The Effect of Stabilized Rice Bran Addition on Physicochemical, Sensory, and Techno-Functional Properties of Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical, Reagents and Standards
2.2. Stabilization of RB
2.3. Manufacture of Bread Supplemented with SRB
2.3.1. Ingredients
2.3.2. Breadmaking Process
2.4. Characterization of Doughs
2.4.1. Dough Mixing Properties
2.4.2. Dough Extension Properties
2.4.3. Dough pH
2.5. Characterization of breads
2.5.1. Physical Characteristics
2.5.2. Proximate Composition
2.5.3. Dietary Fiber
2.5.4. Phitic Acid Content
2.5.5. β-Glucan Content
2.5.6. γ-Oryzanol Content
2.5.7. Total Soluble Phenolic Content
2.5.8. γ-Aminobutyric Acid (GABA)
2.5.9. Oxygen Radical Absorbance Capacity (ORAC)
2.5.10. Sensory Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Dough Mixing Properties
3.2. Dough Extension Properties
3.3. Doughs pH
3.4. Physical Properties of Bread
3.5. Nutritional Composition
3.6. Bioactive Compounds and Antioxidant Activity
3.7. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, M.C.B.; Barouh, N.; Baréa, B.; Villeneuve, P.; Bourlieu-Lacanal, C.; Ferreira, M.S.L.; Durand, E. Sequential one-pot NaDES assisted extraction and biotransformation of rice bran: A new strategy to boost antioxidant activity of natural extracts. Process Biochem. 2022, 117, 110–116. [Google Scholar] [CrossRef]
- Gong, X.; Sui, L.; Morton, J.; Brennan, M.A.; Brennan, C.S. Investigation of nutritional and functional effects of rice bran protein hydrolysates by using Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines: A review. Trends Food Sci. Technol. 2021, 110, 798–811. [Google Scholar] [CrossRef]
- Feng, S.; Wang, L.; Shao, P.; Lu, B.; Chen, Y.; Sun, P. Simultaneous analysis of free phytosterols and phytosterol glycosides in rice bran by SPE/GC–MS. Food Chem. 2022, 387, 132742. [Google Scholar] [CrossRef]
- Fărcaș, A.; Drețcanu, G.; Pop, T.D.; Enaru, B.; Socaci, S.; Diaconeasa, Z. Cereal Processing By-Products as Rich Sources of Phenolic Compounds and Their Potential Bioactivities. Nutrients 2021, 13, 3934. [Google Scholar] [CrossRef] [PubMed]
- Borresen, E.C.; Ryan, E.P. Rice Bran: A Food Ingredient with Global Public Health Opportunities. In Wheat and Rice in Disease Prevention and Health; Academic Press: Cambridge, MA, USA, 2014; pp. 301–310. [Google Scholar] [CrossRef]
- El Fattah, M.A.A.; Abdelhamid, Y.A.; Elyamany, M.F.; Badary, O.A.; Heikal, O.A. Rice Bran Extract Protected against LPS-Induced Neuroinflammation in Mice through Targeting PPAR-γ Nuclear Receptor. Mol. Neurobiol. 2020, 58, 1504–1516. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.; Rakha, A.; Butt, M.S.; Iqbal, M.J.; Rashid, S. Rice bran nutraceutics: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3771–3780. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, P.J.; Martínez-Villaluenga, C.; Amigo, L.; Frias, J. Assessment on proximate composition, dietary fiber, phytic acid and protein hydrolysis of germinated ecuatorian brown rice. Plant Foods Hum. Nutr. 2014, 69, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- Pokkanta, P.; Yuenyong, J.; Mahatheeranont, S.; Jiamyangyuen, S.; Sookwong, P. Microwave treatment of rice bran and its effect on phytochemical content and antioxidant activity. Sci. Rep. 2022, 12, 7708. [Google Scholar] [CrossRef]
