Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes
Abstract
:1. Introduction
2. Generalities of the Genus Salicornia
3. Salicornia bigelovii
4. Salicornia brachiata
5. Salicornia herbacea
6. Commercial Potentials towards Application in Various Industries
7. Techniques to Produce Salicornia as a Salt Substitute
8. Nutrition Profile and Health Impacts
8.1. Antioxidant and Anti-Inflammatory Effects
8.2. Utilization as Functional Foods
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopes, M.; Castilho, M.D.C.; Sanches-Silva, A.; Freitas, A.; Barbosa, J.; Gonçalves, M.J.; Cavaleiro, C.; Ramos, F. Evaluation of the mycotoxins content of Salicornia spp.: A gourmet plant alternative to salt. Food Addit. Contam. Part B 2020, 13, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Valdés, B.; Castroviejo, S. Platanaceae-Plumbaginaceae (partim). In Flora Iberica–Plantas Vasculares De La Península Ibérica E Islas Baleares; Castroviejo, S., Laínz, M., González, G.L., Montserrat, P., Garmendia, F.M., Paiva, J., Villar, L., Eds.; Real Jardín Botánico, C.S.I.C.: Madrid, Spain, 1990; Volume II, pp. 531–533. Available online: http://www.floraiberica.es/floraiberica/texto/pdfs/02_052_17_Salicornia.pdf (accessed on 15 September 2022).
- Kadereit, G.; Ball, P.; Beer, S.; Mucina, L.; Sokoloff, D.; Teege, P.; Yaprak, A.E.; Freitag, H. A taxonomic nightmare comes true: Phylogeny and biogeography of glassworts (Salicornia, L., Chenopodiaceae). Taxon 2007, 56, 1143–1170. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Zhang, M.; Wang, S.; Cai, J.; Zhou, X.; Zhu, C. Nutritional characterization and changes in quality of Salicornia bigelovii Torr. during storage. LWT-Food Sci. Technol. 2010, 43, 519–524. [Google Scholar] [CrossRef]
- Gunning, D. Cultivating Salicornia europaea (marsh samphire). Dublin Irel. Ir. Sea Fish. Board 2016, 4, 1–95. [Google Scholar]
- Lopes, M.; Cavaleiro, C.; Ramos, F. Sodium reduction in bread: A role for glasswort (Salicornia ramosissima J. Woods). Compr. Rev. Food Sci. Food Saf. 2017, 16, 1056–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S. Salicornia: Evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventura, Y.; Sagi, M. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- World Health Organization. Reducing salt intake in populations: Report of a WHO forum and technical meeting. In Proceedings of the WHO Forum and Technical Meeting, Paris, France, 5–7 October 2006. [Google Scholar]
- Wei, L.; Mackenzie, I.S.; MacDonald, T.M.; George, J. Cardiovascular risk associated with sodium-containing medicines. Expert Opin. Drug Saf. 2014, 13, 1515–1523. [Google Scholar] [CrossRef]
- Powles, J.; Fahimi, S.; Micha, R.; Khatibzadeh, S.; Shi, P.; Ezzati, M.; Engell, R.E.; Lim, S.S.; Danaei, G.; Mozaffarian, D.; et al. Global, regional and national sodium intakes in 1990 and 2010: A systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 2013, 3, e003733. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Harris, R.M.; Rose, A.; Hambleton, I.R.; Howitt, C.; Forouhi, N.G.; Hennis, A.J.; Samuels, T.A.; Unwin, N. Sodium and potassium excretion in an adult Caribbean population of African descent with a high burden of cardiovascular disease. BMC Public Health 2018, 18, 1–11. [Google Scholar] [CrossRef]
- Polonia, J.; Martins, L.; Pinto, F.; Nazaré, J. Prevalence, awareness, treatment and control of hypertension and salt intake in Portugal: Changes over a decade. The PHYSA study. J. Hypertens. 2014, 32, 1211–1221. [Google Scholar] [CrossRef]
- Mcneely, J.D.; Windham, B.G.; Anderson, D.E. Dietary sodium effects on heart rate variability in salt sensitivity of blood pressure. Psychophysiology 2008, 45, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.H. A salt substitute with low sodium content from plant aqueous extracts. Food Res. Int. 2011, 44, 537–543. [Google Scholar] [CrossRef]
- Wick, C.D.; Dang, L.X.; Jungwirth, P. Simulated surface potentials at the vapor-water interface for the KCl aqueous electrolyte solution. J. Chem. Phys. 2006, 125, 024706. [Google Scholar] [CrossRef]
