A Novel Metabolite as a Hapten to Prepare Monoclonal Antibodies for Rapid Screening of Quinoxaline Drug Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Apparatus
2.2. Antigen Design and Preparation
2.2.1. Synthesis of Antigens MQCA–PABA–BSA/OVA
2.2.2. Synthesis of Antigens DMEQ–AOAA–HSA/OVA
2.3. Preparation of mAb
2.4. Development of ic-ELISA Analysis
2.5. Validation of ic-ELISA Analysis
3. Results and Discussion
3.1. Antigen Design and Characterization
3.2. Characterization of mAb
3.3. Performance of the ic-ELISA Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.Y.; Huang, L.L.; Chen, D.M.; Yuan, Z.H. Metabolism of mequindox in liver microsomes of rats, chicken and pigs. Rapid Commun. Mass Spectrom. 2010, 24, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Y.; Lei, Z.X.; Gu, C.Q.; Guo, J.C.; Yu, H.R.; Fatima, Z.N.; Zhou, K.X.; Shabbir, M.A.B.; Maan, M.K.; Wu, Q.H.; et al. Mequindox induces apoptosis, DNA damage, and carcinogenicity in Wistar rats. Food Chem. Toxicol. 2019, 127, 270–279. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Lei, Z.X.; Wu, Q.; Awais, I.; Shabbir, M.A.B.; Ahmed, S.; Fatima, Z.; Wang, X.; Pan, Y.H.; Xie, S.Y.; et al. The Reproductive Toxicity of Mequindox in a Two-Generation Study in Wistar Rats. Front. Pharmacol. 2018, 9, 870. [Google Scholar] [CrossRef] [PubMed]
- Ihsan, A.; Wang, X.; Liu, Z.Y.; Wang, Y.L.; Huang, X.J.; Liu, Y.; Yu, H.; Zhang, H.F.; Li, T.T.; Yang, C.H.; et al. Long-term mequindox treatment induced endocrine and reproductive toxicity via oxidative stress in male Wistar rats. Toxicol. Appl. Pharm. 2011, 252, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Ihsan, A.; Wang, X.; Tu, H.G.; Zhang, W.; Dai, M.H.; Peng, D.P.; Wang, Y.L.; Huang, L.L.; Chen, D.M.; Mannan, S.; et al. Genotoxicity evaluation of Mequindox in different short-term tests. Food Chem. Toxicol. 2013, 51, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Y.; Lei, Z.X.; Wu, Q.; Huang, D.Y.; Xie, S.Y.; Wang, X.; Pan, Y.H.; Yuan, Z.H. Mequindox Induced Genotoxicity and Carcinogenicity in Mice. Front. Pharmacol. 2018, 9, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.L.; Yin, F.J.; Pan, Y.H.; Chen, D.M.; Li, J.; Wan, D.; Liu, Z.L.; Yuan, Z.H. Metabolism, Distribution, and Elimination of Mequindox in Pigs, Chickens, and Rats. J. Agric. Food Chem. 2015, 63, 9839–9849. [Google Scholar] [CrossRef]
- Tan, H.L.; Pan, Y.H.; Chen, D.M.; Tao, Y.F.; Zhou, K.X.; Liu, Z.L.; Yuan, Z.H.; Huang, L.L. Discovery of the Marker Residue of Olaquindox in Pigs, Broilers, and Carp. J. Agric. Food Chem. 2019, 67, 6603–6613. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.J.; Wang, Y.L.; Huang, L.; Tao, Y.F.; Yuan, Z.H.; Chen, D.M. Simultaneous determination of five quinoxaline-1,4-dioxides in animal feeds using ultrasonic solvent extraction and high-performance liquid chromatography. Anal. Chim. Acta 2006, 569, 97–102. [Google Scholar] [CrossRef]
- He, Q.Q.; Fang, B.H.; Su, Y.J.; Zeng, Z.L.; Yang, J.W.; He, L.M.; Zeng, D.P. Simultaneous determination of quinoxaline-1,4-dioxides in feeds using molecularly imprinted solid-phase extraction coupled with HPLC. J. Sep. Sci. 2013, 36, 301–310. [Google Scholar] [CrossRef]
- You, Y.L.; Song, L.T.; Li, Y.S.; Wu, Y.T.; Xin, M. Simple and Fast Extraction-Coupled UPLC-MS/MS Method for the Determination of Mequindox and Its Major Metabolites in Food Animal Tissues. J. Agric. Food Chem. 2016, 64, 2394–2404. [Google Scholar] [CrossRef]