- Thanonkaew, A.; Wongyai, S.; McClements, D.J.; Decker, E.A. Effect of stabilization of rice bran by domestic heating on mechanical extraction yield, quality, and antioxidant properties of cold-pressed rice bran oil (Oryza saltiva L.). LWT-Food Sci. Technol. 2012, 48, 231–236. [Google Scholar] [CrossRef]
- Yu, C.; Hu, Q.; Wang, H.; Deng, Z. Comparison of 11 rice bran stabilization methods by analyzing lipase activities. J. Food Process. Preserv. 2020, 44. [Google Scholar] [CrossRef]
- Tuncel, N.B.; Yılmaz, N.; Kocabıyık, H.; Uygur, A. The effect of infrared stabilized rice bran substitution on physicochemical and sensory properties of pan breads: Part I. J. Cereal Sci. 2014, 59, 155–161. [Google Scholar] [CrossRef]
- Bultum, L.E.; Emire, S.A.; Wolde, Y.T. Influence of full fat rice bran from Ethiopian rice milling industries on nutritional qualities, physicochemical and sensory properties of bread and biscuits. J. Food Meas. Charact. 2020, 14, 2253–2261. [Google Scholar] [CrossRef]
- Tongbram, T.; Bora, J.; Senthil, A.; Kumar, S. Formulation, development and evaluation of high fibre-high protein chapati (Indian flat bread) from composite flour using common industrial by-products. J. Food Sci. Technol. 2020, 57, 2739–2749. [Google Scholar] [CrossRef] [PubMed]
- de Souza, C.B.; Lima, G.P.P.; Borges, C.V.; Dias, L.C.G.D.; Spoto, M.H.F.; Castro, G.R.; Corrêa, C.R.; Minatel, I.O. Development of a functional rice bran cookie rich in γ-oryzanol. J. Food Meas. Charact. 2019, 13, 1070–1077. [Google Scholar] [CrossRef]
- Kaur, A.; Virdi, A.S.; Singh, N.; Singh, A.; Kaler, R.S.S. Effect of degree of milling and defatting on proximate composition, functional and texture characteristics of gluten-free muffin of bran of long-grain indica rice cultivars. Food Chem. 2021, 345, 128861. [Google Scholar] [CrossRef]
- Boukid, F.; Zannini, E.; Carini, E.; Vittadini, E. Pulses for bread fortification: A necessity or a choice? Trends Food Sci. Technol. 2019, 88, 416–428. [Google Scholar] [CrossRef]
- Yu, L.; Ma, Y.; Zhao, Y.; Pan, Y.; Tian, R.; Yao, X.; Yao, Y.; Cao, X.; Geng, L.; Wang, Z.; et al. Effect of Hulless Barley Flours on Dough Rheological Properties, Baking Quality, and Starch Digestibility of Wheat Bread. Front. Nutr. 2021, 8, 785847. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Florença, S.G.; Barroca, M.J.; Anjos, O. The link between the consumer and the innovations in food product development. Foods 2020, 9, 1317. [Google Scholar] [CrossRef]
- Graça, C.; Edelmann, M.; Raymundo, A.; Sousa, I.; Coda, R.; Sontag-Strohm, T.; Huang, X. Yoghurt as a starter in sourdough fermentation to improve the technological and functional properties of sourdough-wheat bread. J. Funct. Foods 2022, 88, 104877. [Google Scholar] [CrossRef]
- Irakli, M.; Katsantonis, D.; Kleisiaris, F. Evaluation of quality attributes, nutraceutical components and antioxidant potential of wheat bread substituted with rice bran. J. Cereal Sci. 2015, 65, 74–80. [Google Scholar] [CrossRef]
- Coello, K.E.; Frias, J.; Martínez-Villaluenga, C.; Cartea, M.E.; Abilleira, R.; Peñas, E. Potential of Germination in Selected Conditions to Improve the Nutritional and Bioactive Properties of Moringa (Moringa oleifera L.). Foods 2020, 9, 1639. [Google Scholar] [CrossRef]
