Synergizing Multi-Plasticizers for a Starch-Based Edible Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Mecahnical Testing
2.4. Microstructure and Morphology Studied by Scanning Electron Microscope (SEM)
2.5. UV Transparency Measurement
2.6. Contact Angle (CA)
2.7. Statistical Analysis
3. Results and Discussions
3.1. Effect of Individual and Mixed Plasticizers
3.2. Fracture Interface
3.3. Performances under Different Humility Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, P. Edible packaging. ACS Cent. Sci. 2019, 5, 1907–1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Li, B.; Li, C.; Xu, Y.; Luo, Y.; Liang, D.; Huang, C. Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach. Foods 2021, 10, 1845. [Google Scholar] [CrossRef] [PubMed]
- Brody, A.L. Packaging, food. Kirk-Othmer Encycl. Chem. Technol. 2005, 2, 65–66. [Google Scholar] [CrossRef]
- Debeufort, F.; Quezada-Gallo, J.; Voilley, A. Edible films, and coatings: Tomorrow’s packaging: A review. Crit. Rev. Food Sci. Nutr. 1998, 38, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Kong, I.; Degraeve, P.; Pui, L.P. Polysaccharide-Based Edible Films Incorporated with Essential Oil Nanoemulsions: Physico-Chemical, Mechanical Properties and Its Application in Food Preservation—A Review. Foods 2022, 11, 555. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, L.; Ge, X.; Liu, H.; Ali, A.; Wang, Y.; Chen, L. Preparation and characterization of edible starch film reinforced by laver. Int. J. Biol. Macromol. 2019, 129, 944–951. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, H.; Lu, K.; Liu, H.-S.; Yu, L. Recent progress on starch-based biodegradable materials. Acta Polym. Sin. 2020, 51, 983–995. [Google Scholar] [CrossRef]
- Ali, A.; Xie, F.; Yu, L.; Liu, H.; Meng, L.; Khalid, S.; Chen, L. Preparation and characterization of starch-based composite films reinforced by polysaccharide-based crystals. Compos. Part B 2018, 133, 122–128. [Google Scholar] [CrossRef]
- Ali, A.; Yu, L.; Liu, H.; Khalid, S.; Meng, L.; Chen, L. Preparation and characterization of starch-based composite films reinforced by corn and wheat hulls. J. Appl. Polym. Sci. 2017, 134, 45159. [Google Scholar] [CrossRef]
- Chen, H.; Alee, M.; Chen, Y.; Zhou, Y.; Yang, M.; Ali, A.; Liu, H.; Chen, L.; Yu, L. Developing Edible Starch Film Used for Packaging Seasonings in Instant Noodles. Foods 2021, 10, 3105. [Google Scholar] [CrossRef]
- Deore, U.V.; Mahajan, H.S. Isolation and characterization of natural polysaccharide from Cassia Obtustifolia seed mucilage as film-forming material for drug delivery. Int. J. Biol. Macromol. 2018, 115, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.; Bajala, V.; Garg, V.; Mor, S.; Ravindra, K. Heavy metal content in various types of candies and their daily dietary intake by children. Environ. Monit. Assess. 2016, 188, 86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Liu, H.; Yu, L.; Liu, X.; Chen, L.; Zhang, N. Developing hydroxypropyl methylcellulose/hydroxypropyl starch blends for use as capsule materials. Carbohydr. Polym. 2013, 98, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.-F.; Liu, H.-S.; Zhang, N.-Z.; Liu, X.-X.; Chen, L.; Yu, L. Development of capsules from natural plant polymers. Acta Polym. Sin. 2013, 1–10. [Google Scholar] [CrossRef]
- Ali, A.; Chen, Y.; Liu, H.; Yu, L.; Baloch, Z.; Khalid, S.; Zhu, J.; Chen, L. Starch-based antimicrobial films functionalized by pomegranate peel. Int. J. Biol. Macromol. 2019, 129, 1120–1129. [Google Scholar] [CrossRef]
