Nutritional and Health-Promoting Value of Poultry Meatballs with the Addition of Plant Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Poultry Meatballs Ingredients
2.2. Preparation of Fortified Poultry Meatballs
2.3. Assessment of Physical Traits
2.4. Chemical and Microbiological Characteristics
2.5. Evaluation of the Sensory
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Xiao, S.; Samaraweera, H.; Lee, E.J.; Ahn, D.U. Improving functional value of meat products. Meat Sci. 2010, 86, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Ursachi, C.S.; Perta-Crisan, S.; Munteanu, F.D. Strategies to improve 5 meat products’ quality. Foods 2020, 9, 1883. [Google Scholar] [CrossRef] [PubMed]
- Beriain, M.J.; Gómez, I.; Ibáñez, F.C.; Sarriés, V.; Ordóñez, A.I. Chapter 1—Improvement of the Functional and Healthy Properties of Meat Products. In Handbook of Food Bioengineering; Academic Press: London UK, 2018; pp. 1–74. [Google Scholar] [CrossRef]
- Domingo, J.L.; Nadal, M. Carcinogenicity of consumption of red meat and processed meat: A review of scientific news since the IARC decision. Food Chem. Toxicol. 2017, 105, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, 5324. [Google Scholar] [CrossRef] [Green Version]
- Mehta, N.; Ahlawat, S.S.; Sharma, D.P.; Dabur, R.S. Novel trends in development of dietary fiber rich meat products-a critical review. J. Food Sci. Technol. 2015, 52, 633–647. [Google Scholar] [CrossRef] [Green Version]
- Makała, H. Modification of nutritional value of meat and meat products by changing quantity and composition of fats and by reducing salt content. Food Sci. Technol. Qual. 2018, 25, 9–23. (In Polish) [Google Scholar] [CrossRef]
- Naumova, N.; Lukin, A.; Bitiutskikh, K. Organoleptic evaluation of the quality of the enriched chopped semi-finished meat products. Bull. Transilv. Univ. Brasov. For. Wood Ind. Agric. Food Eng. Ser. II 2017, 10, 125–132. [Google Scholar]
- Verma, A.; Rajkumar, V.; Suman Kumar, S. Effect of amaranth and quinoa seed flour on rheological and physicochemical properties of goat meat nuggets. J. Food Sci. Technol. 2019, 56, 5027–5035. [Google Scholar] [CrossRef]
- Tamsen, M.; Soltanizadeh, N.; Shekarchizadeh, H. Evaluation of physicochemical properties of chicken nugget produced with amaranth seed flour. Iran. Food Sci. Technol. Res. J. 2018, 14, 755–765. [Google Scholar]
- Novello, D.; Schiessel, D.L.; Santos, E.F.; Pollonio, M.A.R. The effect of golden flaxseed and by-product addition in beef patties: Physicochemical properties and sensory acceptance. Int. Food Res. J. 2019, 26, 1237–1248. Available online: https://www.researchgate.net/publication/335701293 (accessed on 5 September 2022).
