Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (311)

Search Parameters:
Keywords = hemp seeds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 512 KiB  
Review
Nutritional Quality, Safety and Environmental Benefits of Alternative Protein Sources—An Overview
by Anna Choręziak, Dawid Rosiejka, Joanna Michałowska and Paweł Bogdański
Nutrients 2025, 17(7), 1148; https://doi.org/10.3390/nu17071148 (registering DOI) - 26 Mar 2025
Viewed by 312
Abstract
Protein is a fundamental macronutrient in the human diet. It supplies our organisms with essential amino acids, which are needed for the growth and maintenance of cells and tissues. Conventional protein sources, despite their complete amino acid profiles and excellent digestibility, have a [...] Read more.
Protein is a fundamental macronutrient in the human diet. It supplies our organisms with essential amino acids, which are needed for the growth and maintenance of cells and tissues. Conventional protein sources, despite their complete amino acid profiles and excellent digestibility, have a proven negative impact on the environment. Furthermore, their production poses many ethical challenges. This review aims to present nutritional, more ethical, and environmentally friendly alternatives that could serve as potential protein sources for the population. The available literature on alternative protein sources has been analyzed. Based on the research conducted, various products have been identified and described, including plant-based protein sources such as soybeans, peas, faba beans, lupins, and hemp seeds; aquatic sources such as algae, microalgae, and water lentils; as well as insect-based and microbial protein sources, and cell-cultured meat. Despite numerous advantages, such as a lower environmental impact, higher ethical standards of production, and beneficial nutritional profiles, alternative protein sources are not without limitations. These include lower bioavailability of certain amino acids, the presence of antinutritional compounds, technological challenges, and issues related to consumer acceptance. Nevertheless, with proper dietary composition, optimization of production processes, and further technological advancements, presented alternatives can constitute valuable and sustainable protein sources for the growing global population. Full article
(This article belongs to the Special Issue Future Prospects for Sustaining a Healthier Food System)
16 pages, 310 KiB  
Review
Preparation, Modification, Food Application, and Health Effects of Protein and Peptide from Hemp (Cannabis sativa L.) Seed: A Review of the Recent Literature
by Xiaoqin Zhang, Wei Zhou, Xiaoli Qin, Chunsheng Hou and Xiushi Yang
Foods 2025, 14(7), 1149; https://doi.org/10.3390/foods14071149 - 26 Mar 2025
Viewed by 215
Abstract
Hemp is a multiuse crop used for fiber, food, and medicinal purposes. The seed of hemp has attracted great attention as a good plant protein resource with remarkable nutritional and biological properties. However, the application of hemp seed protein (HSP) is limited due [...] Read more.
Hemp is a multiuse crop used for fiber, food, and medicinal purposes. The seed of hemp has attracted great attention as a good plant protein resource with remarkable nutritional and biological properties. However, the application of hemp seed protein (HSP) is limited due to its unsatisfactory functional properties. Physical, chemical, and biological technologies have been explored to modify the structure of HSP and improve its functionality. The investigation of the biological activity of HSP and its derived peptide to deal with intestinal, metabolic, and muscle concerns has broadened its utilization in healthy products. Therefore, the current review is performed to summarize the recent research progress on the novel extraction and modification of HSP, as well as the purification and identification of active peptide. The multi-functional multi-bioactive properties and adverse effects of HSP and peptide are also depicted to facilitate their potential applications in the food industry. Full article
(This article belongs to the Section Plant Foods)
21 pages, 2556 KiB  
Article
The Efficacy of Sunn Hemp (Crotalaria juncea) and Fe3O4 Nanoparticles in Controlling Weed Seed Germination
by Fatemeh Ahmadnia, Ali Ebadi, Mohammad Taghi Alebrahim, Ghasem Parmoon, Solmaz Feizpoor and Masoud Hashemi
Agronomy 2025, 15(4), 795; https://doi.org/10.3390/agronomy15040795 - 24 Mar 2025
Viewed by 187
Abstract
Utilizing nanotechnology for weed management offers a sustainable alternative to synthetic herbicides. This study evaluated the effectiveness of sunn hemp extract (SH), Fe3O4 nanoparticles (NPs), and Fe3O4/sunn hemp NPs in inhibiting the germination of redroot pigweed [...] Read more.
Utilizing nanotechnology for weed management offers a sustainable alternative to synthetic herbicides. This study evaluated the effectiveness of sunn hemp extract (SH), Fe3O4 nanoparticles (NPs), and Fe3O4/sunn hemp NPs in inhibiting the germination of redroot pigweed (Amaranthus retroflexus L.), wild mustard (Sinapis arvensis L.), and lamb’s quarters (Chenopodium album L.) weeds. The structural characteristics of the NPs were analyzed using Scanning electron microscopy (SEM), Scanning X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Vibrating sample magnetometer (VSM), Brunner–Emmet–Teller (BET), and Fourier-transform infrared spectroscopy (FTIR). The optimal Fe3O4 NP concentration for reducing seed germination ranged from 3000 to 3100 mg L−1. Higher concentrations of SH extract (100, 150, and 200 g L−1) effectively inhibited weed seed germination with A. retroflexus displaying the highest sensitivity. The maximal effective concentration (NOECmax) for Fe3O4/sunn hemp NPs was 10 g L−1 for S. arvensis, 150 g L1 for A. retroflexus, and 200 g L−1 for C. album. Fe3O4/sunn hemp NPs led to a reduction in 1/D50 and an increase in EEC50, indicating a rise in sensitivity to Fe3O4 NPs, particularly in S. arvensis. Variations in species responses to SH, Fe3O4 NPs, and Fe3O4/sunn hemp NPs are likely influenced by genetic, physiological, and ecological factors. Overall, the findings suggest that utilizing Fe3O4/sunn hemp NPs offers an effective strategy for sustainable weed management. Full article
Show Figures

