Red Beetroot Fermentation with Different Microbial Consortia to Develop Foods with Improved Aromatic Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetable Preparation
2.2. Starter Cultures and Fermentation
2.3. pH, Salt, Organic Acids, Sugars, and Alcohol Measurements
2.4. Micro-Biological Analysis
2.5. Texture Analysis
2.6. Consumer Test
2.7. Solid-Phase Micro-Extraction–Gas Chromatography–Mass Spectrometry (SPME-GC-MS)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Fermentation Process Monitoring—pH, Organic Acids, Sugars, and Alcohols
3.2. Micro-Biological Analysis
3.3. Texture
3.4. Consumer Test
3.5. Multi-Variate Analysis of VOCs Organized by Different Chemical Classes
3.6. Spearman Rank Correlations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Li, K.J.; Brouwer-Brolsma, E.M.; Burton-Pimentel, K.J.; Vergères, G.; Feskens, E. A systematic review to identify biomarkers of intake for fermented food products. Genes Nutr. 2021, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.S.; El Sheikha, A.F.; Hammami, R.; Kumar, A. Traditionally fermented pickles: How the microbial diversity associated with their nutritional and health benefits? J. Funct. Foods 2020, 70, 103971. [Google Scholar] [CrossRef]
- Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented Foods as a Dietary Source of Live Organisms. Front. Microbiol. 2018, 9, 1785. [Google Scholar] [CrossRef]
- Di Cagno, R.; Coda, R.; De Angelis, M.; Gobbetti, M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013, 33, 1–10. [Google Scholar] [CrossRef]
- Blajman, J.; Vinderola, G.; Cuatrin, A.; Lingua, M.; Paez, R. Technological variables influencing the growth and stability of a silage inoculant based on spray-dried lactic acid bacteria. J. Appl. Microbiol. 2020, 129, 1486–1496. [Google Scholar] [CrossRef]
- Moon, S.H.; Kim, C.R.; Chang, H.C. Heterofermentative lactic acid bacteria as a starter culture to control kimchi fermentation. LWT 2018, 88, 181–188. [Google Scholar] [CrossRef]
- Babini, E.; Taneyo-Saa, D.L.; Tassoni, A.; Ferri, M.; Kraft, A.; Grän-Heedfeld, J.; Bretz, K.; Roda, A.; Michelini, E.; Calabretta, M.M.; et al. Microbial fermentation of industrial rice-starch byproduct as valuable source of peptide fractions with health-related activity. Microorganisms 2020, 8, 986. [Google Scholar] [CrossRef]
- Nissen, L.; Casciano, F.; Gianotti, A. Volatilome changes during probiotic fermentation of combined soy and rice drink. Food Funct. 2021, 12, 3159–3169. [Google Scholar] [CrossRef]
- Drabińska, N.; Ogrodowczyk, A.M. Crossroad of Tradition and Innovation—The Application of Lactic Acid Fermentation to Increase the Nutritional and Health-Promoting Potential of Plant-Based Food Products—A Review. Pol. J. Food Nutr. Sci. 2021, 71, 107–134. [Google Scholar] [CrossRef]
- Nissen, L.; Casciano, F.; Babini, E.; Gianotti, A. Prebiotic potential and bioactive volatiles of hemp byproduct fermented by lactobacilli. LWT 2021, 151, 112201. [Google Scholar] [CrossRef]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeel, S.; Marenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Berni Canani, R.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, S.J.; Dawson, J.C.; Goldman, I.L. Participatory plant breeding reveals that geosmin concentration is not the central determinant of hedonic liking in table beet. Euphytica 2022, 218, 14. [Google Scholar] [CrossRef]
- Chhikara, N.; Kushwaha, K.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem. 2019, 272, 192–200. [Google Scholar] [CrossRef]
- Wruss, J.; Waldenberger, G.; Huemer, S.; Uygun, P.; Lanzerstorfer, P.; Müller, U.; Höglinger, O.; Weghuber, J. Compositional Characteristics of Commercial Beetroot Products and Beetroot Juice Prepared from Seven Beetroot Varieties Grown in Upper Austria. J. Food Compos. Anal. 2015, 42, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; Rao, H.; Tian, Y.; Xue, W. Bacterial composition in sourdoughs from different regions in China and the microbial potential to reduce wheat allergens. LWT Food Sci. Technol. 2020, 117, 108669. [Google Scholar] [CrossRef]