- Cornejo, F.; Caceres, P.J.; Martínez-Villaluenga, C.; Rosell, C.M.; Frias, J. Effects of germination on the nutritive value and bioactive compounds of brown rice breads. Food Chem. 2015, 173, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srisaipet, A.; Nuddagul, M. Influence of Temperature on Gamma-Oryzanol Stability of Edible Rice Bran Oil during Heating. Int. J. Chem. Eng. Appl. 2014, 5, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Cáceres, P.J.; Martínez-Villaluenga, C.; Amigo, L.; Frias, J. Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food Chem. 2014, 152, 407–414. [Google Scholar] [CrossRef] [Green Version]
- de Delahaye, E.P.; Jiménez, P.; Pérez, E. Effect of enrichment with high content dietary fiber stabilized rice bran flour on chemical and functional properties of storage frozen pizzas. J. Food Eng. 2005, 68, 1–7. [Google Scholar] [CrossRef]
- Anil, M. Effects of wheat bran, corn bran, rice bran and oat bran supplementation on the properties of pide. J. Food Process. Preserv. 2012, 36, 276–283. [Google Scholar] [CrossRef]
- Millar, K.; Barry-Ryan, C.; Burke, R.; McCarthy, S.; Gallagher, E. Dough properties and baking characteristics of white bread, as affected by addition of raw, germinated and toasted pea flour. Innov. Food Sci. Emerg. Technol. 2019, 56, 102189. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Cini, E. A systematic review of gluten-free dough and bread: Dough rheology, bread characteristics, and improvement strategies. Appl. Sci. 2020, 10, 6559. [Google Scholar] [CrossRef]
- Gómez, A.; Ferrero, C.; Calvelo, A.; Añón, M.; Puppo, M. Effect of mixing time on structural and rheological properties of wheat flour dough for breadmaking. Int. J. Food Prop. 2011, 14, 583–598. [Google Scholar] [CrossRef]
- Bagheri, R.; Seyedein, S.M. The Effect of Adding Rice Bran Fibre on Wheat Dough Performance and Bread Quality. World Appl. Sci. J. 2011, 14, 121–125. [Google Scholar]
- Teng, Y.; Liu, C.; Bai, J.; Liang, J. Mixing, tensile and pasting properties of wheat flour mixed with raw and enzyme treated rice bran. J. Food Sci. Technol. 2014, 52, 3014–3021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Ma, L.; Zhong, X.; Liang, J. Potential of raw and fermented maize gluten feed in bread making: Assess of dough rheological properties and bread quality. LWT-Food Sci. Technol. 2022, 162, 113482. [Google Scholar] [CrossRef]
- Onyango, C.; Luvitaa, S.K.; Lagat, K.; Hüsken, A.; Smit, I.; Schmidt, M. Utilisation of Amaranth and Finger Millet as Ingredients in Wheat Dough and Bread for Increased Agro-Food Biodiversity. Foods 2022, 11, 911. [Google Scholar] [CrossRef] [PubMed]
- Hanis-Syazwani, M.; Boarinwa, I.; Lasekan, O.; Muhammad, K. Influence of starter culture on the physicochemical properties of rice bran sourdough and physical quality of sourdough bread. Food Res. 2018, 2, 340–349. [Google Scholar] [CrossRef]
- Larsson, H. Effect of pH and Sodium Chloride on Wheat Flour Dough Properties: Ultracentrifugation and Rheological Measurements. Cereal Chem. 2002, 79, 544–545. [Google Scholar] [CrossRef]
- Semić, A.; Oručević, S.; Bauman, I.; Muminović, Š.; Spaho, N.; Klepo, B. Effects of increasing sourness of bread dough on bread quality. In Proceedings of the 7th Croatian Congress of Cereal Technologists, Opatija, Croatia, 16–18 October 2013; Available online: https://bib.irb.hr/datoteka/479435.416_semic.pdf (accessed on 15 August 2022).
