Effects of Various Processing Methods on the Nutritional Quality and Carcinogenic Substances of Bactrian Camel (Camelus bactrianus) Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Meat Samples
2.2. Thermal Processing Methods
2.3. Determination of Parameters Affecting Meat Edible Quality
2.4. Nutritional Quality Determination Methods
2.5. Determination of Nitrites and PAHs
2.6. Data Statistics and Analysis
3. Results
3.1. Effect of Different Thermal Processes on Camel Meat Consumption Qualities
3.1.1. Effect of Different Thermal Processes on the pH Value of Camel Meat
3.1.2. Effect of Different Thermal Processes on the Color Difference of Camel Meat
3.1.3. Influence of Different Thermal Processes on the Shearing Force of Camel Meat
3.2. Effect of Different Thermal Processes on the Nutritional Quality of Camel Meat
3.3. Effect of Different Thermal Processes on Amino Acid and Fatty Acid Content of Camel Meat
3.3.1. Effect of Different Thermal Processes on Amino Acid Content of Camel Meat
3.3.2. Effects of Different Thermal Processes on the Fatty Acids of Camel Meat
3.4. Impact of Different Thermal Processing on Carcinogenic Substances in Camel Meat
3.4.1. Effect of Different Thermal Processing on Nitrite Levels in Camel Meat
3.4.2. Effect of Different Thermal Processing on PAHs in Camel Meat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guyon, C.; Meynier, A.; Lamballerie, M.D. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends Food Sci. Tech. 2016, 50, 131–143. [Google Scholar] [CrossRef]
- Kadim, I.T.; Al-Amri, I.S.; Alkindi, A.Y.; Haq, Q.M.I. Nutritional values and health benefits of dromedary camel meat. Anim. Front. 2022, 12, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Hhhma, B.; Gj, A.; Mm, A.; Ika, E.; Rs, C.; Aee, A.; Za, Q.; Aena, D. Comparative characterization of proximate nutritional compositions, microbialquality and safety of camel meat in relation to mutton, beef, and chicken-sciencedirect. LWT-Food Sci. Technol. 2020, 118, 108714. [Google Scholar] [CrossRef]
- Maqsood, S.; Abushelaibi, A.; Manheem, K.; Rashedi, A.A.; Kadim, I.T. Lipid oxidation, protein degradation, microbial and sensorial quality of camel meat as influenced by phenolic compounds. LWT-Food Sci. Technol. 2015, 63, 953–959. [Google Scholar] [CrossRef]
- Al-Owaimer, A.N.; Suliman, G.M.; Sami, A.S.; Picard, B.; Hocquette, J.F. Chemical composition and structural characteristics of Arabian camel (Camelus dromedarius) m. longissimus thoracis. Meat Sci. 2014, 96, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Kadim, I.T.; Mahgoub, O.; Al-Marzooqi, W.; Al-Zadjali, S.; Annamalai, K.; Mansour, M.H. Effects of age on composition and quality of muscle longissimus thoracis of the omani arabian camel (camelus dromedaries). Meat Sci. 2006, 73, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Kurtu, M.Y. An assessment of the productivity for meat and the carcass yield of camels (Camelus dromedarius) and of the consumption of camel meat in the eastern region of Ethiopia. Trop. Anim. Health Pro. 2004, 36, 65–76. [Google Scholar] [CrossRef]