- Owusu-Ansah, P.; Besiwah, E.K.; Bonah, E.; Amagloh, F.K. Non-meat ingredients in meat products: A scoping review. Appl. Food Res. 2022, 2, 100044. [Google Scholar] [CrossRef]
- Kausar, T.; Hanan, E.; Ayob, O.; Praween, B.; Azad, Z. A review on functional ingredients in red meat products. Bioinformation 2019, 15, 358. [Google Scholar] [CrossRef] [PubMed]
- Karwowska, M.; Stadnik, J.; Stasiak, D.M.; Wójciak, K.; Lorenzo, J.M. Strategies to improve the nutritional value of meat products: Incorporation of bioactive compounds, reduction or elimination of harmful components and alternative technologies. Inter. J. Food Sci. Technol. 2021, 56, 6142–6156. [Google Scholar] [CrossRef]
- Pintado, T.; Delgado-Pando, G. Towards more sustainable meat products: Extenders as a way of reducing meat content. Foods 2020, 9, 1044. [Google Scholar] [CrossRef]
- Guedes-Oliveira, J.M.; Kim, Y.H.B.; Conte-Junior, C.A. What are the potential strategies to achieve potentially more healthful meat products? Inter. J. Food Sci. Technol. 2021, 56, 6157–6170. [Google Scholar] [CrossRef]
- Calderón-Oliver, M.; López-Hernández, L.H. Food vegetable and fruit waste used in meat products. Food Rev. Int. 2022, 38, 628–654. [Google Scholar] [CrossRef]
- Ahmad, S.R.; Gokulakrishnan, P.; Giriprasad, R.; Yatoo, M.A. Fruit-based natural antioxidants in meat and meat products: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Silva, M.E.; Grisi, C.V.B.; da Silva, S.P.; Madruga, M.S.; da Silva, F.A.P. The technological potential of agro-industrial residue from grape pulping (Vitis spp.) for application in meat products: A review. Food Biosci. 2022, 49, 101877. [Google Scholar] [CrossRef]
- Novello, D.; Rodrigues Pollonio, M.A. Golden flaxseed and its byproducts in beef patties: Physic-chemical evaluation and fatty acid profile. Ciência Rural. 2013, 43, 1707–1714. [Google Scholar] [CrossRef] [Green Version]
- Longato, L.; González, R.L.; Peiretti, P.G.; Giorgia, M.; Pérez-Álvarez, J.A.; Viuda-Martos, M.; Fernández-López, J. The Effect of Natural Ingredients (Amaranth and Pumpkin Seeds) on the Quality Properties of Chicken Burgers. Food Bioproc. Tech. 2017, 10, 2060–2068. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef] [PubMed]
- Bilek, A.E.; Turhan, S. Enhancement of the nutritional status of beef patties by adding flaxseed flour. Meat Sci. 2009, 82, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Waghmare, R.; Kumar, V.; Rasane, P.; Kaur, S.; Gat, Y. Recent advances in utilization offlaxseed as potential source for value addition. OCL 2018, 25, A304. [Google Scholar] [CrossRef] [Green Version]
- Ofotsu Dzuvor, C.K.; Taylor, J.T.; Caleb Acquah, C.; Pan, S.; Agyei, D. Bioprocessing of Functional Ingredients from Flaxseed. Molecules 2018, 23, 2444. [Google Scholar] [CrossRef] [Green Version]
- Faid, S. Utilization of amaranth as a fat replacer and germinated red beans to prepare low-fat beef burgers with a long shelf life storage period. Afr. J. Biol. Sci. 2019, 15, 253–268. [Google Scholar] [CrossRef]
- Alarcón-García, M.A.; Perez-Alvarez, J.A.; López-Vargas, J.H.; Pagán-Moreno, M.J. Techno-Functional Properties of New Andean Ingredients: Maca (Lepidium meyenii) and Amaranth (Amaranthus caudatus). Proceedings 2021, 70, 74. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.; Bi, X.; Duo, K.; Sun, Q.; Yun, X.; Zhang, Y.; Fei, P.; Han, J. Antimicrobial Activity and Mechanism of Action of the Amaranthus tricolor Crude Extract against Staphylococcus aureus and Potential Application in Cooked Meat. Foods 2020, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Zając, M.; Guzik, P.; Kulawik, P.; Tkaczewska, J.; Florkiewicz, A.; Migdał, M. The quality of pork loaves with the addition of hemp seeds, de-hulled hemp seeds, hemp protein and hemp flour. Food Sci. Technol. 2019, 105, 190–199. [Google Scholar] [CrossRef]
- Kotecka-Majchrzak, K.; Kasałka-Czarna, N.; Spychaj, A.; Mikołajczak, B.; Montowska, M. The Effect of Hemp Cake (Cannabis sativa L.) on the Characteristics of Meatballs Stored in Refrigerated Conditions. Molecules 2021, 26, 5284. [Google Scholar] [CrossRef]
- Dąbrowski, G.; Skrajda, M.N. Lipid and protein fraction of hemp seed (C. sativa L.) and its beneficial influence on human health. J. Educ. Healt Sport 2016, 6, 357–366. [Google Scholar] [CrossRef]
- Apostol, L. Studies on using hemp seed as functional ingredient in the production of functional food products. J. EcoAgriTourism. 2017, 13, 12–17. Available online: https://rosita.ro/jeat/archive/1_2017.pdf (accessed on 5 September 2022).