- Goesaert, H.; Brijs, K.; Veraverbeke, W.; Courtin, C.; Gebruers, K.; Delcour, J. Wheat flour constituents: How they impact bread quality, and how to impact their functionality. Trends Food Sci. Technol. 2005, 16, 12–30. [Google Scholar] [CrossRef]
- Schopf, M.; Scherf, K. Water absorption capacity determines the functionality of vital gluten related to specific bread volume. Foods 2021, 10, 228. [Google Scholar] [CrossRef]
- Pauline, M.; Roger, P.; Nina, N.E.S.N.; Arielle, T.; Eugene, E.E.; Robert, N. Physico-chemical and nutritional characterization of cereals brans enriched breads. Sci. Afr. 2020, 7, e00251. [Google Scholar] [CrossRef]
- Martín-Diana, A.B.; García-Casas, M.J.; Martínez-Villaluenga, C.; Frías, J.; Peñas, E.; Rico, D. Wheat and oat brans as sources of polyphenol compounds for development of antioxidant nutraceutical ingredients. Foods 2021, 10, 115. [Google Scholar] [CrossRef]
- Bourre, J.-M.; Bégat, A.; Leroux, M.-C.; Mousques-Cami, V.; Pérardel, N.; Souply, F. Valeur nutritionnelle (macro et micro-nutriments) de farines et pains français. Médecine Nutr. 2010, 44, 49–76. [Google Scholar] [CrossRef]
- Zhuang, X.; Yin, T.; Han, W.; Zhang, X. Nutritional Ingredients and Active Compositions of Defatted Rice Bran. In Rice Bran and Rice Bran Oil: Chemistry, Processing and Utilization; Academic Press: Cambridge, MA, USA; AOCS Press: Denver, CO, USA, 2019; pp. 247–270. [Google Scholar] [CrossRef]
- Mohammadi, F.; Marti, A.; Nayebzadeh, K.; Hosseini, S.M.; Tajdar-Oranj, B.; Jazaeri, S. Effect of washing, soaking and pH in combination with ultrasound on enzymatic rancidity, phytic acid, heavy metals and coliforms of rice bran. Food Chem. 2021, 334, 127583. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Jin, Y.; Piao, J.; Kok, F.; Guusje, B.; Jacobsen, E. Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China. J. Agric. Food Chem. 2005, 53, 10285–10290. [Google Scholar] [CrossRef] [PubMed]
- Sanz Penella, J.M.; Collar, C.; Haros, M. Effect of wheat bran and enzyme addition on dough functional performance and phytic acid levels in bread. J. Cereal Sci. 2008, 48, 715–721. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, R.; Dong, L.; Huang, F.; Tang, X.; Wei, Z.; Zhang, M. Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT-Food Sci. Technol. 2018, 87, 450–456. [Google Scholar] [CrossRef]
- Jung, T.-D.; Shin, G.-H.; Kim, J.-M.; Choi, S.-I.; Lee, J.-H.; Lee, S.J.; Park, S.J.; Woo, K.S.; Oh, S.K.; Lee, O.-H. Comparative analysis of γ-oryzanol, β-glucan, total phenolic content and antioxidant activity in fermented rice bran of different varieties. Nutrients 2017, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Mohebbi, Z.; Homayouni, A.; Azizi, M.H.; Hosseini, S.J. Effects of beta-glucan and resistant starch on wheat dough and prebiotic bread properties. J. Food Sci. Technol. 2017, 55, 101–110. [Google Scholar] [CrossRef]
- Rebolleda, S.; Luisa González-San José, M.; Sanz, M.T.; Beltrán, S.; Solaesa Á, G.; Bañuelos, M. Bioactive Compounds of a Wheat Bran Oily Extract Obtained with Supercritical Carbon Dioxide †. Foods 2020, 9, 625. [Google Scholar] [CrossRef]