- Braschi, A.; Gill, L.; Naismith, D.J. Partial substitution of sodium with potassium in white bread: Feasibility and bioavailability. Int. J. Food Sci. Nutr. 2009, 60, 507–521. [Google Scholar] [CrossRef]
- Choi, S.C.; Kim, B.J.; Rhee, P.L.; Chang, D.K.; Son, H.J.; Kim, J.J.; Rhee, J.C.; Kim, S.I.; Han, Y.S.; Sim, K.H.; et al. Probiotic fermented milk containing dietary fiber has additive effects in IBS with constipation compared to plain probiotic fermented milk. Gut Liver 2011, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.D.; Lee, J.H.; Jeong, J.H.; Kim, J.Y.; Yee, S.T.; Park, S.K.; Lee, M.K.; Seo, K.I. Production of novel vinegar having antioxidant and anti-fatigue activities from Salicornia herbacea L. J. Sci. Food Agric. 2016, 96, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.G.; Lee, G.H. Spherical granule production from micronized saltwort (Salicornia herbacea) powder as salt substitute. Prev. Nutr. Food Sci. 2013, 18, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.W.; Hwang, K.E.; Song, D.H.; Kim, Y.J.; Ham, Y.K.; Yeo, I.J.; Jeong, T.-J.; Choi, Y.-S.; Kim, C.J. Effects of red and green glassworts (Salicornia herbacea L.) on physicochemical and textural properties of reduced-salt cooked sausages. Korean J. Food Sci. Anim. Resour. 2014, 34, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.W.; Hwang, K.E.; Song, D.H.; Kim, Y.J.; Lim, Y.B.; Ham, Y.K.; Yeo, E.J.; Chang, S.J.; Choi, Y.S.; Kim, C.J. Effect of glasswort (Salicornia herbacea L.) on the texture of frankfurters. Meat Sci. 2014, 97, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wei, M.; Cao, C.; Ju, Y.; Deng, Y.; Ye, T.; Xia, Z.; Chen, M. Effect and mechanism of Salicornia bigelovii Torr. plant salt on blood pressure in SD rats. Food Funct. 2015, 6, 920–926. [Google Scholar] [CrossRef]
- Noble, S.M.; Davy, A.J.; Oliver, R.P. Ribosomal DNA variation and population differentiation in Salicornia L. New Phytol. 1992, 122, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Davy, A.J.; Bishop, G.F.; Costa, C.S.B. Salicornia L.(Salicornia pusilla J. woods, S. ramosissima J. woods, S. europaea L., S. obscura PW ball & tutin, S. nitens PW ball & tutin, S. fragilis PW ball & tutin and S. dolichostachya moss). J. Ecol. 2001, 89, 681–707. [Google Scholar]
- Rozema, J.; Van Der List, J.C.; Schat, H.; Diggelen, J.V.; Broekman, R.A. Ecophysiological response of Salicornia dolichostachya and Salicornia brachystachya to seawater inundation. In Vegetation between Land and Sea; Springer: Dordrecht, The Netherlands, 1987; pp. 180–186. [Google Scholar]
- Flowers, T.J.; Hajibagheri, M.A.; Clipson, N.J.W. Halophytes. Q. Rev. Biol. 1986, 61, 313–337. [Google Scholar] [CrossRef]
- Glenn, E.P.; O’Leary, J.W.; Watson, M.C.; Thompson, T.L.; Kuehl, R.O. Salicornia bigelovii Torr.: An oilseed halophyte for seawater irrigation. Science 1991, 251, 1065–1067. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.; Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 2015, 115, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Kadereit, G.; Piirainen, M.; Lambinon, J.; Vanderpoorten, A. Cryptic taxa should have names: Reflections in the glasswort genus Salicornia (Amaranthaceae). Taxon 2012, 61, 1227–1239. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Ji, B.; Su, B. Economic value and exploiting approaches of sea asparagus, a seawater-irrigated vegetable. Agric. Sci. 2013, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Buhmann, A.K.; Flowers, T.J.; Seal, C.E.; Papenbrock, J. Salicornia as a crop plant in temperate regions: Selection of genetically characterized ecotypes and optimization of their cultivation conditions. AoB Plants 2014, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, H.R.; Hwa-Jin, P.; Jae, Y.C. Salicornia herbacea: Botanical, chemical and pharmacological review of halophyte marsh plant. J. Med. Plants Res. 2009, 3, 548–555. [Google Scholar]