- REG(EC) 152/2009, IV, B: 2009-02. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:02009R0152-20170524 (accessed on 5 September 2022).
- EC Regulation 152/2009, III F (Tryptophan III G). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02009R0152-20170524&from=EN (accessed on 5 September 2022).
- PN-EN ISO 12966-2:2017-05; Animal and Vegetable Fats and Oils-Gas Chromatography of Fatty Acid Methyl Esters-Part 2: Preparation of Methyl Esters of Fatty Acids. Polish Committee for Standardization: Warsaw, Poland, 2015.
- PN-EN ISO 12966-4:2015-07 (GC-FID); Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters-Part 4: Determination by Capillary Gas Chromatography. Polish Committee for Standardization: Warsaw, Poland, 2015.
- PN-EN ISO 660:2010; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. Polish Committee for Standardization: Warsaw, Poland, 2010.
- Baryłko-Pikielna, N.; Matuszewska, I. Sensory Testing of Food; Basics—Methods—Application; Polish Society of Food Technologists: Krakow, Poland, 2009. (In Polish) [Google Scholar]
- PN-EN ISO 8589:2010; General Guidelines for the Design of a Sensory Analysis Laboratory. iTeh Standards: Newark, DE, USA, 2010.
- Sharoba, A.M. Quality attributes of sausage substituted by different levels o whole amaranth meal by. Ann. Agric. Sci. Moshtohor. 2009, 47, 105–120. [Google Scholar]
- Zając, M.; Światek, R. The effect of hemp seed and linseed addition on the quality of liver pâtés. Acta Sci. Pol. Tech. Aliment. 2018, 17, 169–176. [Google Scholar] [CrossRef]
- Cócaro, E.S.; Laurindo, L.F.; Alcantara, M. The addition of golden flaxseed flour (Linum usitatissimum L.) in chicken burger: Effects on technological, sensory, and nutritional aspects. Food Sci. Technol. Int. 2019, 26, 105–112. [Google Scholar] [CrossRef]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Nutrition standards for the Polish population and their application; National Institute of Public Health—National Institute of Hygiene: Warsaw, Poland, 2020; ISBN 978-83-65870-28-5. (In Polish) [Google Scholar]
- Schaafsma, G. The Protein Digestibility-Corrected Amino Acid Score. J. Nutr. 2000, 130, 1865S–1867S. [Google Scholar] [CrossRef] [Green Version]
- Zeinab, A.S.; Rab, G.E.L.; Youssef, M.K.F.; Kalifa, A.H.; Limam, S.A.; Mostafa, B.M.D. Quality Attributes of Beef Sausage Supplemented by Flaxseedsand Chickpea. J. Food Dairy Sci. 2019, 10, 201–207. [Google Scholar] [CrossRef]