- Yılmaz, N.; Tuncel, N.B.; Kocabıyık, H. Infrared stabilization of rice bran and its effects onγ-oryzanol content, tocopherols and fatty acid composition. J. Sci. Food Agric. 2014, 94, 1568–1576. [Google Scholar] [CrossRef]
- Irakli, M.; Kleisiaris, F.; Mygdalia, A.; Katsantonis, D. Stabilization of rice bran and its effect on bioactive compounds content, antioxidant activity and storage stability during infrared radiation heating. J. Cereal Sci. 2018, 80, 135–142. [Google Scholar] [CrossRef]
- Santetti, G.S.; Dacoreggio, M.V.; Inácio, H.P.; Biduski, B.; Hoff, R.B.; Freire, C.B.F.; Gutkoski, L.C.; Amboni, R.D.D.M.C. The addition of yerba mate leaves on bread dough has influences on fermentation time and the availability of phenolic compounds? LWT-Food Sci. Technol. 2021, 146, 111442. [Google Scholar] [CrossRef]
- Coda, R.; Rizzello, C.G.; Gobbetti, M. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int. J. Food Microbiol. 2010, 137, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Kim, K.J.; Chung, H.-C.; Han, G.D. Use of Rice Bran for Preparation of GABA (γ-aminobutyric acid)-rich Sourdough. Food Sci. Technol. Res. 2019, 25, 399–404. [Google Scholar] [CrossRef]
- Aktaş, K.; Akın, N. Influence of rice bran and corn bran addition on the selected properties of tarhana, a fermented cereal based food product. LWT-Food Sci. Technol. 2020, 129, 109574. [Google Scholar] [CrossRef]
- Begum, R.; Ahmed, S.; Hakim, M.; Sen, J. Comparative Study among Composite Breads Incorporated with Full Fatted and Defatted Rice Bran. J. Environ. Sci. Nat. Resour. 2018, 11, 43–52. [Google Scholar] [CrossRef]
- Doan, N.T.T.; Lai, Q.D.; Vo, H.V.; Nguyen, H.D. Influence of adding rice bran on physio-chemical and sensory properties of bread. J. Food Meas. Charact. 2021, 15, 5369–5378. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, C.; Pulkkinen, M.; Edelmann, M.; Chamlagain, B.; Coda, R.; Sandell, M.; Piironen, V.; Maina, N.H.; Katina, K. In situ production of vitamin B12 and dextran in soya flour and rice bran: A tool to improve flavour and texture of B12-fortified bread. LWT-Food Sci. Technol. 2022, 161, 113407. [Google Scholar] [CrossRef]
- Irakli, M.; Mygdalia, A.; Chatzopoulou, P.; Katsantonis, D. Impact of the combination of sourdough fermentation and hop extract addition on baking properties, antioxidant capacity and phenolics bioaccessibility of rice bran-enhanced bread. Food Chem. 2019, 285, 231–239. [Google Scholar] [CrossRef]
Ingredients (On Flour + SRB%) | Bread Formulations | ||||
---|---|---|---|---|---|
Control | 10SRB | 15SRB | 20SRB | 25SRB | |
Wheat flour | 100 | 90 | 85 | 80 | 75 |
SRB | 0 | 10 | 15 | 20 | 25 |
Sugar | 6 | 6 | 6 | 6 | 6 |
Canola oil | 8 | 8 | 8 | 8 | 8 |
Yeast | 4 | 4 | 4 | 4 | 4 |
Water | 60 | 57.3 | 55.9 | 55 | 53.5 |
Salt | 2 | 2 | 2 | 2 | 2 |
Calcium propionate | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
Dough Formulation | Water Absorption (g/100 g) | Development Time (min) | Stability (min) | Weakening (mN·m) |
---|---|---|---|---|
Control | 66.40 ± 0.33 e | 3.77 ± 0.12 b | 24.12 ± 0.85 a | 49.00 ± 6.55 b |
10SRB | 63.60 ± 0.42 d | 3.63 ± 0.06 ab | 28.15 ± 0.15 b | 68.67 ± 1.53 c |
15SRB | 62.25 ± 0.29 c | 3.48 ± 0.03 a | 29.45 ± 0.38 c | 65.01 ± 2.00 c |