- Baião, D.D.S.; da Silva, D.V.; Del Aguila, E.M.; Paschoalin, V.M.F. Nutritional, bioactive and physicochemical characteristics of different beetroot formulations. Food Addit. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; He, Z.; Wang, X.; Song, G.; Chen, H.; Lin, X.; Ji, C.; Li, S. Effects of salt concentration on microbial diversity and volatile compounds during suancai fermentation. Food Microbiol. 2020, 91, 103537. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, K. Changes Occur on Nutritional Value of Beetroot (“Beta vulgaris”) after Pickling. Curr. Res. Nutr. Food Sci. J. 2016, 4, 218–222. [Google Scholar] [CrossRef]
- Czyżowska, A.; Siemianowska, K.; Śniadowska, M.; Nowak, A. Bioactive Compounds and Microbial Quality of Stored Fermented Red Beetroots and Red Beetroot Juice. Pol. J. Food Nutr. Sci. 2020, 70, 35–44. [Google Scholar] [CrossRef]
- Plessas, S.; Fisher, K.A.; Koureta, C.; Psarianos, P.; Singh-Nee, N.; Koutinas, A.A. Application of Kluyveromyces marxianus, Lactobacillus delbrueckii, ssp bulgaricus and L. helveticus for sourdough bread making. Food Chem. 2008, 106, 985–990. [Google Scholar] [CrossRef]
- Guerzoni, E.; Vernocchi, P.; Ndagijimana, M.; Gianotti, A.; Lanciotti, R. Generation of aroma compounds in sourdough: Effects of stress exposure and lactobacilli-yeasts interactions. Food Microbiol. 2007, 24, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; De Angelis, M.; De Pasquale, I.; Ndagijimana, M.; Vernocchi, P.; Ricciuti, P.; Gagliardi, F.; Laghi, L.; Crecchio, C.; Guerzoni, M.E.; et al. Duodenal and faecal microbiota of celiac children: Molecular, phenotype and metabolome characterization. BMC Microbiol. 2011, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Nissen, L.; Demircan, B.; Taneyo-Saa, D.L.; Gianotti, A. Shift of Aromatic Profile in Probiotic Hemp Drink Formulations: A Metabolomic Approach. Microorganisms 2019, 7, 509. [Google Scholar] [CrossRef] [Green Version]
- Nissen, L.; Rollini, M.; Picozzi, C.; Musatti, A.; Foschino, R.; Gianotti, A. Yeast-Free Doughs by Zymomonas mobilis: Evaluation of Technological and Fermentation Performances by Using a Metabolomic Approach. Microorganisms 2020, 8, 792. [Google Scholar] [CrossRef]
- Bonfrate, L.; Di Palo, D.M.; Celano, G.; Albert, A.; Vitellio, P.; De Angelis, M.; Gobbetti, M.; Portincasa, P. Effects of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 in IBS patients. Eur. J. Clin. Investig. 2020, 50, e13201. [Google Scholar] [CrossRef]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 644, 147–153. [Google Scholar] [CrossRef]
- Ivana, S.; Bogdan, A.; Ipate, J.; Tudor, L.; Bărăităreanu, S.; Tănase, A.; Popescu, A.N.; Caplan, D.M.; Daneş, M. Food safety and botulinum toxin. Roum. Biotechnol. Lett. 2008, 13, 4390–4394. [Google Scholar]
- Wikandari, R.; Kinanti, D.A.; Permatasari, R.D.; Rahmaningtyas, N.L.; Chairunisa, N.R.; Sardjono; Hellwig, C.; Taherzadeh, M.J. Correlations between the Chemical, Microbiological Characteristics and Sensory Profile of Fungal Fermented Food. Fermentation 2021, 7, 261. [Google Scholar] [CrossRef]
- Lee, J.S.; Jeong, S.; Lee, H.G.; Cho, C.H.; Yoo, S. Development of a Sulfite-Based Oxygen Scavenger and its Application in Kimchi Packaging to Prevent Oxygen-mediated Deterioration of Kimchi Quality. J. Food Sci. 2018, 83, 3009–3018. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Gallego, J.; Medina, E.; Sánchez, B.; Benítez-Cabello, A.; Arroyo-López, F.N. Role of lactic acid bacteria in fermented vegetables. Grasas Aceites 2020, 71, 358. [Google Scholar] [CrossRef]
- dos Baião, D.; da Silva, D.V.; Paschoalin, V.M. Beetroot, a remarkable vegetable: Its nitrate and phytochemical contents can be adjusted in novel formulations to benefit health and support cardiovascular disease therapies. Antioxidants 2020, 9, 960. [Google Scholar] [CrossRef]
- Joosten, H.; Marugg, J.; Stephan, R.; Klijn, A.; Jackson, T.; Iversen, C. A rapid and reliable alternative to ISO 21528-1:2004 for detection of Enterobacteriaceae. Int. J. Food Microbiol. 2008, 125, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) 2019/229 of 7 February 2019 Amending Regulation (EC) No 2073/2005 on Microbiological Criteria for Foodstuffs as Regards Certain Methods, the Food Safety Criterion for Listeria monocytogenes in Sprouted Seeds, and the Process Hygiene Criterion and Food Safety Criterion for Unpasteurized Fruit and Vegetable Juices (Ready-to-Eat) (Text with EEA Relevance.). Available online: http://data.europa.eu/eli/reg/2019/229/oj (accessed on 4 September 2022).