- Abdelhadi, O.M.A.; Babiker, S.A.; Picard, B.; Jurie, C.; Jailler, R.; Hocquette, J.F.; Faye, B. Effect of season on contractile and metabolic properties of desert camel muscle (Camelus dromedarius). Meat Sci. 2012, 90, 139–144. [Google Scholar] [CrossRef]
- Si, R.; Na, Q.; Wu, D.; Wu, X.; Ming, L.; Ji, R. Effects of Age and Muscle Type on the Chemical Composition and Quality Characteristics of Bactrian Camel (Camelus bactrianus) Meat. Foods 2022, 11, 1021. [Google Scholar] [CrossRef]
- Mohamed, H.M.; Emara, M.M.; Nouman, T.M. Effect of cooking temperatures on characteristics and microstructure of camel meat emulsion sausages. J. Sci. Food Agric. 2016, 96, 2990–2997. [Google Scholar] [CrossRef]
- Christensen, M.; Purslow, P.P.; Larsen, L.M. The effect of cooking temperature on mechanical properties of whole meat, single muscle fibres and perimysial connective tissue. Meat Sci. 2000, 55, 301–307. [Google Scholar] [CrossRef]
- Cunha, L.; Monteiro, M.; Lorenzo, J.M.; Munekata, P.; Muchenje, V.; Carvalho, F.; Junior, C.C. Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Res. Int. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- Stefanova, R.; Toshkov, S.; Vasilev, N.V.; Vassilev, N.G.; Marekov, I.N. Effect of gamma-ray irradiation on the fatty acid profile of irradiated beef meat. Food Chem. 2011, 127, 461–466. [Google Scholar] [CrossRef]
- Tornberg, E. Effects of heat on meat proteins-implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef]
- Campo, M.M.; Muela, E.; Olleta, J.L.; Moreno, L.A.; Santaliestra-Pasías, A.M.; Mesana, M.I.; Udo, C.S. Influence of cooking method on the nutrient composition of spanish light lamb. J. Food Compos. Anal. 2013, 31, 185–190. [Google Scholar] [CrossRef]
- Teixeira, A.; Fernandes, A.; Pereira, E.; Manuel, A.; Rodrigues, S. Effect of salting and ripening on the physicochemical and sensory quality of goat and sheep cured legs. Meat Sci. 2017, 134, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Liu, Y.; QuEk, S.Y. Systematic evaluation of nutritionaland safety characteristics of hengshan goat leg meat affected by multiple thermal processing methods. J. Food Sci. 2020, 85, 1344–1352. [Google Scholar] [CrossRef]
- Ledesma, E.; Rendueles, M.; Díaz, M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control 2015, 60, 64–87. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, W.S.; Zhang, Y.H.; Liu, D.Y. Exploring the flavor differences between different processing methods "Yangguang-pork" and ordinary chilled pork. Food Ferment. Ind. 2020, 46, 255–263. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.X.; Ma, X.M.; Xiong, L.; Wu, X.Y.; Liang, C.; Bao, P.J.; Yu, Q.L.; Yan, P. Effects of intensive fattening with total mixed rations on carcass characteristics, meat quality, and meat chemical composition of yak and mechanism based on serum and transcriptomic profiles. Front. Vet. Sci. 2021, 7, 599418. [Google Scholar] [CrossRef]