Figure 1

16 pages, 1277 KiB  
Article
Fatty Acid Enrichment of Corn Extrudates with Hemp Seeds
by Marta Igual, David Gimeno, Purificación García-Segovia, Javier Martínez-Monzó and Juliana Navarro-Rocha
Molecules 2025, 30(6), 1390; https://doi.org/10.3390/molecules30061390 - 20 Mar 2025
Viewed by 225
Abstract
Hemp seeds (HSs) are a rich source of essential fatty acids, proteins, and antioxidant compounds, making them an attractive ingredient for the food industry. This work studies the viability of enriching corn extrudates with hemp seeds, specifically to improve their fatty acid profile [...] Read more.
Hemp seeds (HSs) are a rich source of essential fatty acids, proteins, and antioxidant compounds, making them an attractive ingredient for the food industry. This work studies the viability of enriching corn extrudates with hemp seeds, specifically to improve their fatty acid profile and phenolic content, thereby enhancing the nutritional value of the snack. Extrudate formulations with different concentrations of HSs (up to 12.5%) were evaluated, and the physicochemical, textural, and antioxidant properties of the resulting products were analyzed. The results showed that increasing the HS concentration improved the lipid profile of the products, raising the content of unsaturated fatty acids to 75.6% in the snack fortified with 12.5% of HSs and lowering the proportion of saturated fatty acids. This may reduce the risk of cardiovascular diseases compared with corn extrudates. The total phenolic content of the snacks and their antioxidant capacity also increased linearly with the increase of HSs in the formulation. A reduction in specific mechanical energy during extrusion was also observed, attributed to the higher fat content, which facilitates the lubrication of the process. At the physicochemical level, the HS-enriched snacks showed improvements in texture. These snacks were softer, reducing the hardness of the corn snack while maintaining crunchiness. They were even more stable due to a lower water content. The fortification of snacks with hemp seeds provides consumers with a healthier option, while maintaining the appealing crunchy texture and visual appearance regardless of some changes in their color attributes. Full article
(This article belongs to the Special Issue Plant Foods Ingredients as Functional Foods and Nutraceuticals III)
Show Figures