- Duan, Q.; Jiang, T.; Xue, C.; Liu, H.; Liu, F.; Alee, M.; Ali, A.; Chen, L.; Yu, L. Preparation and characterization of starch/enteromorpha/nano-clay hybrid composites. Int. J. Biol. Macromol. 2020, 150, 16–22. [Google Scholar] [CrossRef]
- Petronilho, S.; Oliveira, A.; Domingues, M.R.; Nunes, F.M.; Coimbra, M.A.; Gonçalves, I. Hydrophobic Starch-Based Films Using Potato Washing Slurries and Spent Frying Oil. Foods 2021, 10, 2897. [Google Scholar] [CrossRef]
- Liu, H.; Xie, F.; Yu, L.; Chen, L.; Li, L. Thermal processing of starch-based polymers. Prog. Polym. Sci. 2009, 34, 1348–1368. [Google Scholar] [CrossRef]
- Ebewele, R.O. Polymer Science, and Technology; CRC Press: Boca Raton, FL, USA, 2000; p. 33487. [Google Scholar] [CrossRef] [Green Version]
- Krauskopf, L.G. Plasticizer structure/performance relationships. J. Vinyl Addit. Technol. 1993, 15, 140–147. [Google Scholar] [CrossRef]
- Kutz, M. (Ed.) Applied Plastics Engineering Handbook, Processing, Materials, and Applications, 2nd ed.; Plastics Design Library (PDL), PDL Handbook Series; William Andrew: Norwich, NY, USA, 2017. [Google Scholar]
- Larsson, K.; Lindh, C.H.; Jönsson, B.A.G.; Giovanoulis, G.; Bibi, M.; Bottai, M.; Bergström, A.; Berglund, M. Phthalates, non-phthalate plasticizers and bisphenols in Swedish preschool dust in relation to children’s exposure. Environ. Int. 2017, 102, 114–124. [Google Scholar] [CrossRef]
- Ochoa-Velasco, C.E.; Pérez-Pérez, J.C.; Varillas-Torres, J.M.; Navarro-Cruz, A.R.; Hernández-Carranza, P.; Munguía-Pérez, R.; Cid-Pérez, T.S.; Avila-Sosa, R. Starch Edible Films/Coatings Added with Carvacrol and Thymol: In Vitro and In Vivo Evaluation against Colletotrichum gloeosporioides. Foods 2021, 10, 175. [Google Scholar] [CrossRef]
- Jaśkiewicz, A.; Budryn, G.; Nowak, A.; Efenberger-Szmechtyk, M. Novel Biodegradable Starch Film for Food Packaging with Antimicrobial Chicory Root Extract and Phytic Acid as a Cross-Linking Agent. Foods 2020, 9, 1696. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Gu, Y.; Castellarin, S.D.; Kitts, D.D.; Pratap-Singh, A. Development and Characterization of the Edible Packaging Films Incorporated with Blueberry Pomace. Foods 2020, 9, 1599. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Liu, H.; Yu, L.; Duan, Q.; Chen, L.; Liu, F.; Shao, Z.; Shi, K.; Lin, X. How water acting as both blowing agent and plasticizer affect on starch-based foam. Ind. Crops Prod. 2019, 134, 43–49. [Google Scholar] [CrossRef]
- Averous, L.; Boquillon, N. Biocomposites based on plasticized starch: Thermal and mechanical behaviours. Carbohyd. Polym. 2004, 56, 111–122. [Google Scholar] [CrossRef]
- Alee, M.; Duan, Q.; Chen, Y.; Liu, H.; Ali, A.; Zhu, J.; Jiang, T.; Rahaman, A.; Chen, L.; Yu, L. Plasticization Efficiency and Characteristics of Monosaccharides, Disaccharides, and Low-Molecular-Weight Polysaccharides for Starch-Based Materials. ACS Sustain. Chem. Eng. 2021, 9, 11960–11969. [Google Scholar] [CrossRef]
- Zhu, J.; Lu, K.; Liu, H.; Bao, X.; Chen, L.; Yu, L. Effect of moisture containing in starch on esterification by dry method. Starch 2021, 73, 2100009. [Google Scholar] [CrossRef]
- Jiang, T.; Duan, Q.; Zhu, J.; Liu, H.; Yu, L. Starch-based Biodegradable Materials: Challenges and Opportunities. Adv. Ind. Eng. Polym. Res. 2020, 3, 8–18. [Google Scholar] [CrossRef]
- Meng, L.; Li, S.; Yang, W.; Simons, R.; Yu, L.; Liu, H.; Chen, L. Improvement of Interfacial Interaction between Hydrophilic Starch Film and Hydrophobic Biodegradable Coating. ACS Sustain. Chem. Eng. 2019, 7, 9506. [Google Scholar] [CrossRef]