- Chaturvedi, T.; Christiansen, A.H.; Gołębiewska, I.; Thomsen, M.H. Salicornia Species: Current Status and Future Potential. In Future of Sustainable Agriculture in Saline Environments; CRC Press: Boca Raton, FL, USA, 2021; pp. 461–482. [Google Scholar]
- Glenn, E.P.; Brown, J.J.; O’Leary, J.W. Irrigating crops with seawater. Sci. Am. 1998, 279, 76–81. [Google Scholar] [CrossRef]
- Glenn, E.P.; Anday, T.; Chaturvedi, R.; Martinez-Garcia, R.; Pearlstein, S.; Soliz, D.; Nelson, S.G.; Felger, R.S. Three halophytes for saline-water agriculture: An oilseed, a forage and a grain crop. Environ. Exp. Bot. 2013, 92, 110–121. [Google Scholar] [CrossRef]
- Hodges, C.N.; Thompson, T.L.; Riley, J.J.; Glenn, E.P. Reversing the flow: Water and nutrients from the sea to the land. Ambio 1993, 22, 483–490. [Google Scholar]
- Ventura, Y.; Eshel, A.; Pasternak, D.; Sagi, M. The development of halophyte-based agriculture: Past and present. Ann. Bot. 2015, 115, 529–540. [Google Scholar]
- Grattan, S.R.; Benes, S.E.; Peters, D.W.; Diaz, F. Feasibility of irrigating pickleweed (Salicornia bigelovii Torr) with hyper-saline drainage water. J. Environ. Qual. 2008, 37, S-149–S-156. [Google Scholar] [CrossRef]
- Rueda-Puente, E.O.; García-Hernández, J.L.; Preciado-Rangel, P.; Murillo-Amador, B.; Tarazón-Herrera, M.A.; Flores-Hernández, A.; Holguin-Peña, J.; Aybar, A.N.; Hoyos, J.M.B.; Weimers, D.; et al. Germination of Salicornia bigelovii ecotypes under stressing conditions of temperature and salinity and ameliorative effects of plant growth-promoting bacteria. J. Agron. Crop Sci. 2007, 193, 167–176. [Google Scholar] [CrossRef]
- Ayala, F.; O’Leary, J.W. Growth and physiology of Salicornia bigelovii Torr. at suboptimal salinity. Int. J. Plant Sci. 1995, 156, 197–205. [Google Scholar] [CrossRef]
- Abdal, M.S. Salicornia production in Kuwait. World Appl. Sci. J. 2009, 6, 1033–1038. [Google Scholar]
- Troyo-Diéguez, E.; Ortega-Rubio, A.; Maya, Y.; León, J.L. The effect of environmental conditions on the growth and development of the oilseed halophyte Salicornia bigelovii Torr. in arid Baja California Sur, Mexico. J. Arid Environ. 1994, 28, 207–213. [Google Scholar] [CrossRef]
- Anwar, F.; Bhanger, M.I.; Nasir, M.K.A.; Ismail, S. Analytical characterization of Salicornia bigelovii seed oil cultivated in Pakistan. J. Agric. Food Chem. 2002, 50, 4210–4214. [Google Scholar] [CrossRef]
- Covington, M.B. Omega-3 fatty acids. Am. Fam. Physician 2004, 70, 133–140. [Google Scholar]
- Zerai, D.B.; Glenn, E.P.; Chatervedi, R.; Lu, Z.; Mamood, A.N.; Nelson, S.G.; Ray, D.T. Potential for the improvement of Salicornia bigelovii through selective breeding. Ecol. Eng. 2010, 36, 730–739. [Google Scholar] [CrossRef]
- Lyra, D.-A.; Raman, A.; Hozayen, A.; Zaaboul, R.; Abou-Zaid, F.O.; El-Naggar, A.; Mansoor, S.; Mahmoudi, H.; Ammar, K. Evaluation of Salicornia bigelovii Germplasm for Food Use in Egypt and the United Arab Emirates Based on Agronomic Traits and Nutritional Composition. Plants 2022, 11, 2653. [Google Scholar] [CrossRef]
- Mishra, A.; Joshi, M.; Jha, B. Oligosaccharide mass profiling of nutritionally important Salicornia brachiata, an extreme halophyte. Carbohydr. Polym. 2013, 92, 1942–1945. [Google Scholar] [CrossRef]
- Joshi, M.; Mishra, A.; Jha, B. NaCl plays a key role for in vitro micropropagation of Salicornia brachiata, an extreme halophyte. Ind. Crops Prod. 2012, 35, 313–316. [Google Scholar] [CrossRef]
- Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1999, 18, 227–255. [Google Scholar] [CrossRef]
- Stanley, O.D. Bio prospecting marine halophyte Salicornia brachiata for medical importance and salt encrusted land development. J. Coast. Dev. 2008, 11, 62–69. [Google Scholar]
- Jha, B.; Singh, N.P.; Mishra, A. Proteome profiling of seed storage proteins reveals the nutritional potential of Salicornia brachiata Roxb., an extreme halophyte. J. Agric. Food Chem. 2012, 60, 4320–4326. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Mishra, A.; Tiwari, V.; Jha, B. Cloning and transcript analysis of type, 2 metallothionein gene (SbMT-2) from extreme halophyte Salicornia brachiata and its heterologous expression in E. coli. Gene 2012, 499, 280–287. [Google Scholar] [CrossRef]