20SRB | 61.25 ± 0.29 b | 3.98 ± 0.08 c | 35.10 ± 1.15 d | 45.00 ± 1.73 ab |
25SRB | 59.80 ± 0.24 a | 3.57 ± 0.10 a | 37.02 ± 0.23 e | 40.33 ± 2.52 a |
Dough Formulation | Tenacity (mm H2O) | Elasticity (mm) | Deformation Energy (× 10−4 J) |
---|---|---|---|
Control | 184.33 ± 5.51 d | 48.17 ± 1.04 b | 375.70 ± 5.13 d |
10SRB | 170.33 ± 3.51 c | 37.16 ± 3.01 a | 254.82 ± 5.01 c |
15SRB | 158.00 ± 3.04 b | 33.50 ± 3.04 a | 213.17 ± 3.25 b |
20SRB | 159.67 ± 5.77 b | 37.35 ± 2.52 a | 207.67 ± 4.16 b |
25SRB | 148.50 ± 4.09 a | 34.70 ± 3.06 a | 195.66 ± 2.75 a |
Dough Formulation | pH |
---|---|
Control | 5.43 ± 0.04 a |
10SRB | 5.53 ± 0.02 a |
15SRB | 5.45 ± 0.06 a |
20SRB | 5.51 ± 0.02 a |
25SRB | 5.57 ± 0.03 a |
Bread Formulation | Volume (cm3) | Center Height (cm) |
---|---|---|
Control | 1061.33 ± 10.26 e | 10.21 ± 0.11 d |
10SRB | 985.36 ± 14.19 d | 9.90 ± 0.10 d |
15SRB | 900.10 ± 20.00 c | 8.41 ± 0.10 c |
20SRB | 863.36 ± 6.09 b | 7.96 ± 0.04 b |
25SRB | 750.20 ± 9.70 a | 7.30 ± 0.36 a |
Breads | Moisture | Protein | Fat | CH | Ash | PA | IDF | SDF | β-Glucans |
---|---|---|---|---|---|---|---|---|---|
Control | 32.49 ± 0.44 b | 9.05 ± 0.03 b | 6.64 ± 0.39 a | 49.06 ± 0.24 e | 1.89 ± 0.06 a | 0.18 ± 0.02 a | 0.94 ± 0.12 a | 1.74 ± 0.12 d | 1.69 ± 0.12 bc |
SRB10 | 31.21 ± 0.26 a | 8.76 ± 0.35 ab | 8.37 ± 0.09 b | 48.54 ± 0.12 d | 2.44 ± 0.03 b | 0.52 ± 0.03 b | 4.32 ± 0.46 b | 1.43 ± 0.05 c | 1.70 ± 0.06 c |
SRB15 | 33.94 ± 0.05 c | 8.75 ± 0.07 a | 8.42 ± 0.09 b | 45.49 ± 0.14 c | 2.52 ± 0.08 b | 0.86 ± 0.01 c | 6.83 ± 0.16 c | 1.18 ± 0.04 b | 1.59 ± 0.05 ab |
SRB20 | 33.73 ± 0.15 c | 8.87 ± 0.03 ab | 9.12 ± 0.04 c | 44.48 ± 0.05 b | 2.80 ± 0.07 c | 1.10 ± 0.01 d | 12.78 ± 0.44 d | 0.99 ± 0.05 a | 1.59 ± 0.10 ab |
SRB25 | 33.90 ± 0.02 c | 8.96 ± 0.03 ab | 9.78 ± 0.13 d | 43.27 ± 0.17 a | 3.06 ± 0.07 d | 1.22 ± 0.02 e | 15.88 ± 0.47 e | 0.91 ± 0.05 a | 1.50 ± 0.05 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinales, C.; Cuesta, A.; Tapia, J.; Palacios-Ponce, S.; Peñas, E.; Martínez-Villaluenga, C.; Espinoza, A.; Cáceres, P.J. The Effect of Stabilized Rice Bran Addition on Physicochemical, Sensory, and Techno-Functional Properties of Bread. Foods 2022, 11, 3328. https://doi.org/10.3390/foods11213328
Espinales C, Cuesta A, Tapia J, Palacios-Ponce S, Peñas E, Martínez-Villaluenga C, Espinoza A, Cáceres PJ. The Effect of Stabilized Rice Bran Addition on Physicochemical, Sensory, and Techno-Functional Properties of Bread. Foods. 2022; 11(21):3328. https://doi.org/10.3390/foods11213328
Chicago/Turabian StyleEspinales, Cindy, Adriana Cuesta, Javier Tapia, Sócrates Palacios-Ponce, Elena Peñas, Cristina Martínez-Villaluenga, Alexander Espinoza, and Patricio J. Cáceres. 2022. "The Effect of Stabilized Rice Bran Addition on Physicochemical, Sensory, and Techno-Functional Properties of Bread" Foods 11, no. 21: 3328. https://doi.org/10.3390/foods11213328
APA StyleEspinales, C., Cuesta, A., Tapia, J., Palacios-Ponce, S., Peñas, E., Martínez-Villaluenga, C., Espinoza, A., & Cáceres, P. J. (2022). The Effect of Stabilized Rice Bran Addition on Physicochemical, Sensory, and Techno-Functional Properties of Bread. Foods, 11(21), 3328. https://doi.org/10.3390/foods11213328