Graphical abstract

27 pages, 11163 KiB  
Article
Impact of Industrial Hemp (Cannabis sativa L.) Extracts on Seed Germination and Seedling Growth: Evaluating Allelopathic Activity Across Various Extraction Methods
by Mirjana Kojić, Nataša Samardžić, Milena Popov, Aleksandra Gavarić, Senka Vidović, Nemanja Teslić, Tijana Zeremski, Anamarija Koren and Bojan Konstantinović
Agronomy 2025, 15(3), 684; https://doi.org/10.3390/agronomy15030684 - 12 Mar 2025
Viewed by 273
Abstract
The noticeable reduction in plant species abundance near industrial hemp (Cannabis sativa L.) highlights the need to investigate its potential allelopathic effects on selected cultivars’ seed germination and seedling growth. Industrial hemp of the “Helena” variety was used to obtain aqueous extracts [...] Read more.
The noticeable reduction in plant species abundance near industrial hemp (Cannabis sativa L.) highlights the need to investigate its potential allelopathic effects on selected cultivars’ seed germination and seedling growth. Industrial hemp of the “Helena” variety was used to obtain aqueous extracts by conventional (macerate, hydrolate, and post-distillation residue) and green methods (ultrasonic and microwave extracts) in order to treat thirteen most commonly cultivated plant species, including lettuce, kohlrabi, onion, tomato, carrot, pepper, savoy cabbage, rocket, alfalfa, white mustard, pea, sunflower, and parsley. This is the first time that the allelopathic effects of seven different hemp extracts were tested simultaneously on thirteen different species. The extracts were applied at 10, 25, 50, and 100% concentrations. The seed germination percentage and root/shoot length results for all tested plants, except peas, clearly demonstrated an inhibitory effect of higher concentrations of hemp extracts. This effect was observed regardless of variations in chemical composition (CBD, THC, and total polyphenols), suggesting that different extracts have varying impacts on different species. The weakest inhibitory effect on the germination and seedling length for the majority of the tested plant species was noted for PDR, while the strongest inhibitory effect in terms of seedling length was observed in the case of MAE700. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

25 pages, 2364 KiB  
Article
Hemp Seed-Based Foods and Processing By-Products Are Sustainable Rich Sources of Nutrients and Plant Metabolites Supporting Dietary Biodiversity, Health, and Nutritional Needs
by Ricardo Ramos-Sanchez, Nicholas J. Hayward, Donna Henderson, Gary J. Duncan, Wendy R. Russell, Sylvia H. Duncan and Madalina Neacsu
Foods 2025, 14(5), 875; https://doi.org/10.3390/foods14050875 - 4 Mar 2025
Viewed by 532
Abstract
Processing hemp seeds into foods generates several by-products that are rich in nutrients and bioactive phytochemicals. This paper presents a thorough plant metabolite analysis and a comprehensive assessment of the nutrient content of 14 hemp seed-based foods and by-products and evaluates their feasibility [...] Read more.
Processing hemp seeds into foods generates several by-products that are rich in nutrients and bioactive phytochemicals. This paper presents a thorough plant metabolite analysis and a comprehensive assessment of the nutrient content of 14 hemp seed-based foods and by-products and evaluates their feasibility to deliver dietary needs and daily recommendations. The protein-85-product was the hemp food and hemp fudge the hemp by-product with the highest content of protein, 93.01 ± 0.18% and 37.66 ± 0.37%, respectively. Hemp seed-hull flour had the richest insoluble non-starch polysaccharide content (39.80 ± 0.07%). Linoleic acid was the most abundant fatty acid across all the hemp seed-based samples (ranging from 53.80 ± 2.02% in the protein-85-product to 69.53 ± 0.45% in the hemp cream). The omega-6 to omega-3 fatty acid ratio varied from 3:1 to 4:1 across all hemp seed-based samples. The majority of hemp seed-based samples were rich sources of potassium, magnesium, and phosphorus. Gentisic acid, p-coumaric acid, and syringaresinol were the most abundant plant metabolites measured and found mainly in bound form. Hemp seed by-products are valuable sources of nutrients capable of meeting dietary needs and, therefore, should be re-valorized into developing healthy food formulations to deliver a truly zero-waste hemp food production. Full article
(This article belongs to the Special Issue Comprehensive Utilization of By-Products in Food Industry)
Show Figures