- Jha, B.; Sharma, A.; Mishra, A. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol. Biol. Rep. 2011, 38, 4823–4832. [Google Scholar] [CrossRef]
- Bandaranayake, W.M. Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetl. Ecol. Manag. 2002, 10, 421–452. [Google Scholar] [CrossRef]
- Escribano, J.; Pedreño, M.A.; García-Carmona, F.; Muñoz, R. Characterization of the antiradical activity of betalains from Beta vulgaris L. roots. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 1998, 9, 124–127. [Google Scholar] [CrossRef]
- Parida, A.K.; Kumari, A.; Panda, A.; Rangani, J.; Agarwal, P.K. Photosynthetic pigments, betalains, proteins, sugars, and minerals during Salicornia brachiata senescence. Biol. Plant. 2018, 62, 343–352. [Google Scholar] [CrossRef]
- Shimizu, K. Studies on the salinity tolerance of Salicornia herbacea L. Agric. For. Sci. 1996, 8, 1–65. [Google Scholar]
- Balick, M.J.; Nee, M.; Atha, D.E. Checklist of the vascular plants of Belize. In Checklist of the Vascular Plants of Belize; New York Botanical Garden: New York, NY, USA, 2000. [Google Scholar]
- Carnevali, F.C.G.; Tapia-Muñoz, J.L.; de Stefano, R.D.; Morillo, I.R. Flora Ilustrada De La Península De Yucatán: Listado Florístico; Centro de Investigación Científica de Yucatán: AC Yucatán, México, 2010. [Google Scholar]
- Godfrey, R.K. Aquatic and Wetland Plants of Southeastern United States: Dicotyledons; University of Georgia Press: Athens, Greece, 1981; Volume 2. [Google Scholar]
- Bashan, Y.; Moreno, M.; Troyo, E. Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol. Fertil. Soils 2000, 32, 265–272. [Google Scholar] [CrossRef]
- Masters, D.G.; Benes, S.E.; Norman, H.C. Biosaline agriculture for forage and livestock production. Agric. Ecosyst. Environ. 2007, 119, 234–248. [Google Scholar] [CrossRef]
- Jaradat, A.A. WFL publisher. Sci. Technol. 2005, 3, 302–306. [Google Scholar]
- Dickerson, M. Letting the sea cultivate the land. Los Angeles Times, 10 July 2008. [Google Scholar]
- Hendricks, R.C.; Bushnell, D.M.; Shouse, D.T. Aviation fueling: A cleaner, greener approach. Int. J. Rotating Mach. 2011, 2011, 782969. [Google Scholar] [CrossRef] [Green Version]
- Lu, A.G.; Zhang, X.L.; Ju, X.; Yang, Y.Z. Quality analysis of the vacuum freezing drying Salicornia. Food Res. Dev. 2008, 29, 111–114. [Google Scholar]
- Wang, H.; Xu, Z.; Li, X.; Sun, J.; Yao, D.; Jiang, H.; Zhou, T.; Liu, Y.; Li, J.; Wang, C.; et al. Extraction, preliminary characterization and antioxidant properties of polysaccharides from the testa of Salicornia herbacea. Carbohydr. Polym. 2017, 176, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Al-Yamani, W.; Kennedy, S.; Sgouridis, S.; Yousef, L. A land suitability study for the sustainable cultivation of the halophyte Salicornia bigelovii: The case of Abu Dhabi, UAE. Arid Land Res. Manag. 2013, 27, 349–360. [Google Scholar] [CrossRef]
- Shahid, M.; Jaradat, A.A.; Rao, N.K. Use of Marginal Water for Salicornia bigelovii Torr. planting in the United Arab Emirates. In Developments in Soil Salinity Assessment and Reclamation; Shahid, S.A., Abdelfattah, M.A., Taha, F.K., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 451–462. [Google Scholar]
- Cárdenas-Pérez, S.; Piernik, A.; Chanona-Pérez, J.J.; Grigore, M.N.; Perea-Flores, M.J. An overview of the emerging trends of the Salicornia, L. genus as a sustainable crop. Environ. Exp. Bot. 2021, 191, 104606. [Google Scholar] [CrossRef]
- Bañuelos, J.A.; Velázquez-Hernández, I.; Guerra-Balcázar, M.; Arjona, N. Production, characterization and evaluation of the energetic capability of bioethanol from Salicornia bigelovii as a renewable energy source. Renew. Energy 2018, 123, 125–134. [Google Scholar] [CrossRef]
- El-Mallah, M.H.; Turui, T.; El-Shami, S. Detailed studies on seed oil of Salicornia SOS-7 cultivated at the Egyptian border of Red Sea. Grasas y Aceites 1994, 45, 385–389. [Google Scholar] [CrossRef]