- Bernacchia, R.; Preti, R.; Vinci, G. Chemical Composition and Health Benefits of Flaxseed. Austin J. Nutri. Food Sci. 2014, 2, 1045. [Google Scholar]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Rodriguez-Leyva, D.; Dupasquier, C.M.; McCullough, R.; Pierce, G.N. The cardiovascular effects of flaxseed and its omega-3 fatty acid, alpha-linolenic acidLes effets cardiovasculaires des graines de lin et de ses acides gras oméga 3, l’acide alpha-linolénique. Can. J. Cardiol. 2010, 26, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Jason, H.; Wu, Y. Omega-3 Fatty Acids and Cardiovascular Disease Effects on Risk Factors, Molecular Pathways, and Clinical Events. J. Am. Coll. Cardiol. 2011, 58, 20. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Ye, J.; Shi, R.; Zhao, B.; Liu, Z.; Lin, W.; Liu, X. Dietary protein and amino acid restriction: Roles in metabolic health and aging-related diseases. Free Radic Biol. Med. 2022, 178, 226–242. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Taylor, D.S.; Yu-Poth, S.; Huth, P.; Moriarty, K.; Fishell, V.; Hargrove, R.L.; Zhao, G.; Etherton, T.D. Polyunsaturated fatty acids in the food chain in the United States. Am. J. Clin. Nutr. 2000, 71, 188S–197S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enser, M. The role of fats in human nutrition. In Oils and Fats; Rossell, B., Ed.; Animal Carcass Fats; Leatherhead Publishing: Surrey, UK, 2001; Volume 2, pp. 77–122. [Google Scholar]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Bilska, A.; Waszkowiak, K.; Błaszyk, M.; Rudzińska, M.; Kowalski, R. Effect of liver pâté enrichment with flaxseed oil and flaxseed extract on lipid composition and stability. J. Sci. Food Agric. 2018, 98, 4112–4120. [Google Scholar] [CrossRef]
- de Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef]
- Carlson, J.L.; Erickson, J.M.; Lloyd, B.B.; Slavin, J.L. Health effects and sources of prebiotic dietary fiber. Curr. Dev. Nutr. 2018, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Violi, F.; Nocella, C.; Loffredo, L.; Carnevale, R.; Pignatelli, P. Interventional study with vitamin E in cardiovascular disease and meta-analysis. Free Radic. Biol. Med. 2022, 178, 26–41. [Google Scholar] [CrossRef]
- Shahidi, F.; Pinaffi-Langley, A.C.C.; Fuentes, J.; Speisky, H.; Costa de Camargo, A. Vitamin E as an essential micronutrient for human health: Common, novel, and unexplored dietary sources. Free Radic. Biol. Med. 2021, 176, 312–321. [Google Scholar] [CrossRef]