- Yalçınkaya, S.; Kılıç, G.B. Isolation, identification and determination of technological properties of the halophilic lactic acid bacteria isolated from table olives. J. Food Sci. Technol. 2019, 56, 2027–2037. [Google Scholar] [CrossRef] [PubMed]
- Baráth, Á.; Halász, A.; Németh, E.; Zalán, Z. Selection of LAB strains for fermented red beet juice production. Eur. Food Res. Technol. 2004, 218, 184–187. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, G.; Shen, W.; Wang, Y.; Zhang, W.; Chi, Y. Microbial safety and sensory quality of instant low-salt Chinese paocai. Food Control 2016, 59, 575–580. [Google Scholar] [CrossRef]
- Wu, R.N.; Wu, Z.X.; Zhao, C.Y.; Lv, C.M.; Wu, J.R.; Meng, X.J. Identification of lactic acid bacteria in suancai, a traditional Northeastern Chinese fermented food, and salt response of Lactobacillus paracasei LN-1. Ann. Microbiol. 2014, 64, 1325–1332. [Google Scholar] [CrossRef]
- Farahnaky, A.; Azizi, R.; Gavahian, M. Accelerated texture softening of some root vegetables by Ohmic heating. J. Food Eng. 2012, 113, 275–280. [Google Scholar] [CrossRef]
- Camps, C.; Guillermin, P.; Mauget, J.C.; Bertrand, D. Data analysis of penetrometric force/displacement curves for the characterization of whole apple fruits. J. Texture Stud. 2005, 36, 387–401. [Google Scholar] [CrossRef]
- Wrzodak, A.; Szwejda-Grzybowska, J. Application of mineral water from geothermal source for fermentation of beetroot. J. Hortic. Res. 2020, 28, 123–130. [Google Scholar] [CrossRef]
- Lin, X.; Tang, Y.; Hu, Y.; Lu, Y.; Sun, Q.; Lv, Y.; Zhang, Q.; Wu, C.; Zhu, M.; He, Q.; et al. Sodium Reduction in Traditional Fermented Foods: Challenges, Strategies, and Perspectives. J. Agric. Food Chem. 2021, 69, 8065–8080. [Google Scholar] [CrossRef]
- Mnkeni, A.P.; Gierschner, K.; Maeda, E.E. Effect of blanching time and salt concentration on pectolytic enzymes, texture and acceptability of fermented green beans. Plant Foods Hum. Nutr. 1999, 53, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Huaixiang, T.; Xiaolin, X.; Xuefeng, S.; Chen, C.; Haiyan, Y. Evaluation of the perceptual interaction among key aroma compounds in milk fan by gas chromatography−olfactometry, odor threshold, and sensory analyses. J. Dairy Sci. 2020, 103, 5863–5873. [Google Scholar]
- Randazzo, W.; Corona, O.; Guarcello, R.; Francesca, N.; Germanà, M.A.; Erten, H.; Moschetti, G.; Settanni, L. Development of new non-dairy beverages from Mediterranean fruit juices fermented with water kefir microorganisms. Food Microbiol. 2016, 54, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Nambou, K.; Gao, C.; Zhou, F.; Guo, B.; Ai, L.; Wu, Z. A novel approach of direct formulation of defined starter cultures for different kefir-like beverage production. Int. Dairy J. 2014, 34, 237–246. [Google Scholar] [CrossRef]
- Wang, S.; Tamura, T.; Kyouno, N.; Liu, X.; Zhang, H.; Akiyama, Y.; Yu Chen, J. Effect of volatile compounds on the quality of Japanese fermented soy sauce. LWT Food Sci. Technol 2019, 111, 594–601. [Google Scholar] [CrossRef]
- Su, N.; Ren, L.; Ye, H.; Sui, Y.; Li, J.; Ye, M. Antioxidant activity and flavor compounds of hickory yogurt. Int. J. Food Prop. 2016, 20, 1894–1903. [Google Scholar] [CrossRef] [Green Version]
- Van Hekken, D.L.; Iandola, S.; Tomasula, P.M. Short communication: Volatiles in microfluidized raw and heat-treated milk. J. Dairy Sci. 2019, 102, 8819–8824. [Google Scholar] [CrossRef]