- Kang, S.; Kim, D.; Lee, B.H.; Kim, M.R.; Chiang, M.; Hong, J. Antioxidant properties and cytotoxic effects of fractions from glasswort (Salicornia herbacea) seed extracts on human intestinal cells. Food Sci. Biotechnol. 2011, 20, 115–122. [Google Scholar] [CrossRef]
- Min, J.G.; Lee, D.S.; Kim, T.J.; Park, J.H.; Cho, T.Y.; Park, D.I. Chemical Composition of Salicornia Herbacea, L. Prev. Nutr. Food Sci. 2002, 7, 105–107. [Google Scholar] [CrossRef]
- Ahmed, K.B.A.; Subramanian, S.; Sivasubramanian, A.; Veerappan, G.; Veerappan, A. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 54–58. [Google Scholar] [CrossRef]
- Lyra, D.A.; Lampakis, E.; Al Muhairi, M.; Tarsh, F.M.B.; Dawoud, M.A.H.; Al Khawaldeh, B.; Moukayed, M.; Plewa, J.; Cobre, L.; Al Masjedi, O.S.; et al. From Desert Farm to Fork: Value Chain Development for Innovative Salicornia-Based Food Products in the United Arab Emirates. In Future of Sustainable Agriculture in Saline Environments; CRC Press: Boca Raton, FL, USA, 2021; pp. 181–200. [Google Scholar]
- El-Tarabily, K.A.; AlKhajeh, A.S.; Ayyash, M.M.; Alnuaimi, L.H.; Sham, A.; ElBaghdady, K.Z.; Saeed, T.; AbuQamar, S.F. Growth promotion of Salicornia bigelovii by Micromonospora chalcea UAE1, an endophytic 1-aminocyclopropane-1-carboxylic acid deaminase-producing actinobacterial isolate. Front. Microbiol. 2019, 10, 1694. [Google Scholar] [CrossRef]
- Mesa-Marín, J.; Mateos-Naranjo, E.; Rodríguez-Llorente, I.D.; Pajuelo, E.; Redondo-Gómez, S. 15 Synergic Effects of Rhizobacteria: Increasing Use of Halophytes in a Changing World. In Halophytes and Climate Change: Adaptive Mechanisms and Potential Uses; CABI: Wallingford, UK, 2019; p. 240. [Google Scholar]
- Jiménez-Mejía, R.; Medina-Estrada, R.I.; Carballar-Hernández, S.; Orozco-Mosqueda, M.D.C.; Santoyo, G.; Loeza-Lara, P.D. Teamwork to Survive in Hostile Soils: Use of Plant Growth-Promoting Bacteria to Ameliorate Soil Salinity Stress in Crops. Microorganisms 2022, 10, 150. [Google Scholar] [CrossRef]
- El-Tarabily, K.A.; ElBaghdady, K.Z.; AlKhajeh, A.S.; Ayyash, M.M.; Aljneibi, R.S.; El-Keblawy, A.; AbuQamar, S.F. Polyamine-producing actinobacteria enhance biomass production and seed yield in Salicornia bigelovii. Biol. Fertil. Soils 2020, 56, 499–519. [Google Scholar] [CrossRef]
- Mathew, B.T.; Torky, Y.; Amin, A.; Mourad, A.H.I.; Ayyash, M.M.; El-Keblawy, A.; Hilal-Alnaqbi, A.; AbuQamar, S.F.; El-Tarabily, K.A. Halotolerant marine rhizosphere-competent actinobacteria promote Salicornia bigelovii growth and seed production using seawater irrigation. Front. Microbiol. 2020, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigore, M.N.; Toma, C. Morphological and anatomical adaptations of halophytes: A review. In Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1079–1221. [Google Scholar]
- Yadav, N.S.; Shukla, P.S.; Jha, A.; Agarwal, P.K.; Jha, B. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol. 2012, 12, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.K.; Reddy, M.P.; Pandya, J.B.; Patolia, J.S.; Vaghela, S.M.; Gandhi, M.R.; Sanghvi, R.J.; Kumar, V.G.S.; Shah, M.T. Preparation of Nutrient Rich Salt of Plant Origin. US patent 2005,6,929,809, 16 August 2005. [Google Scholar]
- Oliveira-Alves, S.C.; Andrade, F.; Prazeres, I.; Silva, A.B.; Capelo, J.; Duarte, B.; Caçador, I.; Coelho, J.; Serra, A.T.; Bronze, M.R. Impact of drying processes on the nutritional composition, volatile profile, phytochemical content and bioactivity of Salicornia ramosissima J. woods. Antioxidants 2021, 10, 1312. [Google Scholar] [CrossRef]
- Seong, P.; Seo, H.; Cho, S.; Kim, Y.; Kang, S.; Kim, J.; Kang, G.; Park, B.; Moon, S.; Hoa, V. Potential use of glasswort powder as a salt replacer for production of healthier dry-cured ham products. Czech J. Food Sci. 2017, 35, 149–159. [Google Scholar]
- Biswas, S.; Pal, N.; Biswas, P.; Zaman, S.; Mitra, A. Nutritional status of food products developed from Salicornia brachiata. Int. J. Pharm. Biol. Sci. 2018, 8, 546–551. [Google Scholar]