- Jiang, Q.; Im, S.; Wagner, J.G.; Hernandez, M.L.; Peden, D.B. Gamma-tocopherol, a major form of vitamin E in diets: Insights into antioxidant and anti-inflammatory effects, mechanisms, and roles in disease management. Free Radic. Biol. Med. 2021, 178, 347–359. [Google Scholar] [CrossRef]
- Domínguez, R.; Agregán, R.; Gonçalves, A.; Lorenzo, J.M. Effect of fat replacement by olive oil on the physico-chemical properties, fatty acids, cholesterol and tocopherol content of pâté. Grasas Aceites 2016, 67, 2. [Google Scholar] [CrossRef]
- Sabzi Belekhkanlu, A.; Mirmoghtadayi, L.; Hosseini, H.; Hosseini, M.; Ferdosi, R.; Shojaee Aliabadi, S. Effect of Amaranth (Amaranthus hypochondriacus) seed flour as a Soya protein and bread crumbs on physicochemical and sensory properties of a typical meat hamburger. Iranian J. Nutr. Sci. Food Technol. 2016, 11, 115–122. [Google Scholar]
- Kerimoğlu, B.Ö.; Serdaroğlu, M. Celiac disease and new attempts to develop gluten-free meat product formulations. Food Health 2019, 5, 253–264. [Google Scholar] [CrossRef]
Ingredients | Variants of Product | ||||
---|---|---|---|---|---|
WR | M1 | M2 | M3 | ||
Meat from the thighs of slaughter turkeys | 69.80 | 69.80 | 69.80 | 69.80 | |
Seed mixture | linseed | - | 6.00 | 8.00 | 10.00 |
amaranth | - | 10.00 | 8.00 | 6.00 | |
husked hemp | - | 8.00 | 8.00 | 8.00 | |
Wheat roll | 24.00 | - | - | - | |
Quail egg mass | 5.00 | 5.00 | 5.00 | 5.00 | |
Non-iodized salt | 1.00 | 1.00 | 1.00 | 1.00 | |
Black pepper | 0.20 | 0.20 | 0.20 | 0.20 |
Studied Parameters | Poultry Meatballs | ||||
---|---|---|---|---|---|
WR | M1 | M2 | M3 | p Value | |
pH | 6.21 ± 0.01 | 6.24 ± 0.02 | 6.25 ± 0.03 | 6.24 ± 0.02 | 0.1140 |
Cooking losses (%) | 18.72 a ± 1.80 | 15.00 b ± 2.30 | 13.01 c ± 1.50 | 16.79 b ± 1.10 | 0.0107 |
Colour cross-section: | |||||
L*—lightness | 63.12 b ± 5.08 | 68.51 a ± 3.15 | 66.60 a ± 5.45 | 66.34 a ± 4.29 | 0.0041 |
a*—redness | 9.09 a ± 0.84 | 6.46 b ± 0.57 | 6.06 b ± 0.47 | 6.61 b ± 0.56 | 0.0000 |
b*—yellowness | 13.62 b ± 1.28 | 15.06 a ± 0.65 | 15.56 a ± 1.26 | 15.73 a ± 0.95 | 0.0010 |
Warner–Bratzler shear force (N) | 10.94 c ± 1.10 | 14.15 b ± 2.81 | 13.63 b ± 4.51 | 16.97 a ± 2.81 | 0.0012 |
TVCs total viable counts (log cfu/g) | 3.19 a ± 0.29 | 2.66 b ± 0.54 | 2.42 b± 0.42 | 3.10 a ± 0.30 | 0.0000 |
Acid number (mgKOH/g) | 1.10 ± 0.32 | 0.99 ± 0.12 | 0.97 ± 0.05 | 1.04 ± 0.10 | 0.3201 |