- Li, H.; Hu, S.; Fu, J. Effects of acetic acid bacteria in starter culture on the properties of sourdough and steamed bread. Grain Oil Sci. Technol. 2022, 5, 13–21. [Google Scholar] [CrossRef]
- Tu, C.; Azi, F.; Huang, J.; Xu, X.; Xing, G.; Dong, M. Quality and metagenomic evaluation of a novel functional beverage produced from soy whey using water kefir grains. LWT Food Sci. Technol. 2019, 113, 108258. [Google Scholar] [CrossRef]
- Chen, S.; Xu, Y.; Qian, M.C. Aroma characterization of Chinese rice in by Gas Chromatography−Olfactometry, chemical quantitative analysis, and aroma reconstitution. J. Agric. Food Chem. 2013, 61, 11295–11302. [Google Scholar] [CrossRef] [PubMed]
- Ogunremi, O.R.; Agrawal, R.; Sanni, A. Production and characterization of volatile compounds and phytase from potentially probiotic yeasts isolated from traditional fermented cereal foods in Nigeria. J. Genet. Eng. Biotechnol. 2020, 18, 16. [Google Scholar] [CrossRef]
- Tamang, J.P.; Fleet, G.H. Yeasts diversity in fermented foods and beverages. In Yeast Biotechnology: Diversity and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–198. [Google Scholar]
- Corona, O.; Randazzo, W.; Miceli, A.; Guarcello, R.; Francesca, N.; Erten, H.; Moschetti, G.; Settanni, L. Characterization of kefir-like beverages produced from vegetable juices. LWT Food Sci. Technol. 2016, 66, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Elhalis, H.; Cox, J.; Frank, D.; Zhao, J. The crucial role of yeasts in the wet fermentation of coffee beans and quality. Int. J. Food Microbiol. 2020, 333, 108796. [Google Scholar] [CrossRef]
- Bezerra, T.K.A.; Arcanjo, N.; Araújo, A.; Lima, M.; de Queiroz, A.; Oliveira, M.; Gomes, A.; Madruga, M. Volatile profile in goat coalho cheese supplemented with probiotic lactic acid bacteria. LWT Food Sci. Technol. 2016, 73, 209–215. [Google Scholar] [CrossRef]
- Audrain, B.; Farag, M.A.; Ryu, C.M.; Ghigo, J.M. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol. Rev. 2015, 39, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Yang, X.; Ji, Y.; Guan, Y. Effect of starter cultures mixed with different autochthonous lactic acid bacteria on microbial, metabolome and sensory properties of Chinese northeast sauerkraut. Food Res. Int. 2021, 148, 110605. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.; Yang, Y.; Yi, H.; Zhang, L.; He, G. The influence of different lactic acid bacteria on sourdough flavor and a deep insight into sourdough fermentation through RNA sequencing. Food Chem. 2019, 307, 125529. [Google Scholar] [CrossRef]
- Petel, C.; Prost, C.; Onno, B. Sourdough volatile compounds and their contribution to bread: A review. Trends Food Sci. Technol. 2017, 59, 105–123. [Google Scholar] [CrossRef]
- Sumby, K.M.; Bartle, L.; Grbin, P.R.; Jiranek, V. Measures to improve wine malolactic fermentation. Appl. Microbiol. Biotechnol. 2019, 103, 2033–2051. [Google Scholar] [CrossRef] [PubMed]
