (−)-Zingiberene | 34.7 |
α-Curcumene | 13.2 | ||
Cadinene, (+)- | 13.1 | ||
Farnesene | 12.5 | ||
β-Myrcene | 7.7 | ||
Grapefruit | Citrus × paradisi Macfadyen | 1,8-Cineole | 92.2 |
Jasmine | Jasminum officinale L. | (−)-Borneol | 37.7 |
(R)-(+)-Limonene | 19.2 | ||
Benzyl benzoate | 10.9 | ||
Lavender | Lavandula angustifolia Mill. | (−)-Linalool | 35.5 |
(−)-Bornyl acetate | 35.1 | ||
Lemongrass | Cymbopogon flexuosus Nees ex. Steud | α-Citral | 35.2 |
β-Myrcene | 28.3 | ||
β-Citral | 28.3 | ||
Litsea | Litsea cubeba (Lour.) Pers | α-Citral | 38 |
β-Citral | 31.4 | ||
(R)-(+)-Limonene | 14.6 | ||
Mint | Mentha aquatica L. var. citrata (Her.) | Geraniol | 42.1 |
(−)-Linalool | 37.2 | ||
Geranyl acetate | 5.2 | ||
Peppermint | Mentha × piperita L. | Menth-1-en-4-ol | 42.5 |
(±)-Citronellal | 23.1 | ||
(−)-Borneol | 8.5 | ||
1,8-Cineole | 7.2 | ||
(+)-α-pinene | 6.0 | ||
2-Undecanone | 5.8 | ||
Petitgrain | Citrus × aurantium L. | (R)-(+)-Limonene | 31.9 |
(−)-β-Pinene | 17.5 | ||
α-Citral | 12.2 | ||
β-Citral | 8.2 | ||
Geraniol | 6.9 | ||
Geranyl acetate | 6.7 | ||
Sage | Salvia officinalis L. | α-Thujone | 23.0 |
(−)-Isopulegol | 20.1 | ||
1,8-Cineole | 11.0 | ||
(−)-Alloaromadendrene | 7.0 | ||
Camphene | 6.0 | ||
fenchyl alcohol | 6.0 | ||
(+)-α-pinene | 5.1 | ||
Thyme | Thymus vulgaris L. | (+)-Menthofuran | 51.5 |
p-Cymene | 16.5 | ||
β-Caryophyllene | 5.1 |
Strain | KMi284 | KMi507 | KMi508 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | 2nd | 3rd | 4th | 7th | 2nd | 3rd | 4th | 7th | 2nd | 3rd | 4th | 7th | |
Control | 23.2 b | 56.0 d | 90.0 c | 90.0 c | 36.2 d | 56.8 e | 90.0 d | 90.0 c | 30.0 c | 65.5 e | 90.0 d | 90.0 b | 30.0 c |
Cardamom | 0.0 a | 0.0 a | 0.0 a | 10.5 b | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a |
Eucalyptus | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 11.7 b | 58.2 b | 0.0 a* | 0.0 a | 0.0 a | 0.0 a | 0.0 a* |
Ginger | 0.0 a | 10.3 b | 49.3 b | 90.0 c | 19.0 b | 39.3 c | 90.0 d | 90.0 c | 7.8 b | 37.7 c | 62.8 c | 90.0 b | 7.8 b |
Grapefruit | 0.0 a | 13.5 c | 49.2 b | 90.0 c | 0.0 a | 30.0 b | 51.0 c | 90.0 c | 0.0 a | 26.3 b | 52.8 b | 90.0 b | 0.0 a |
Jasmine | 27.7 c | 56.3 d | 90.0 c | 90.0 c | 33.2 c | 50.3 d | 90.0 d | 90.0 c | 30.0 c | 56.3 d | 90.0 d | 90.0 b | 30.0 c |
Lavender | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a |
Lemongrass | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a |
Litsea | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a |
Mint | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a |
Peppermint | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a |
Petitgrain | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a |
Sage | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a |
Thyme | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a |
Isolate | Essential Oil | Dose (μL·L−1) | Day | ||||
---|---|---|---|---|---|---|---|
3rd | 4th | 5th | 6th | 7th | |||
KMi-284 | Control (DMSO) | 0 | 12/12 * | 12/12 | 12/12 | 12/12 | 12/12 |
Lemongrass | 125 | 4/12 | 5/12 | 6/12 | 6/12 | 6/12 | |
250 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
500 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
Litsea | 125 | 2/12 | 3/12 | 3/12 | 3/12 | 3/12 | |
250 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | ||
500 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
Peppermint | 125 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | |
250 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
500 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
Thyme | 125 | 0/12 | 0/12 | 1/12 | 3/12 | 3/12 | |
250 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
500 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
KMi-507 | Control (DMSO) | 0 | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 |
Lemongrass | 125 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | |
250 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
500 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
Litsea | 125 | 2/12 | 2/12 | 2/12 | 2/12 | 2/12 | |
250 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
500 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
Peppermint | 125 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | |
250 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
500 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
Thyme | 125 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | |
250 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
500 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
KMi-508 | Control (DMSO) | 0 | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 |
Lemongrass | 125 | 0/12 | 1/12 | 1/12 | 2/12 | 2/12 | |
250 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | ||
500 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
Litsea | 125 | 1/12 | 3/12 | 3/12 | 4/12 | 4/12 | |
250 | 0/12 | 1/12 | 1/12 | 1/12 | 1/12 | ||
500 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
Peppermint | 125 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | |
250 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
500 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
Thyme | 125 | 2/12 | 1/12 | 1/12 | 1/12 | 1/12 | |
250 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 | ||
500 | 0/12 | 0/12 | 0/12 | 0/12 | 0/12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tančinová, D.; Mašková, Z.; Mendelová, A.; Foltinová, D.; Barboráková, Z.; Medo, J. Antifungal Activities of Essential Oils in Vapor Phase against Botrytis cinerea and Their Potential to Control Postharvest Strawberry Gray Mold. Foods 2022, 11, 2945. https://doi.org/10.3390/foods11192945
Tančinová D, Mašková Z, Mendelová A, Foltinová D, Barboráková Z, Medo J. Antifungal Activities of Essential Oils in Vapor Phase against Botrytis cinerea and Their Potential to Control Postharvest Strawberry Gray Mold. Foods. 2022; 11(19):2945. https://doi.org/10.3390/foods11192945
Chicago/Turabian StyleTančinová, Dana, Zuzana Mašková, Andrea Mendelová, Denisa Foltinová, Zuzana Barboráková, and Juraj Medo. 2022. "Antifungal Activities of Essential Oils in Vapor Phase against Botrytis cinerea and Their Potential to Control Postharvest Strawberry Gray Mold" Foods 11, no. 19: 2945. https://doi.org/10.3390/foods11192945
APA StyleTančinová, D., Mašková, Z., Mendelová, A., Foltinová, D., Barboráková, Z., & Medo, J. (2022). Antifungal Activities of Essential Oils in Vapor Phase against Botrytis cinerea and Their Potential to Control Postharvest Strawberry Gray Mold. Foods, 11(19), 2945. https://doi.org/10.3390/foods11192945