- Chen, Y.; Duan, Q.; Zhu, J.; Liu, H.; Chen, L.; Yu, L. Anchor and Bridge Functions of APTES Layer on the Interface between Hydrophilic Starch Films and Hydrophobic Soyabean Oil Coating. Carbohydr. Polym. 2021, 272, 118452. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, H.; Yu, L.; Duan, Q.; Ji, Z.; Chen, L. Superhydrophobic modification on starch film by coating PDMS with ball milled MMT. ACS Sustain. Chem. Eng. 2020, 8, 10423–10430. [Google Scholar] [CrossRef]
Sample Code 1 | Starch (w/w%) | Water (w/w%) | Glycerol (w/w%) | Sorbitol (w/w%) | Thickness (μm) | Moisture Content (%) 2 |
---|---|---|---|---|---|---|
St-W | 10 | 90 | - | - | 156 ± 4 | 12.01 |
St-WG-1 | 10 | 89.5 | 0.5 | - | 160 ± 8 | 12.62 |
St-WG-2 | 10 | 89 | 1 | - | 171 ± 9 | 12.83 |
St-WG-3 | 10 | 88 | 2 | - | 173 ± 8 | 13.73 |
St-WG-4 | 10 | 87 | 3 | - | 181 ± 9 | 13.87 |
St-WS-1 | 10 | 89.5 | - | 0.5 | 167 ± 7 | 12.27 |
St-WS-2 | 10 | 89 | - | 1 | 171 ± 6 | 12.57 |
St-WS-3 | 10 | 88 | - | 2 | 177 ± 8 | 12.91 |
St-WS-4 | 10 | 87 | - | 3 | 172 ± 6 | 13.11 |
St-WGS-1 | 10 | 88 | 0.25 | 0.25 | 152 ± 8 | 12.37 |
St-WGS-2 | 10 | 85 | 0.5 | 0.5 | 168 ± 6 | 12.59 |
St-WGS-3 | 10 | 83 | 1 | 1 | 167 ± 7 | 13.21 |
St-WGS-4 | 10 | 80 | 1.5 | 1.5 | 165 ± 6 | 13.65 |
Sample Code | Modulus (MPa) | Tensile Str (MPa) | Elongation (%) | Contact Angle (Ɵ) | Transparency (% at 260 nm) |
---|---|---|---|---|---|
St-W | 1152 ± 119 ab | 57.3 ± 2.9 a | 3.6 ± 0.7 cd | 93.0 | 86.1 |
St-WG-1 | 1127 ± 102 bcd | 55.5 ± 4.8 abc | 4.3 ± 0.7 bc | 89.6 | 86.4 |
St-WG-2 | 1029 ± 116 cd | 52.2 ± 4.6 bc | 4.4 ± 0.9 bc | 87.5 | 84.3 |
St-WG-3 | 992 ± 72 cde | 51.2 ± 5.2 bcd | 6.3 ± 0.8 b | 85.7 | 85.7 |
St-WG-4 | 933 ± 86 e | 49.4 ± 5.6 d | 8.6 ± 0.6 a | 83.9 | 85.3 |
St-WS-1 | 1182 ± 112 a | 56.8 ± 3.9 b | 3.4 ± 2.1 d | 91.4 | 84.8 |
St-WS-2 | 1120 ± 106 bcd | 54.7 ± 4.8 bc | 4.1 ± 1.6 bc | 90.8 | 85.2 |
St-WS-3 | 1080 ± 76 cd | 52.7 ± 4.8 bc | 4.8 ± 1.6 bc | 87.4 | 86.7 |
St-WS-4 | 982 ± 84 de | 51.1 ± 5.9 bcd | 5.3 ± 0.2 bc | 87.3 | 86.5 |
St-WGS-1 | 1142 ± 79 abc | 55.6 ± 3.2 ab | 3.6 ± 1.2 cd | 91.5 | 85.1 |
St-WGS-2 | 1067 ± 74 cd | 54.5 ± 3.1 bc | 4.3 ± 1.5 bc | 88.2 | 85.6 |
St-WGS-3 | 998 ± 81 cd | 51.9 ± 2.3 bc | 4.9 ± 2.1 bc | 86.2 | 85.1 |
St-WGS-4 | 950 ± 66 e | 50.3 ± 1.7 cd | 5.4 ± 1.3 bc | 86.9 | 85.8 |
Materials | Chemical Structure | Physical State (Dry) | Melting/Boiling Temp (°C) | Viscosity * (Pa) | Solubility (g/100 g Water) |
---|---|---|---|---|---|
water | liquid | 0/100 | 1.0 | - | |
glycerol | liquid | 17.9/290 | 1.5 | miscible | |
sorbitol | powder | 95/295 | 1.4 * | 235 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Alee, M.; Yang, M.; Liu, H.; Li, Y.; Li, Z.; Yu, L. Synergizing Multi-Plasticizers for a Starch-Based Edible Film. Foods 2022, 11, 3254. https://doi.org/10.3390/foods11203254
Fu J, Alee M, Yang M, Liu H, Li Y, Li Z, Yu L. Synergizing Multi-Plasticizers for a Starch-Based Edible Film. Foods. 2022; 11(20):3254. https://doi.org/10.3390/foods11203254
Chicago/Turabian StyleFu, Jun, Mahafooj Alee, Mao Yang, Hongsheng Liu, Yanan Li, Zhongxian Li, and Long Yu. 2022. "Synergizing Multi-Plasticizers for a Starch-Based Edible Film" Foods 11, no. 20: 3254. https://doi.org/10.3390/foods11203254
APA StyleFu, J., Alee, M., Yang, M., Liu, H., Li, Y., Li, Z., & Yu, L. (2022). Synergizing Multi-Plasticizers for a Starch-Based Edible Film. Foods, 11(20), 3254. https://doi.org/10.3390/foods11203254