- Liang, W.P.; Liu, M.H.; Guo, G.L. Microemulsions. In Handbook of Nanophase and Nanostructured Materials-Synthesis; Wang, Z.L., Liu, Y., Zhang, Z., Eds.; Kluwer Academic/PlenumPublishers: New York, NY, USA, 2002; pp. 1–25. [Google Scholar]
- Christiansen, A.H.; Lyra, D.A.; Jørgensen, H. Increasing the value of Salicornia bigelovii green biomass grown in a desert environment through biorefining. Ind. Crops Prod. 2021, 160, 113105. [Google Scholar] [CrossRef]
- Dandamudi, K.P.R.; Luboowa, K.M.; Laideson, M.; Murdock, T.; Seger, M.; McGowen, J.; Lammers, P.J.; Deng, S. Hydrothermal liquefaction of Cyanidioschyzon merolae and Salicornia bigelovii Torr.: The interaction effect on product distribution and chemistry. Fuel 2020, 277, 118146. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Khatri, K.; Patel, D.; Rathore, M.S. Photosynthetic Gas Exchange and Chlorophyll a Fluorescence in Salicornia brachiata (Roxb.) Under Osmotic Stress. J. Plant Growth Regul. 2022, 41, 429–444. [Google Scholar] [CrossRef]
- Jung, E.Y.; Lee, D.Y.; Kim, O.Y.; Lee, S.Y.; Yim, D.G.; Hur, S.J. Subacute feeding toxicity of low-sodium sausages manufactured with sodium substitutes and biopolymer-encapsulated saltwort (Salicornia herbacea) in a mouse model. J. Sci. Food Agric. 2020, 100, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.Q. China National Standard GB/T 12457-90. In Method for Determination of Chloride Sodium in Foods; Standard Press of China: Beijing, China, 1991. [Google Scholar]
- Ogawa, S.; Decker, E.A.; Mcclements, D.J. Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes. J. Agric. Food Chem. 2003, 51, 2806–2812. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.K.; Mody, K.H.; Reddy, M.P.; Patolia, J.S.; Eswaran, K.; Shah, R.A.; Barot, B.K.; Gandhi, M.R.; Mehta, A.R.; Bhatt, M.; et al. Low Sodium Salt of Botanic Origin. States Patent 7,208,189 B2, 24 April 2007. [Google Scholar]
- Castañeda-Loaiza, V.; Oliveira, M.; Santos, T.; Schüler, L.; Lima, A.R.; Gama, F.; Salazar, M.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; et al. Wild vs cultivated halophytes: Nutritional and functional differences. Food Chem. 2020, 333, 127536. [Google Scholar] [CrossRef]
- Kim, J.H.; Suk, S.; Jang, W.J.; Lee, C.H.; Kim, J.E.; Park, J.K.; Kweon, M.H.; Kim, J.H.; Lee, K.W. Salicornia Extract Ameliorates Salt-Induced Aggravation of Nonalcoholic Fatty Liver Disease in Obese Mice Fed a High-Fat Diet. J. Food Sci. 2017, 82, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.D.; Gago, C.; Guerreiro, A.; Sousa, A.R.; Julião, M.; Miguel, M.G.; Faleiro, M.L.; Panagopoulos, T. Nutritional characterization and storage ability of Salicornia ramosissima and Sarcocornia perennis for fresh vegetable salads. Horticulturae 2021, 7, 6. [Google Scholar] [CrossRef]
- Kang, S.; Kim, M.R.; Chiang, M.; Hong, J. Evaluation and comparison of functional properties of freshwater-cultivated glasswort (Salicornia herbacea L.) with naturally-grown glasswort. Food Sci. Biotechnol. 2015, 24, 2245–2250. [Google Scholar] [CrossRef]
- Jo, H.-G.; Chilakala, R.; Kim, M.-J.; Sin, Y.-S.; Lee, K.-S.; Cheong, S.-H. Assessment of the Effects of Salt and Salicornia herbacea L. on Physiochemical, Nutritional, and Quality Parameters for Extending the Shelf-Life of Semi-Dried Mullets (Chelon haematocheilus). Foods 2022, 11, 597. [Google Scholar] [CrossRef]
- Essaidi, I.; Brahmi, Z.; Snoussi, A.; Koubaier, H.B.H.; Casabianca, H.; Abe, N.; El Omri, A.; Chaabouni, M.M.; Bouzouita, N. Phytochemical investigation of Tunisian Salicornia herbacea L., antioxidant, antimicrobial and cytochrome P450 (CYPs) inhibitory activities of its methanol extract. Food Control 2013, 32, 125–133. [Google Scholar] [CrossRef]
- Finley, J.W. Selenium accumulation in plant foods. Nutr. Rev. 2005, 63, 196–202. [Google Scholar] [CrossRef]
- Ventura, Y.; Wuddineh, W.A.; Myrzabayeva, M.; Alikulov, Z.; Khozin-Goldberg, I.; Shpigel, M.; Samocha, T.M.; Sagi, M. Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci. Hortic. 2011, 128, 189–196. [Google Scholar] [CrossRef]