- Li, Y.S.; Liu, K.L.; Beier, R.C.; Cao, X.Y.; Shen, J.Z.; Zhang, S.X. Simultaneous determination of mequindox, quinocetone, and their major metabolites in chicken and pork by UPLC-MS/MS. Food Chem. 2014, 160, 171–179. [Google Scholar] [CrossRef]
- Le, T.; Xu, J.; He, H.Q.; Niu, X.D.; Chen, Y.; Jia, Y.Y. Development and validation of an enzyme-linked immunosorbent assay for rapid detection of multi-residues of five quinoxaline-1,4-dioxides in animal feeds. Food Agric. Immunol. 2013, 24, 457–466. [Google Scholar] [CrossRef]
- Le, T.; Zhu, L.Q.; Shu, L.H.; Zhang, L. Simultaneous determination of five quinoxaline-1,4-dioxides in animal feeds using an immunochromatographic strip. Food Addit. Contam. A 2016, 33, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.L.; Shen, J.Z.; Wang, Z.H.; Jiang, W.X.; Zhang, S.X. A sensitive and specific ELISA for determining a residue marker of three quinoxaline antibiotics in swine liver. Anal. Bioanal. Chem. 2013, 405, 2653–2659. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.L.; Shen, J.Z.; Wang, Z.H.; Zhang, Q.D.; Dong, X.Y.; Wu, C.; Zhang, S.X. Rapid Screening of Quinoxaline Antimicrobial Growth Promoters and Their Metabolites in Swine Liver by Indirect Competitive Enzyme-Linked Immunosorbent Assay. Food Anal. Method 2013, 6, 1583–1591. [Google Scholar] [CrossRef]
- Peng, D.P.; Wang, Y.L.; Feng, L.; Cao, G.C.; Tao, Y.F.; Liu, Z.L.; Yuan, Z.H. Preparation of Broadly Specific Monoclonal Antibodies for Simultaneous Determination of Fluoroquinolone Residues in Eggs. Food Anal. Method 2016, 9, 3520–3531. [Google Scholar] [CrossRef]
- Chen, X.J.; Li, Z.Z.; Guo, J.Y.; Li, D.M.; Gao, H.L.; Wang, Y.; Xu, C.L. Simultaneous screening for marbofloxacin and ofloxacin residues in animal-derived foods using an indirect competitive immunoassay. Food Agric. Immunol. 2017, 28, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Peng, D.P.; Ye, S.Q.; Wang, Y.L.; Chen, D.M.; Tao, Y.F.; Huang, L.L.; Liu, Z.L.; Dai, M.H.; Wang, X.Q.; Yuan, Z.H. Development and Validation of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Screening of Tylosin and Tilmicosin in Muscle, Liver, Milk, Honey and Eggs. J. Agric. Food Chem. 2012, 60, 44–51. [Google Scholar] [CrossRef]
- Yang, H.C.; He, L.M.; Liu, Y.H.; Bian, K.; Hu, F.Y.; Fang, B.H. Determination of Quinoxalines and Their Two Main Metabolites in Environmental Water Samples by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Lett. 2014, 47, 1421–1433. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Han, X.Y.; Sheng, F.; Kong, D.X.; Wang, Y.L.; Pan, Y.H.; Chen, M.; Tao, Y.F.; Liu, Z.L.; Ahmed, S.; Yuan, Z.H.; et al. Broad-spectrum monoclonal antibody and a sensitive multi-residue indirect competitive enzyme-linked immunosorbent assay for the antibacterial synergists in samples of animal origin. Food Chem. 2019, 280, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Zhang, B.; Zhao, Q.X.; Wang, S.; Zhang, Y. Preparation of a Broad-Spectrum Heterocyclic Aromatic Amines (HAAs) Antibody and Its Application in Detection of Eight HAAs in Heat Processed Meat. J. Agric. Food Chem. 2020, 68, 15501–15508. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.X.; Shen, J.Z.; Zhang, S.X.; Feng, P.S.; Wu, H.X.; Wu, C.M. Comparative Metabolism of Mequindox in Liver Microsomes, Hepatocytes, and Intestinal Microflora of Chicken. Anal. Lett. 2012, 45, 1749–1763. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Lei, Z.X.; Dai, M.H.; Wang, X.; Yuan, Z.H. Toxic metabolites, Sertoli cells and Y chromosome related genes are potentially linked to the reproductive toxicity induced by mequindox. Oncotarget 2017, 8, 87512–87528. [Google Scholar] [CrossRef] [PubMed]