- Biffin, T.E.; Smith, M.A.; Bush, R.D.; Morris, S.; Hopkins, D.L. The effect of whole carcase medium voltage electrical stimulation, tenderstretching and longissimus infusion with actinidin on alpaca meat quality. Meat Sci. 2020, 164, 108107. [Google Scholar] [CrossRef]
- Dai, Z.; Wu, Z.; Jia, S.; Wu, G. Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J. Chromatogr. B 2014, 964, 116–127. [Google Scholar] [CrossRef]
- Mitra, B.; Lametsch, R.; Greco, I.; Ruiz-Carrascal, J. Advanced glycation end products, protein crosslinks and post translational modifications in pork subjected to different heat treatments. Meat Sci. 2018, 145, 415–424. [Google Scholar] [CrossRef]
- Maranesi, M.; Bochicchio, D.; Montellato, L.; Zaghini, A.; Pagliuca, G.; Badiani, A. Effect of microwave cooking or broiling on selected nutrient contents, fatty acid patterns and true retention values in separable lean from lamb rib-loins, with emphasis on conjugated linoleic acid. Food Chem. 2005, 90, 207–218. [Google Scholar] [CrossRef]
- Wulf, D.M.; Wise, J.W. Measuring muscle color on beef carcasses using the L* a* b* color space. J. Anim. Sci. 1999, 77, 2418–2427. [Google Scholar] [CrossRef]
- Zhuang, H.; Savage, E.M. Comparison of cook loss, shear force, and sensory descriptive profiles of boneless skinless white meat cooked from a frozen or thawed state. Poult. Sci. 2013, 92, 3003–3009. [Google Scholar] [CrossRef]
- Hughes, J.M.; Clarke, F.M.; Purslow, P.P.; Warner, R.D. Meat color is determined not only by chromatic heme pigments but also by the physical structure and achromatic light scattering properties of the muscle. Compr. Rev. Food Sci. Food Saf. 2020, 19, 44–63. [Google Scholar] [CrossRef] [Green Version]
- Kadim, I.T.; Al-Karousi, A.; Mahgoub, O.; Al-Marzooqi, W.; Khalaf, S.K.; Al-Maqbali, R.S.; Al-Sinani, S.S.H.; Raiymbek, G. Chemical composition, quality and histochemical characteristics of individual dromedary camel (Camelus dromedarius) muscles. Meat Sci. 2013, 93, 564–571. [Google Scholar] [CrossRef]
- Hosseini, H.; Mahmoudzadeh, M.; Rezaei, M.; Mahmoudzadeh, L.; Khaksar, R.; Khosroshahi, N.K.; Babakhani, A. Effect of different cooking methods on minerals, vitamins and nutritional quality indices of kutum roach (Rutilus frisii kutum). Food Chem. 2014, 148, 86–91. [Google Scholar] [CrossRef]
- Larsen, D.; Quek, S.; Eyres, L. Effect of cooking method on the fatty acid profile of New Zealand King Salmon (Oncorhynchus tshawytscha). Food Chem. 2010, 119, 785–790. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, H.; Xu, W.; Jia, C.; Peng, Y.; Zhuang, X.; Qi, J.; Xiong, G.; Mei, L.; Xu, X. The effect of water-insoluble dietary fiber from star anise on water retention of minced meat gels. Food Res. Int. 2022, 157, 111425. [Google Scholar] [CrossRef] [PubMed]