- Jampaphaeng, K.; Ferrocino, I.; Giordano, M.; Rantsiou, K.; Maneerat, S.; Cocolin, L. Microbiota dynamics and volatilome profile during stink bean fermentation (Sataw-Dong) with Lactobacillus plantarum KJ03 as a starter culture. Food Microbiol. 2018, 76, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Mukisa, I.M.; Byaruhanga, Y.B.; Muyanja, C.M.B.K.; Langsrud, T.; Narvhus, J.A. Production of organic flavor compounds by dominant lactic acid bacteria and yeasts from Obushera, a traditional sorghum malt fermented beverage. Food Sci. Nutr. 2017, 5, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Rosca, I.; Petrovici, A.R.; Brebu, M.; Stoica, I.; Minea, B.; Marangoci, N. An original method for producing acetaldehyde and diacetyl by yeast fermentation. Braz. J. Microbiol. 2016, 47, 949–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, G.V.; Neto, E.; Soccol, V.T.; Medeiros, A.B.P.; Woiciechowski, A.L.; Soccol, C.R. Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Res. Int. 2015, 75, 348–356. [Google Scholar] [CrossRef]
- Krusong, W.; Sriphochanart, W.; Suwapanich, R.; Mekkerdchoo, O.; Sriprom, P.; Wipatanawin, A.; Massa, S. Healthy dried baby corn silk vinegar production and determination of its main organic volatiles containing antimicrobial activity. LWT Food Sci Technol. 2020, 117, 108620. [Google Scholar] [CrossRef]
- Lundsgaard, A.M.; Fritzen, A.M.; Sjøberg, K.A.; Kleinert, M.; Richter, E.A.; Kiens, B. Small Amounts of Dietary Medium-Chain Fatty Acids Protect Against Insulin Resistance During Caloric Excess in Humans. Diabetes 2021, 70, 91–98. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Xu, L.Y.; Zhang, J.H.; Ai, N.S.; Cao, Y.P. Characterization of the key odorants in kurut with aroma recombination and omission studies. J. Dairy Sci. 2020, 103, 4164–4173. [Google Scholar] [CrossRef]
D-Lactic Acid | L-Lactic Acid | Lactic Acid Tot. | Acetic Acid | Res. Sugars | |
---|---|---|---|---|---|
Spontaneous | 2.94 ± 0.35 cA | 1.63 ± 0.24 bcA | 4.57 ± 0.46 aA | 0.53 ± 0.17 bA | 2.44 ± 0.96 cA |
LAB mix | 1.76 ± 0.38 bB | 1.56 ± 0.10 bA | 3.32 ± 0.47 aB | 0.32 ± 0.04 cA | 1.62 ± 0.61 bAB |
L. mesenter. | 1.91 ± 0.39 bB | 1.39 ± 0.18 bA | 3.31 ± 0.57 aB | 0.30 ± 0.02 bA | 0.97 ± 0.52 bAB |
Kefir | 2.12 ± 0.08 bAB | 1.24 ± 0.09 cA | 3.36 ± 0.16 aB | 0.54 ± 0.07 dA | 0.15 ± 0.12 eB |
LAB (Log CFU/mL) | Yeasts (Log CFU/mL) | |
---|---|---|
Spontaneous | 5.18 ± 4.78 b | 6.23 ± 6.39 |
LAB Mix | 6.07 ± 4.76 c | 6.82 ± 6.81 |
L. mesenteroides | 6.24 ± 5.91 a | 6.06 ± 5.96 |
Kefir | 5.07 ± 5.06 b | 6.09 ± 6.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casciano, F.; Mayr, H.; Nissen, L.; Putti, A.; Zoli, F.; Gianotti, A.; Conterno, L. Red Beetroot Fermentation with Different Microbial Consortia to Develop Foods with Improved Aromatic Features. Foods 2022, 11, 3055. https://doi.org/10.3390/foods11193055
Casciano F, Mayr H, Nissen L, Putti A, Zoli F, Gianotti A, Conterno L. Red Beetroot Fermentation with Different Microbial Consortia to Develop Foods with Improved Aromatic Features. Foods. 2022; 11(19):3055. https://doi.org/10.3390/foods11193055
Chicago/Turabian StyleCasciano, Flavia, Hannah Mayr, Lorenzo Nissen, Andreas Putti, Federica Zoli, Andrea Gianotti, and Lorenza Conterno. 2022. "Red Beetroot Fermentation with Different Microbial Consortia to Develop Foods with Improved Aromatic Features" Foods 11, no. 19: 3055. https://doi.org/10.3390/foods11193055
APA StyleCasciano, F., Mayr, H., Nissen, L., Putti, A., Zoli, F., Gianotti, A., & Conterno, L. (2022). Red Beetroot Fermentation with Different Microbial Consortia to Develop Foods with Improved Aromatic Features. Foods, 11(19), 3055. https://doi.org/10.3390/foods11193055