Figure 1

18 pages, 3384 KiB  
Article
Identification and Molecular Mechanism of Novel α-Glucosidase Inhibitory Peptides from the Hydrolysate of Hemp Seed Proteins: Peptidomic Analysis, Molecular Docking, and Dynamics Simulation
by Zhang Mengyuan, Chen Chen, Wei Feng, Zhao Ning, Yang Wanyu, Zhang Tianrong, Ren Guoyan, Qiu Zhijun and Zhang Bin
Int. J. Mol. Sci. 2025, 26(5), 2222; https://doi.org/10.3390/ijms26052222 - 28 Feb 2025
Viewed by 332
Abstract
There is a growing demand for natural and potent α-glucosidase inhibitors due to the rising prevalence of diabetes. In this study, newly identified α-glucosidase inhibitory peptides were identified from the tryptic hydrolysate of hemp seed proteins based on peptidomics and in silico analysis. [...] Read more.
There is a growing demand for natural and potent α-glucosidase inhibitors due to the rising prevalence of diabetes. In this study, newly identified α-glucosidase inhibitory peptides were identified from the tryptic hydrolysate of hemp seed proteins based on peptidomics and in silico analysis. A total of 424 peptides, primarily derived from four cupin-type-1 domain-containing proteins, were identified, and 13 ultimately were selected for validation based on their higher PeptideRanker scores, solubility, non-toxicity, and favorable ADMET properties. Molecular docking revealed that these 13 peptides primarily interacted with α-glucosidase via hydrogen bonding and hydrophobic interactions. Among them, three novel peptides—NPVSLPGR (−8.7 kcal/mol), LSAERGFLY (−8.5 kcal/mol), and PDDVLANAF (−8.4 kcal/mol)—demonstrated potent α-glucosidase inhibitory activity due to their lower binding energies than acarbose (−8.1 kcal/mol), the first approved α-glucosidase inhibitor for type 2 diabetes treatment. The molecular mechanism analysis revealed that the peptides NPVSLPGR and LSAERGFLY inhibited α-glucosidase by simultaneously blocking substrate entry through occupying the entrance of the active site gorge and preventing catalysis by binding to active sites. In contrast, the peptide PDDVLANAF primarily exerted inhibitory effects by occupying the entrance of the active site gorge. Molecular dynamics simulation validated the stability of the complexes and provided additional insights into the molecular mechanism determined through docking. These findings contribute essential knowledge for the advancement of natural α-glucosidase inhibitors and offer a promising approach to effectively manage diabetes. Full article
Show Figures

Figure 1

18 pages, 2333 KiB  
Article
From Waste to Resource: Mineral and Biochemical Characterization of Hemp By-Products in the Fiber and Seed Supply Chain
by Ylenia Pieracci, Laura Pistelli, Benedetta D’Ambrosio, Roberta Paris, Guido Flamini and Laura Bassolino
Agronomy 2025, 15(3), 564; https://doi.org/10.3390/agronomy15030564 - 25 Feb 2025
Viewed by 286
Abstract
Industrial hemp (Cannabis sativa L.) is a versatile and sustainable multipurpose plant for agroecology services and a zero-waste circular economy. While the focus has traditionally been on primary products like fiber and seeds, nowadays there is an increasing awareness of the potential [...] Read more.
Industrial hemp (Cannabis sativa L.) is a versatile and sustainable multipurpose plant for agroecology services and a zero-waste circular economy. While the focus has traditionally been on primary products like fiber and seeds, nowadays there is an increasing awareness of the potential value of the by-products generated during hemp cultivation and processing. This article explores various methods of valorizing industrial hemp wastes, focusing on their mineral and biochemical composition, highlighting the benefits of utilizing what was once considered a mere by-product. The apical and the basal leaves of 12 industrial hemp varieties, six monoecious, and six dioecious, representing the main by-product of fiber supply chain, were assessed for their mineral (N, K, Na, Ca; Mg, Cu, Mn, Fe, and Zn), chlorophyll, carotenoids, and total soluble phenols contents, as well as for their antioxidant activity. The same parameters were also evaluated in the inflorescences; the main waste was derived from both hemp fiber and seed harvesting, which were collected at three stages of flower development for four selected genotypes, together with the yield and chemical composition of their essential oils. Differences in the evaluated parameters among genotypes and tissues were highlighted, showing the potential for diversifying the utilization of industrial hemp wastes. The possible uses of these residual biomasses are discussed based on their composition. Full article
(This article belongs to the Special Issue Industrial Crops Production in Mediterranean Climate)
Show Figures