- Yun, S.E.; Kang, Y.; Bae, E.J.; Hwang, K.; Jang, H.N.; Cho, H.S.; Chang, S.H.; Park, D.J. Iodine-induced thyrotoxic hypokalemic paralysis after ingestion of Salicornia herbace. Ren. Fail. 2014, 36, 461–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eganathan, P.; Subramanian, H.S.; Latha, R.; Rao, C.S. Oil analysis in seeds of Salicornia brachiata. Ind. Crops Prod. 2006, 23, 177–179. [Google Scholar] [CrossRef]
- Tikhomirova, N.A.; Ushakova, S.A.; Tikhomirov, A.A.; Kalacheva, G.S.; Gros, J.B. Possibility of Salicornia europaea use for the human liquid wastes inclusion into BLSS intrasystem mass exchange. Acta Astronaut. 2008, 63, 1106–1110. [Google Scholar] [CrossRef]
- Isca, V.; Seca, A.M.; Pinto, D.C.; Silva, A. An overview of Salicornia genus: The phytochemical and pharmacological profile. Nat. Prod. Res. Rev. 2014, 2, 145–164. [Google Scholar]
- Rathore, A.P.; Chaudhary, D.R.; Jha, B. Biomass production, nutrient cycling, and carbon fixation by Salicornia brachiata Roxb.: A promising halophyte for coastal saline soil rehabilitation. Int. J. Phytoremediation 2016, 18, 801–811. [Google Scholar] [CrossRef]
- Im, S.A.; Kim, K.; Lee, C.K. Immunomodulatory activity of polysaccharides isolated from Salicornia herbacea. Int. Immunopharmacol. 2006, 6, 1451–1458. [Google Scholar] [CrossRef]
- Jha, B.; Agarwal, P.K.; Reddy, P.S.; Lal, S.; Sopory, S.K.; Reddy, M.K. Identification of salt-induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis. Genes Genet. Syst. 2009, 84, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.; Lim, G.S.; Piao, Y.L.; Choi, O.Y.; Cho, K.A.; Park, C.B.; Chang, Y.C.; Song, Y.I.; Lee, M.K.; Cho, H. Characterization, stability, and antioxidant activity of Salicornia herbaciea seed oil. Korean J. Chem. Eng. 2014, 31, 2221–2228. [Google Scholar] [CrossRef]
- Mishra, A.; Patel, M.K.; Jha, B. Non-targeted metabolomics and scavenging activity of reactive oxygen species reveal the potential of Salicornia brachiata as a functional food. J. Funct. Foods 2015, 13, 21–31. [Google Scholar] [CrossRef]
- Sharma, A.; Gontia, I.; Agarwal, P.K.; Jha, B. Accumulation of heavy metals and its biochemical responses in Salicornia brachiata, an extreme halophyte. Mar. Biol. Res. 2010, 6, 511–518. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Dong, G.; Shang, Y.; Lyu, Y.; Li, F.; Zhang, C.; Yu, X. The chemical composition analysis of dwarf saltwort (Salicornia bigelovii Torr.) and its preservative effects on snakehead fish fillets. J. Food Process. Preserv. 2022, 46, e16433. [Google Scholar]
- Wang, Q.Z.; Liu, X.F.; Shan, Y.; Guan, F.Q.; Chen, Y.; Wang, X.Y.; Wang, M.; Feng, X. Two new nortriterpenoid saponins from Salicornia bigelovii Torr. and their cytotoxic activity. Fitoterapia 2012, 83, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Han, E.H.; Kim, J.Y.; Kim, H.G.; Chun, H.K.; Chung, Y.C.; Jeong, H.G. Inhibitory effect of 3-caffeoyl-4-dicaffeoylquinic acid from Salicornia herbacea against phorbol ester-induced cyclooxygenase-2 expression in macrophages. Chem.-Biol. Interact. 2010, 183, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.C.; Choi, H.S.; Kim, S.L.; Yun, B.S.; Lee, D.S. Anti-Inflammatory Effects of (9Z, 11E)-13-Oxooctadeca-9, 11-dienoic Acid (13-KODE) Derived from Salicornia herbacea L. on Lipopolysaccharide-Stimulated Murine Macrophage via NF-kB and MAPK Inhibition and Nrf2/HO-1 Signaling Activation. Antioxidants 2022, 11, 180. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.C.; Chun, H.K.; Yang, J.Y.; Kim, J.Y.; Han, E.H.; Kho, Y.H.; Jeong, H.G. Tungtungmadic acid, a novel antioxidant, from Salicornia herbacea. Arch. Pharmacal. Res. 2005, 28, 1122–1126. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Cho, J.Y.; Ma, Y.K.; Park, K.Y.; Lee, S.H.; Ham, K.S.; Leea, H.J.; Park, K.H.; Moon, J.H. Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea L.) and their antioxidative activity. Food Chem. 2011, 125, 55–62. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, K.S. Isolation and identification of antioxidant flavonoids from Salicomia herbacen L. J. Korean Soc. Appl. Biol. Chem. 2004, 47, 120–123. [Google Scholar]