- Traore, S.; Aubry, L.; Gatellier, P.; Przybylski, W.; Jaworska, D.; Kajak-Siemaszko, K.; Santé-Lhoutellier, V. Higher drip loss is associated with protein oxidation. Meat Sci. 2012, 90, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, S.; Steen, L.; Walle, D.V.D.; Dewettinck, K.; Foubert, I.; Fraeye, I. Effect of meat type, animal fat type, and cooking temperature on microstructural and macroscopic properties of cooked sausages. Food Bioprocess Technol. 2019, 12, 16–26. [Google Scholar] [CrossRef]
- Broncano, J.M.; Petrón, M.J.; Parra, V.; Timón, M.L. Effect of different cooking methods on lipid oxidation and formation of free cholesterol oxidation products (COPs) in Latissimus dorsi muscle of Iberian pigs. Meat Sci. 2009, 83, 431–437. [Google Scholar] [CrossRef]
- Roseland, J.M.; Nguyen, Q.V.; Williams, J.R.; Douglass, L.W.; Kristine, Y.; Patterson, K.Y.; Howe, J.C.; Brooks, J.C.; Thompson, L.D.; Woerner, D.R.; et al. Protein, fat, moisture and cooking yields from a us study of retail beef cuts. J. Food Compos. Anal. 2015, 43, 131–139. [Google Scholar] [CrossRef]
- Måge, I.; Wold, J.P.; Bjerke, F.; Segtnan, V. On-line sorting of meat trimmings into targeted fat categories. J. Food Eng. 2013, 115, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Habashy, W.S.; Milfort, M.C.; Adomako, K.; Attia, Y.A.; Rekaya, R.; Aggrey, S.E. Effect of heat stress on amino acid digestibility and transporters in meat-type chickens. Poult. Sci. 2017, 96, 2312–2319. [Google Scholar] [CrossRef]
- Gao, S.; Li, D.; Hong, H.; Shu, R.; Cheng, H.; Luo, Y. Comparison of quality and nutritional attributes of pond-cultured and container-cultured snakehead (Channa argus argus) fillets after being boiled, fried, and baked. J. Food Sci. 2010, 85, 4249–4259. [Google Scholar] [CrossRef]
- Kurpad, A.V.; Regan, M.M.; Tony, R.; Antoine, E.K.; Rebecca, K.; Mario, V.; Young, V.R. Lysine requirements of healthy adult Indian subjects receiving long-term feeding, measured with a 24-h indicator amino acid oxidation and balance technique. Am. J. Clin. Nutr. 2002, 76, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Bjorklund, E.A.; Heins, B.J.; Dicostanzo, A.; Chester-Jones, H. Fatty acid profiles, meat quality, and sensory attributes of organic versus conventional dairy beef steers. J. Dairy Sci. 2014, 97, 1828–1834. [Google Scholar] [CrossRef]
- Or-Rashid, M.M.; Odongo, N.E.; Subedi, B.; Karki, P.; McBride, B.W. Fatty acid composition of yak (Bos grunniens) cheese including conjugated linoleic acid and trans-18:1 fatty acid. J. Agr. Food Chem. 2008, 56, 1654–1660. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2007, 78, 343–358. [Google Scholar] [CrossRef]
- Zeng, X.; Pan, Q.; Guo, Y.; Wu, Z.; Sun, Y.; Dang, Y.; Cao, J.; He, J.; Pan, D. Potential mechanism of nitrite degradation by Lactobacillus fermentum RC4 based on proteomic analysis. J. Proteom. 2019, 194, 70–78. [Google Scholar] [CrossRef]