Immunogen | Coating Antigen | Titre (1:X × 103) | B/B0 1 Values (DMEQ, 100 μg/L) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mouse 1 | Mouse 2 | Mouse 3 | Mouse 4 | Mouse 1 | Mouse 2 | Mouse 3 | Mouse 4 | ||
MQCA–PABA–BSA | MQCA–PABA–OVA | 2 | 1.5 | 12 | 3.5 | 0.846 | 0.965 | 0.815 | 0.902 |
DMEQ–AOAA–OVA | 1 | 0.8 | 2 | 1.5 | 0.516 | 0.469 | 0.568 | 0.766 | |
DMEQ–AOAA–HSA | MQCA–PABA–OVA | 2 | 3 | 1.8 | 1.5 | 0.851 | 0.921 | 0.956 | 0.827 |
DMEQ–AOAA–OVA | 3.5 | 5 | 4 | 3 | 0.790 | 0.873 | 0.884 | 0.919 |
Competitor | IC50 (µg/L) | CR (%) |
---|---|---|
DMEQ | 2.84 | 100 |
MQCA–PABA | 6.45 | 44 |
DOLA | 10.52 | 27 |
MQCA | 142 | 2 |
DQCT | 218 | 1.3 |
QCA | 284 | 1 |
DCBX | >1000 | <0.1 |
DCYX | >1000 | <0.1 |
N1-DCYX | >1000 | <0.1 |
N4-DCYX | >1000 | <0.1 |
MEQ | >1000 | <0.1 |
Sample | LOD (µg/kg) | LOQ (µg/kg) | Spiked Level (μg/kg) | Recovery (%) | CVintra-assay (%, n 1 = 3) | Mean Recovery ± SD (%) | CVinter-assay (%, n 1 = 9) |
---|---|---|---|---|---|---|---|
Pork | 0.47 | 0.61 | 0.6 | 93.3–95.7 | <10.8 | 94.7 ± 1.2 | 1.3 |
1.2 | 87.5–101.8 | <9.7 | 94.3 ± 7.2 | 7.6 | |||
2.4 | 86.3–89.8 | <9.3 | 88.6 ± 2.0 | 2.3 | |||
Swine liver | 0.58 | 0.90 | 0.9 | 89.6–104.0 | <7.6 | 99.0 ± 8.2 | 8.2 |
1.8 | 89.0–97.9 | <10.1 | 94.4 ± 4.7 | 5.0 | |||
3.6 | 95.9–107.8 | <4.5 | 100.6 ± 6.3 | 6.2 | |||
Swine kidney | 0.55 | 0.77 | 0.75 | 80.8–86.1 | <8.9 | 82.9 ± 5.7 | 6.9 |
1.5 | 79.3–94.8 | <8.8 | 85.6 ± 8.8 | 10.3 | |||
3.0 | 73.7–80.8 | <6.0 | 78.2 ± 4.5 | 5.8 | |||
Chicken | 0.52 | 0.74 | 0.75 | 82.4–99.5 | <8.3 | 89.2 ± 9.1 | 10.2 |
1.5 | 93.7–99.2 | <6.6 | 96.0 ± 2.9 | 3.0 | |||
3.0 | 81.3–89.5 | <7.8 | 85.1 ± 4.1 | 4.8 | |||
Chicken liver | 0.54 | 0.77 | 0.75 | 93.9–99.7 | <5.1 | 97.2 ± 4.6 | 4.7 |
1.5 | 76.4–82.9 | <2.7 | 79.3 ± 3.2 | 4.0 | |||
3.0 | 91.2–101.1 | <8.2 | 97.0 ± 7.5 | 7.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Luo, M.; Li, H.; Xiao, J.; He, X.; Liang, J.; Peng, D. A Novel Metabolite as a Hapten to Prepare Monoclonal Antibodies for Rapid Screening of Quinoxaline Drug Residues. Foods 2022, 11, 3305. https://doi.org/10.3390/foods11203305
Song W, Luo M, Li H, Xiao J, He X, Liang J, Peng D. A Novel Metabolite as a Hapten to Prepare Monoclonal Antibodies for Rapid Screening of Quinoxaline Drug Residues. Foods. 2022; 11(20):3305. https://doi.org/10.3390/foods11203305
Chicago/Turabian StyleSong, Wanyao, Mengyu Luo, Huaming Li, Jiaxu Xiao, Xiuping He, Jixiang Liang, and Dapeng Peng. 2022. "A Novel Metabolite as a Hapten to Prepare Monoclonal Antibodies for Rapid Screening of Quinoxaline Drug Residues" Foods 11, no. 20: 3305. https://doi.org/10.3390/foods11203305
APA StyleSong, W., Luo, M., Li, H., Xiao, J., He, X., Liang, J., & Peng, D. (2022). A Novel Metabolite as a Hapten to Prepare Monoclonal Antibodies for Rapid Screening of Quinoxaline Drug Residues. Foods, 11(20), 3305. https://doi.org/10.3390/foods11203305