Studied Parameters | Poultry Meatballs | ||||
---|---|---|---|---|---|
WR | M1 | M2 | M3 | p Value | |
Dry weight (%) | 33.55 b ± 0.21 | 37.00 a ± 0.50 | 36.30 a ± 0.68 | 35.15 a ± 0.96 | 0.0000 |
Total ash (%) | 1.83 b ± 0.11 | 1.99 ab ± 0.15 | 2.19 a ± 0.25 | 2.01 ab ± 0.16 | 0.0239 |
Protein (%) | 18.87 b ± 0.20 | 20.39 a ± 0.24 | 20.65 a ± 0.14 | 20.58 a ± 1.31 | 0.0001 |
Fat (%) | 6.55 b ± 0.49 | 10.93 a ± 0.82 | 11.30 a ± 1.10 | 10.91 a ± 0.62 | 0.0000 |
Fiber (%) | <1.00 b ± 0.00 | 2.48 a ± 0.20 | 2.51 a ± 0.10 | 2.18 a ± 0.40 | 0.0160 |
Tocopherol content (mg/kg): | 2.96 c ± 0.83 | 7.31 a ± 0.92 | 7.13 a ± 1.20 | 6.36 b ± 1.68 | 0.0000 |
Vitamin E, as DL-alfa-Tocopherol acetate (mg/kg) | 2.69 c ± 0.75 | 6.65 a ± 0.86 | 6.52 a ± 0.92 | 5.79 b ± 1.53 | 0.0000 |
Amino acid content (%): | |||||
Lysine | 1.50 ± 0.13 | 1.57 ± 0.10 | 1.53 ± 0.20 | 1.59 ± 0.07 | 0.1364 |
Methionine, expressed as methionine sulfone | 0.46 b ± 0.06 | 0.52 a ± 0.10 | 0.52 a ± 0.12 | 0.56 a ± 0.05 | 0.0001 |
Cysteine, expressed as cysteic acid | 0.21 ± 0.04 | 0.25 ± 0.08 | 0.25 ± 0.04 | 0.25 ± 0.01 | 0.1212 |
Aspartic acid | 1.64 b ± 0.14 | 1.83 a ± 0.16 | 1.80 a ± 0.20 | 1.84 a ± 0.06 | 0.0001 |
Threonine | 0.80 ± 0.07 | 0.85 ± 0.04 | 0.84 ± 0.05 | 0.86 ± 0.03 | 0.2111 |
Serine | 0.76 ± 0.06 | 0.83 ± 0.08 | 0.80 ± 0.04 | 0.82 ± 0.03 | 0.1625 |
Glutamic acid | 3.06 ± 0.20 | 3.11 ± 0.12 | 3.01 ± 0.12 | 3.12 ± 0.12 | 0.1124 |
Proline | 0.82 ± 0.05 | 0.73 ± 0.08 | 0.71 ± 0.04 | 0.74 ± 0.03 | 0.3082 |
Glycine | 0.89 ± 0.11 | 0.91 ± 0.10 | 0.88 ± 0.08 | 0.92 ± 0.03 | 0.3944 |
Alanine | 1.04 ± 0.09 | 1.06 ± 0.04 | 1.04 ± 0.05 | 1.07 ± 0.04 | 0.0584 |
Valine | 0.90 ± 0.07 | 0.97 ± 0.04 | 0.94 ± 0.04 | 1.07 ± 0.03 | 0.2232 |
Isoleucine | 0.86 ± 0.06 | 0.91 ± 0.06 | 0.89 ± 0.04 | 0.92 ± 0.03 | 0.0621 |
Leucine | 1.44 ± 0.09 | 1.50 ± 0.05 | 1.47 ± 0.04 | 1.51 ± 0.06 | 0.1588 |
Tyrosine | 0.59 ± 0.06 | 0.63 ± 0.06 | 0.61 ± 0.04 | 0.63 ± 0.02 | 0.1152 |
Phenylalanine | 0.76 ± 0.06 | 0.81 ± 0.02 | 0.79 ± 0.05 | 0.83 ± 0.03 | 0.2141 |
Histidine | 0.50 ± 0.04 | 0.54 ± 0.01 | 0.51 ± 0.03 | 0.53 ± 0.02 | 0.4112 |
Arginine | 1.16 b ± 0.09 | 1.38 a ± 0.05 | 1.32 a ± 0.02 | 1.37 a ± 0.03 | 0.0000 |
Tryptophan | 0.22 ± 0.01 | 0.23 ± 0.03 | 0.22 ± 0.03 | 0.23 ± 0.01 | 0.4112 |
Studied Parameters | Poultry Meatballs | ||||
---|---|---|---|---|---|
WR | M1 | M2 | M3 | p Value | |