- Jing, S.; Jun, Y.Y.; Yuan, W.S.; Qi, R.L.; Peng, Y. The key factors affecting the formation of diethylnitrosamine during the processing of cookedham. Food Ferment. Ind. 2008, 34, 11–15. (In Chinese) [Google Scholar] [CrossRef]
- Mottier, P.; Parisod, V.; Turesky, R.J. Quantitative determination of polycyclic aromatic hydrocarbons in barbecued meat sausages by gas chromatography coupled to mass spectrometry. J. Agr. Food Chem. 2000, 48, 1160–1166. [Google Scholar] [CrossRef]
- Lin, W.H.; Feng, Y.J.; Hong, G.Z.; Lian, X.X. Research progress of polycyclic aromatic hydrocarbon pretreatment technology in meat products. Food Res. Dev. 2006, 27, 124–126. (In Chinese) [Google Scholar] [CrossRef]
Name of Sample Group | Thermal Processing Time |
---|---|
CM1 | Steaming 20 min, Boiling 20 min, Frying 3 min, Microwaving 3 min |
CM2 | Steaming 25 min, Boiling 25 min, Frying 4 min, Microwaving 4 min |
CM3 | Steaming 30 min, Boiling 30 min, Frying 5 min, Microwaving 5 min |
CM4 | Steaming 35 min, Boiling 35 min, Frying 6 min, Microwaving 6 min |
CM5 | Steaming 40 min, Boiling 40 min, Frying 7 min, Microwaving 7 min |
Processing Time | Processing Method | |||
---|---|---|---|---|
Steaming | Boiling | Frying | Microwaving | |
Control | 6.09 ± 0.02 d | 6.09 ± 0.02 d | 6.09 ± 0.02 bc | 6.09 ± 0.02 a |
CM1 | 6.24 ± 0.00 bA | 6.21 ± 0.03 cA | 6.14 ± 0.02 aB | 5.82 ± 0.03 cC |
CM2 | 6.40 ± 0.01 aA | 6.14 ± 0.01 dB | 6.08 ± 0.03 bcBC | 6.03 ± 0.04 abC |
CM3 | 6.36 ± 0.01 aA | 6.28 ± 0.04 bA | 6.09 ± 0.13 bB | 5.95 ± 0.10 bB |
CM4 | 6.12 ± 0.01 dB | 6.37 ± 0.02 aA | 5.97 ± 0.04 cC | 5.95 ± 0.01 bC |
CM5 | 6.17 ± 0.01 cB | 6.30 ± 0.03 abA | 6.16 ± 0.04 bB | 6.02 ± 0.02 abC |
Two-way ANOVA (p-values) | pprocessing method < 0.05 | pprocessing time < 0.05 | pmethod×time < 0.05 |
Color Parameters | Processing Time | Processing Method | |||
---|---|---|---|---|---|
Steaming | Boiling | Frying | Microwaving | ||
L* (lightness) | Control | 35.7 ± 0.0 e | 35.7 ± 0.1 f | 35.7 ± 0.1 e | 35.7 ± 0.1 d |
CM1 | 52.8 ± 0.0 aA | 48.9 ± 0.3 cC | 50.8 ± 0.2 aB | 44.8 ± 0.1 cD | |
CM2 | 47.4 ± 0.1 cC | 50.8 ± 0.1 aA | 48.2 ± 0.1 bB | 47.6 ± 0.2 bC | |
CM3 | 50.7 ± 0.2 bA | 45.4 ± 0.1 eC | 42.5 ± 0.0 dD | 49.1 ± 0.0 aB | |
CM4 | 44.7 ± 0.1 dC | 47.6 ± 0.0 dB | 50.7 ± 0.1 aA | 47.40 ± 0.2 bB | |
CM5 | 47.7 ± 0.1 cB | 49.8 ± 0.1 bA | 46.4 ± 0.1 cC | 45.2 ± 0.5 cD | |
Two-way ANOVA (p-values) | pprocessing method < 0.05 | pprocessing time = 0.44 | pmethod×time < 0.05 | ||
a* (redness) | Control | 19.9 ± 0.1 a | 19.9 ± 0.1 a | 19.9 ± 0.1 a | 19.9 ± 0.1 a |
CM1 | 7.7 ± 0.0 eD | 7.9 ± 0.1 cC | 11.9 ± 0.1 bA | 9.4 ± 0.1 dB | |
CM2 | 8.4 ± 0.1 bC | 8.2 ± 0.0 bD | 11.9 ± 0.0 bB | 13.5 ± 0.1 bA | |
CM3 | 7.9 ± 0.1 dC | 7.9 ± 0.1 cC | 9.0 ± 0.0 dB | 9.7 ± 0.1 cA | |
CM4 | 8.1 ± 0.1 cC | 7.6 ± 0.1 dD | 10.1 ± 0.0 cA | 8.4 ± 0.0 eB | |
CM5 | 7.8 ± 0.0 deB | 7.2 ± 0.1 eC | 8.9 ± 0.0 eA | 6.9 ± 0.1 fD | |