- Kong, C.S.; Kim, Y.A.; Kim, M.M.; Park, J.S.; Kim, S.K.; Lee BJNam, T.J.; Seo, Y. Antioxidant activity and inhibition of MMP-9 by isorhamnetin and quercetin 3-0-D glucopyranosides isolated from Salicornia herbacea in HT1080 cells. Food Sci. Biotechnol. 2008, 17, 983–989. [Google Scholar]
- Kong, C.-S.; Lee, J.I.; Kim, Y.A.; Kim, J.-A.; Bak, S.S.; Hong, J.W.; Park, H.Y.; Yea, S.S.; Seo, Y. Evaluation on anti-adipogenic activity of flavonoid glucopyranosides from Salicornia herbacea. Process Biochem. 2012, 47, 1073–1078. [Google Scholar] [CrossRef]
- Oh, J.-H.; Kim, E.-0.; Lee, S.-K.; Woo, M.-H.; Choi, S.-W. Antioxidant activities of the ethanol extract of Hamcho (Salicornia herbacea L.) cake prepared by enzymatic treatment. Food Sci. Biotechnol. 2007, 1, 90–98. [Google Scholar]
- Hwang, Y.P.; Yun, H.J.; Choi, J.H.; Chun, H.K.; Chung, Y.C.; Kim, S.K.; Kim, B.-H.; Kwon, K.-1.; Jeong, T.C.; Lee, K.Y.; et al. 3-Caffeoyl, 4-dihydrocaffeoylquinic acid from Salicornia herbacea inhibits tumour cell invasion by regulating protein kinase C-ծ-dependent matrix metalloproteinase-9 expression. Toxicol. Lett. 2010, 198, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Sanandiya, N.D.; Siddhanta, A.K. Chemical studies on the polysaccharides of Salicornia brachiata. Carbohydr. Polym. 2014, 112, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.N.; Jeon, B.Y.; Yun, A.R.; Park, D.H. Effect of glasswort (Salicornia herbacea L.) on microbial community variations in the vinegar-making process and vinegar characteristics. J. Microbiol. Biotechnol. 2010, 20, 1322–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, H.S.; Kim, K.R.; Choi, S.W.; Woo, M.H.; Choi, J.H. Antioxidant and antithrombus activities of enzyme-treated Salicornia herbacea extracts. Ann. Nutr. Metab. 2007, 51, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Mudie, P.J.; Greer, S.; Brakel, J.; Dickson, J.H.; Schinkel, C.; Peterson-Welsh, R.; Stevens, M.; Turner, N.J.; Shadow, M.; Washington, R. Forensic palynology and ethnobotany of Salicornia species (Chenopodiaceae) in northwest Canada and Alaska. Can. J. Bot. 2005, 83, 111–123. [Google Scholar] [CrossRef]
- York, J.; Lu, Z.; Glenn, E.P.; John, M.E. Daylength affects floral initiation in Salicornia bigelovii Torr. Plant Biol. 2000, 41–42. [Google Scholar] [CrossRef]
Salicornia Species | Common Name | Location | Nutritional Features and Compositions | Health Benefits | References |
---|---|---|---|---|---|
S. bigelovii | Dwarf saltwort | USA, Mexico | β-carotene (15.9 mg/100 g). polyphenols (1.2 GAE/g) Na (30.4 g/kg), Cl (45.8 g/kg), K (13.2 g/kg) | protective effects on cardiovascular diseases, hypertension | [24,103] |
S. herbacea | Dwarf glasswort | South Korea | presence of tungtungmadic acid, quercetin | protective effects on diabetes, hepatitis, gastro-enteritis | [20,76,104,105] |
S. brachiata | Umari keerai | India | high cysteine and methionine | antioxidant effects, immune booster | [54,106] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfheeaid, H.A.; Raheem, D.; Ahmed, F.; Alhodieb, F.S.; Alsharari, Z.D.; Alhaji, J.H.; BinMowyna, M.N.; Saraiva, A.; Raposo, A. Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes. Foods 2022, 11, 3402. https://doi.org/10.3390/foods11213402
Alfheeaid HA, Raheem D, Ahmed F, Alhodieb FS, Alsharari ZD, Alhaji JH, BinMowyna MN, Saraiva A, Raposo A. Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes. Foods. 2022; 11(21):3402. https://doi.org/10.3390/foods11213402
Chicago/Turabian StyleAlfheeaid, Hani A., Dele Raheem, Faiyaz Ahmed, Fahad S. Alhodieb, Zayed D. Alsharari, Jwaher Haji Alhaji, Mona N. BinMowyna, Ariana Saraiva, and António Raposo. 2022. "Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes" Foods 11, no. 21: 3402. https://doi.org/10.3390/foods11213402
APA StyleAlfheeaid, H. A., Raheem, D., Ahmed, F., Alhodieb, F. S., Alsharari, Z. D., Alhaji, J. H., BinMowyna, M. N., Saraiva, A., & Raposo, A. (2022). Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes. Foods, 11(21), 3402. https://doi.org/10.3390/foods11213402