Lauric acid C 12:0 | 0.30 ± 0.04 | 0.20 ± 0.03 | 0.20 ± 0.05 | 0.20 ± 0.04 | 0.1421 |
Tetradecanoic acid C 14:0 | 1.00 a ± 0.05 | 0.60 b ± 0.03 | 0.50 b ± 0.04 | 0.55 b ± 0.05 | 0.0000 |
Oleomyristic acid C 14:1 | 0.15 ± 0.07 | <0.1 ± 0.00 | 0.10 ± 0.04 | 0.10 ± 0.03 | 0.5724 |
Pentadecanoic acid C 15:0 | 0.15 ± 0.07 | 0.10 ± 0.04 | 0.10 ± 0.04 | 0.10 ± 0.04 | 0.6214 |
Hexadecanoic acid C 16:0 | 22.20 a ± 0.14 | 15.20 b ± 0.15 | 14.40 b ± 0.28 | 14.70 ab ± 0.38 | 0.0000 |
Hexadecenoic acid C 16:1 | 2.95 ± 0.07 | 2.00 ± 0.09 | 1.70 ± 0.05 | 1.65 ± 0.08 | 0.0625 |
Heptadecanoic acid C 17:0 | 0.30 a ± 0.01 | 0.10 c ± 0.01 | 0.20 b ± 0.01 | 0.20 b ± 0.05 | 0.0000 |
Octadecenoic acid C 18:0 | 8.80 a ± 0.20 | 6.10 b ± 0.15 | 6.20 b ± 0.08 | 6.35 b ± 0.13 | 0.0000 |
Trans-9-octadecanoic acid C 18:1 | 0.20 ± 0.02 | 0.20 ± 0.01 | 0.20 ± 0.01 | 0.20 ± 0.04 | 0.9514 |
Cis-9-octadecenoic acid C 18:1 | 27.35 a ± 0.30 | 21.30 b ± 0.40 | 21.00 b ± 0.42 | 20.75 b ± 0.31 | 0.0000 |
Cis-11-octadecenoic acid C 18:1 | 1.95 a ± 0.07 | 1.30 b ± 0.10 | 1.30 b ± 0.20 | 1.40 b ± 0.05 | 0.0000 |
Linoleic acid C 18:2 n-6 | 28.20 b ± 0.14 | 37.30 a ± 0.14 | 35.40 a ± 0.14 | 37.05 a ± 0.94 | 0.0001 |
Alpha-linolenic acid C 18:3 n-3 | 2.60 c ± 0.10 | 11.60 b ± 0.25 | 15.00 a ± 0.20 | 13.23 a ± 1.61 | 0.0000 |
Gamma-linolenic acid C 18:3 n-6 | <0.1 c ± 0.00 | 0.60 a ± 0.15 | 0.40 b ± 0.05 | 0.49 b ± 0.08 | 0.0000 |
Stearidonic acid C 18:4 n-3 | <0.1 ± 0.00 | 0.20 ± 0.04 | 0.20 ± 0.02 | 0.19 ± 0.04 | 0.3419 |
Eicosenoic acid C 20:0 | <0.1 b ± 0.00 | 0.30 a ± 0.05 | 0.30 a ± 0.04 | 0.30 a ± 0.02 | 0.0003 |
Eicosenoic acid C 20:1 | 0.40 ± 0.01 | 0.40 ± 0.03 | 0.30 ± 0.04 | 0.34 ± 0.05 | 0.1264 |
Eicosadienoic acid C 20:2 n-6 | 0.30 ± 0.01 | 0.20 ± 0.01 | 0.20 ± 0.01 | 0.20 ± 0.01 | 0.2145 |
Arachidonic acid C 20:4 n-6 | 1.65 a ± 0.07 | 1.10 b ± 0.05 | 1.10 b ± 0.04 | 1.08 b ± 0.05 | 0.0441 |
Docosenoic acid C 22:0 | <0.1 ± 0.00 | 0.10 ± 0.02 | 0.10 ± 0.03 | 0.11 ± 0.04 | 0.0791 |
Docosatetraenoic acid C 22:4 n-3 | 0.30 ± 0.01 | 0.20 ± 0.04 | 0.20 ± 0.03 | 0.20 ± 0.02 | 0.0592 |
Docosapentaenoic acid C 22:5 n-3 | 0.20 ± 0.01 | 0.10 ± 0.05 | 0.10 ± 0.03 | 0.14 ± 0.05 | 0.0731 |
Docosapentaenoic acid C 22:5 n-6 | 0.10 ± 0.00 | <0.1 ± 0.00 | <0.1 ± 0.00 | <0.1 ± 0.00 | 0.0864 |
Docosahexaenoic acid C 22:6 n-3 | 0.20 ± 0.01 | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.0786 |
ΣSFA | 32.75 a ± 0.21 | 22.60 b ± 0.52 | 21.90 b ± 0.40 | 22.31 b ± 0.37 | 0.0000 |