Two-way ANOVA (p-values) | pprocessing method < 0.05 | pprocessing time < 0.05 | pmethod×time = 0.32 | ||
b* (yellowness) | Control | 10.4 ± 0.0 e | 10.4 ± 0.0 d | 10.4 ± 0.0 e | 10.4 ± 0.0 e |
CM1 | 13.8 ± 0.0 bcA | 13.9 ± 0.1 bA | 12.4 ± 0.1 cC | 12.8 ± 0.1 cB | |
CM2 | 13.9 ± 0.1 bA | 14.1 ± 0.0 bA | 12.8 ± 0.0 bB | 12.9 ± 0.1 cB | |
CM3 | 14.6 ± 0.1 aA | 12.7 ± 0.1 cB | 12.2 ± 0.1 dD | 12.4 ± 0.1 dC | |
CM4 | 13.4 ± 0.1 dB | 14.1 ± 0.3 bA | 13.2 ± 0.0 aB | 13.4 ± 0.0 bB | |
CM5 | 13.6 ± 0.1 cB | 14.4 ± 0.1 aA | 12.8 ± 0.1 bC | 13.7 ± 0.0 aB | |
Two-way ANOVA (p-values) | pprocessing method < 0.05 | pprocessing time = 0.09 | pmethod×time = 0.76 |
Processing Time | Processing Method | |||
---|---|---|---|---|
Steaming | Boiling | Frying | Microwaving | |
Control | 9.7 ± 3.5 c | 9.7 ± 6.1 c | 9.7 ± 6.1 c | 9.7 ± 6.1 c |
CM1 | 12.9 ± 0.1 bcA | 12.8 ± 1.6 bcA | 19.6 ± 9.3 bcA | 15.5 ± 4.1 bcA |
CM2 | 17.3 ± 0.3 abA | 15.2 ± 5.9 bcA | 20.5 ± 6.6 abcA | 19.1 ± 0.4 bA |
CM3 | 19.0 ± 1.4 aAB | 17.9 ± 1.2 abB | 20.4 ± 2.5 abcAB | 22.9 ± 1.1 bA |
CM4 | 21.2 ± 0.5 aBC | 19.3 ± 1.6 abC | 27.0 ± 6.1 abAB | 28.9 ± 2.4 aA |
CM5 | 21.5 ± 0.4 aB | 25.4 ± 3.5 aB | 33.4 ± 0.1 aA | 31.7 ± 6.1 aA |
Two-way ANOVA (p-values) | pprocessing method < 0.05 | pprocessing time < 0.05 | pmethod×time = 0.90 |
Measurements | Processing Time | Processing Method | |||
---|---|---|---|---|---|
Steaming | Boiling | Frying | Microwaving | ||
Naphthalene | CM1 | 0.049 ± 0.009 cB | 0.046 ± 0.003 cB | 0.047 ± 0.002 cB | 0.104 ± 0.006 cA |
CM3 | 0.143 ± 0.005 bC | 0.115 ± 0.005 bD | 0.165 ± 0.006 bB | 0.183 ± 0.004 aA | |
CM5 | 0.175 ± 0.006 aB | 0.165 ± 0.005 aB | 0.205 ± 0.004 aA | 0.125 ± 0.003 bC | |
Effect | pprocessing method < 0.05 | pprocessing time < 0.05 | pmethod×time < 0.05 | ||
Acenaphthylene | CM1 | - | - | - | - |
CM3 | 0.046 ± 0.004 a | 0.044 ± 0.004 a | - | - | |
CM5 | 0.046 ± 0.004 a | 0.046 ± 0.005 a | - | - | |
Effect | |||||
Acenaphthene | CM1 | 0.058 ± 0.002 bB | 0.073 ± 0.004 aAB | 0.128 ± 0.002 aA | - |
CM3 | 0.146 ± 0.003 aA | 0.098 ± 0.002 aA | 0.149 ± 0.001 aA | 0.117 ± 0.003 A | |
CM5 | 0.146 ± 0.004 aAB | 0.071 ± 0.099 aB | 0.172 ± 0.007 aA | 0.139 ± 0.001 AB | |
Effect | pprocessing method < 0.05 | pprocessing time < 0.05 | pmethod×time = 0.08 | ||
Fluorene | CM1 | - | 0.059 ± 0.001 bB | 0.076 ± 0.004 bA | 0.084 ± 0.007 abA |
CM3 | 0.086 ± 0.005 abAB | 0.070 ± 0.001 abB | 0.083 ± 0.007 aAB | 0.093 ± 0.007 aA | |
CM5 | 0.094 ± 0.006 aA | 0.073 ± 0.005 aC | 0.087 ± 0.003 aAB | 0.080 ± 0.007 bB | |
Effect | pprocessing method < 0.05 | pprocessing time < 0.05 | pmethod×time < 0.05 | ||
Fei | CM1 | 0.070 ± 0.014 bB | 0.070 ± 0.014 bB | 0.105 ± 0.002 bcA | 0.106 ± 0.004 bA |
CM3 | 0.122 ± 0.007 aA | 0.096 ± 0.005 aB | 0.118 ± 0.002 abA | 0.121 ± 0.007 abA | |
CM5 | 0.131 ± 0.004 aA | 0.097 ± 0.003 aB | 0.126 ± 0.005 aA | 0.133 ± 0.005 aA | |
Effect | pprocessing method < 0.05 | pprocessing time < 0.05 | pmethod×time < 0.05 | ||
Anthracene | CM1 | 0.024 ± 0.003 bB | 0.024 ± 0.001 aB | 0.028 ± 0.001 bA | 0.030 ± 0.001 bA |
CM3 | 0.029 ± 0.001 aB | 0.026 ± 0.001 aB | 0.029 ± 0.001 bB | 0.034 ± 0.002 aA | |
CM5 | 0.029 ± 0.001 aB | 0.027 ± 0.001 aB | 0.034 ± 0.002 aA | 0.031 ± 0.001 abAB | |
Effect | pprocessing method < 0.05 | pprocessing time < 0.05 | pmethod×time = 0.07 | ||
Fluoranthene | CM1 | - | - | 0.040 ± 0.001 a | - |
CM3 | 0.037 ± 0.001 A | 0.036 ± 0.001 A | 0.042 ± 0.005 aA | - | |
CM5 | 0.038 ± 0.001 B | 0.037 ± 0.004 B | 0.045 ± 0.006 aA | 0.042 ± 0.002 AB | |
Effect | pprocessing method < 0.05 | pprocessing time = 0.07 | pmethod×time < 0.05 | ||
Benzo(a)anthracene | CM1 | 0.063 ± 0.003 dAB | 0.060 ± 0.001 aB | 0.071 ± 0.001 bA | 0.068 ± 0.001 bAB |
CM3 | 0.065 ± 0.006 dB | 0.062 ± 0.001 aB | 0.084 ± 0.003 aA | 0.068 ± 0.001 bB | |
CM5 | 0.075 ± 0.004 aB | 0.065 ± 0.006 aC | 0.086 ± 0.005 aA | 0.082 ± 0.007 aAB | |
Effect | pprocessing method = 0.36 | pprocessing time = 0.34 | pmethod×time = 0.48 | ||
Bend | CM1 | 0.019 ± 0.001 aB | 0.020 ± 0.001 aB | 0.035 ± 0.001 bA | 0.023 ± 0.001 aB |
CM3 | 0.024 ± 0.003 aB | 0.025 ± 0.002 aB | 0.038 ± 0.001 bA | 0.026 ± 0.003 aB | |
CM5 | 0.026 ± 0.005 aB | 0.026 ± 0.004 aB | 0.048 ± 0.001 aA | 0.027 ± 0.004 aB | |
Effect | pprocessing method < 0.05 | pprocessing time < 0.05 | pmethod×time = 0.19 | ||
Benzo(a)pyrene | CM1 | - | - | - | |
CM3 | - | - | 0.136 ± 0.003 | - | |
CM5 | - | - | 0.139 ± 0.002 | - | |
Effect | |||||
Benzo (g, h, i) perylene | CM1 | - | - | - | - |
CM3 | 0.065 ± 0.001 B | 0.049 ± 0.001 B | 0.082 ± 0.007 A | - | |
CM5 | 0.066 ± 0.001 B | 0.058 ± 0.001 C | 0.104 ± 0.004 A | 0.049 ± 0.001 D | |
Effect | pprocessing method < 0.05 | pprocessing time < 0.05 | pmethod×time < 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, R.; Wu, D.; Na, Q.; He, J.; Yi, L.; Ming, L.; Guo, F.; Ji, R. Effects of Various Processing Methods on the Nutritional Quality and Carcinogenic Substances of Bactrian Camel (Camelus bactrianus) Meat. Foods 2022, 11, 3276. https://doi.org/10.3390/foods11203276
Si R, Wu D, Na Q, He J, Yi L, Ming L, Guo F, Ji R. Effects of Various Processing Methods on the Nutritional Quality and Carcinogenic Substances of Bactrian Camel (Camelus bactrianus) Meat. Foods. 2022; 11(20):3276. https://doi.org/10.3390/foods11203276
Chicago/Turabian StyleSi, Rendalai, Dandan Wu, Qin Na, Jing He, Li Yi, Liang Ming, Fucheng Guo, and Rimutu Ji. 2022. "Effects of Various Processing Methods on the Nutritional Quality and Carcinogenic Substances of Bactrian Camel (Camelus bactrianus) Meat" Foods 11, no. 20: 3276. https://doi.org/10.3390/foods11203276
APA StyleSi, R., Wu, D., Na, Q., He, J., Yi, L., Ming, L., Guo, F., & Ji, R. (2022). Effects of Various Processing Methods on the Nutritional Quality and Carcinogenic Substances of Bactrian Camel (Camelus bactrianus) Meat. Foods, 11(20), 3276. https://doi.org/10.3390/foods11203276