ΣMUFA | 32.80 a ± 0.42 | 25.10 b ± 0.40 | 24.40 b ± 0.80 | 24.59 b ± 0.42 | 0.0000 |
ΣPUFA | 33.75 b ± 0.35 | 51.80 a ± 0.85 | 52.80 a ± 0.90 | 52.26 a ± 0.69 | 0.0000 |
ΣTRANS | 0.25 ± 0.07 | 0.20 ± 0.05 | 0.20 ± 0.05 | 0.21 ± 0.06 | 0.0764 |
Σn-3 | 3.00 c ± 0.50 | 12.10 b ± 1.20 | 15.40 a ± 1.50 | 13.65 b ± 1.57 | 0.0000 |
Σn-6 | 30.70 c ± 0.28 | 39.40 a ± 0.60 | 37.30 b ± 0.30 | 39.00 a ± 0.30 | 0.0000 |
Studied Parameters | Poultry Meatballs | ||||
---|---|---|---|---|---|
WR | M1 | M2 | M3 | p Value | |
Smell intensity | 4.00 ± 0.46 | 4.02 ± 0.40 | 4.10 ± 0.30 | 4.15 ± 0.25 | 0.8347 |
Taste intensity | 4.00 ± 0.56 | 4.20 ± 0.49 | 4.16 ± 0.49 | 4.18 ± 0.49 | 0.7964 |
Smell desirability | 3.78 b ± 0.62 | 4.70 a ± 0.53 | 4.64 a ± 0.53 | 4.68 a ± 0.53 | 0.0002 |
Taste desirability | 3.83 c ± 0.43 | 4.20 b ± 0.49 | 4.88 a ± 0.49 | 4.12 b ± 0.49 | 0.0001 |
Juiciness | 4.23 ± 0.53 | 4.00 ± 0.66 | 4.18 ± 0.66 | 4.00 ± 0.66 | 0.8251 |
Tenderness | 4.28 a ± 0.62 | 3.60 b ± 0.56 | 3.87 b ± 0.56 | 3.78 b ± 0.56 | 0.0002 |
Binding | 3.67 c ± 0.43 | 4.18 b ± 0.53 | 4.83 a ± 0.53 | 4.10 b ± 0.53 | 0.0130 |
Consistency | 4.00 ± 0.53 | 3.56 ± 0.46 | 4.10 ± 0.46 | 3.86 ± 0.46 | 0.1261 |
Structure | 3.72 b ± 0.44 | 4.20 a ± 0.53 | 4.54 a ± 0.53 | 4.28 a ± 0.53 | 0.0271 |
General desirability | 3.96 b ± 0.57 | 4.04 b ± 0.55 | 4.40 a ± 0.55 | 4.05 b ± 0.55 | 0.0325 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustyńska-Prejsnar, A.; Sokołowicz, Z.; Ormian, M.; Tobiasz-Salach, R. Nutritional and Health-Promoting Value of Poultry Meatballs with the Addition of Plant Components. Foods 2022, 11, 3417. https://doi.org/10.3390/foods11213417
Augustyńska-Prejsnar A, Sokołowicz Z, Ormian M, Tobiasz-Salach R. Nutritional and Health-Promoting Value of Poultry Meatballs with the Addition of Plant Components. Foods. 2022; 11(21):3417. https://doi.org/10.3390/foods11213417
Chicago/Turabian StyleAugustyńska-Prejsnar, Anna, Zofia Sokołowicz, Małgorzata Ormian, and Renata Tobiasz-Salach. 2022. "Nutritional and Health-Promoting Value of Poultry Meatballs with the Addition of Plant Components" Foods 11, no. 21: 3417. https://doi.org/10.3390/foods11213417
APA StyleAugustyńska-Prejsnar, A., Sokołowicz, Z., Ormian, M., & Tobiasz-Salach, R. (2022). Nutritional and Health-Promoting Value of Poultry Meatballs with the Addition of Plant Components. Foods, 11(21), 3417. https://doi.org/10.3390/foods11213417