Figure 1

21 pages, 4161 KiB  
Article
Systemic Uptake of Rhodamine Tracers Quantified by Fluorescence Imaging: Applications for Enhanced Crop–Weed Detection
by Yu Jiang, Masoume Amirkhani, Ethan Lewis, Lynn Sosnoskie and Alan Taylor
AgriEngineering 2025, 7(3), 49; https://doi.org/10.3390/agriengineering7030049 - 20 Feb 2025
Viewed by 339
Abstract
Systemic fluorescence tracers introduced into crop plants provide an active signal for crop–weed differentiation that can be exploited for precision weed management. Rhodamine B (RB), a widely used tracer for seeds and seedlings, possesses desirable properties; however, its application as a seed treatment [...] Read more.
Systemic fluorescence tracers introduced into crop plants provide an active signal for crop–weed differentiation that can be exploited for precision weed management. Rhodamine B (RB), a widely used tracer for seeds and seedlings, possesses desirable properties; however, its application as a seed treatment has been limited due to potential phytotoxic effects on seedling growth. Therefore, investigating mitigation strategies or alternative systemic tracers is necessary to fully leverage active signaling for crop–weed differentiation. This study aimed to identify and address the phytotoxicity concerns associated with Rhodamine B and evaluate Rhodamine WT and Sulforhodamine B as potential alternatives. A custom 2D fluorescence imaging system, along with analytical methods, was developed to optimize fluorescence imaging quality and facilitate quantitative characterization of fluorescence intensity and patterns in plant seedlings, individual leaves, and leaf disc samples. Rhodamine compounds were applied as seed treatments or in-furrow (soil application). Rhodamine B phytotoxicity was mitigated by growing in a sand and perlite media due to the adsorption of RB to perlite. Additionally, in-furrow and seed treatment methods were tested for Rhodamine WT and Sulforhodamine B to evaluate their efficacy as non-phytotoxic alternatives. Experimental results demonstrated that Rhodamine B applied via seed pelleting and Rhodamine WT used as a direct seed treatment were the most effective approaches. A case study was conducted to assess fluorescence signal intensity for crop–weed differentiation at a crop–weed seed distance of 2.5 cm (1 inch). Results indicated that fluorescence from both Rhodamine B via seed pelleting and Rhodamine WT as seed treatment was clearly detected in plant tissues and was ~10× higher than that from neighboring weed plant tissues. These findings suggest that RB ap-plied via seed pelleting effectively differentiates plant seedlings from weeds with reduced phytotoxicity, while Rhodamine WT as seed treatment offers a viable, non-phytotoxic alternative. In conclusion, the combination of the developed fluorescence imaging system and RB seed pelleting presents a promising technology for crop–weed differentiation and precision weed management. Additionally, Rhodamine WT, when used as a seed treatment, provides satisfactory efficacy as a non-phytotoxic alternative, further expanding the options for fluorescence-based crop–weed differentiation in weed management. Full article
Show Figures

Graphical abstract

22 pages, 2687 KiB  
Article
Industrial Hemp Finola Variety Photosynthetic, Morphometric, Biomechanical, and Yield Responses to K Fertilization Across Different Growth Stages
by Ivana Varga, Antonela Markulj Kulundžić, Paulina Krolo, Dario Iljkić, Marina Tišma and Ivan Kraus
Agronomy 2025, 15(2), 496; https://doi.org/10.3390/agronomy15020496 - 19 Feb 2025
Viewed by 470
Abstract
The growing interest in Cannabis sativa as a highly used crop is present worldwide. There are limited data about the effect of potassium (K) fertilizer on industrial hemp yield for dual purposes (seed and stem production). The current study aimed to investigate the influence [...] Read more.
The growing interest in Cannabis sativa as a highly used crop is present worldwide. There are limited data about the effect of potassium (K) fertilizer on industrial hemp yield for dual purposes (seed and stem production). The current study aimed to investigate the influence of adding two different K fertilizers, KCl and K2SO4, at two growth stages (flowering and ripening) on the productivity and chlorophyll a fluorescence (ChlF) of Cannabis sativa, variety Finola. Before sowing, different K treatments were applied: K1—100 kg ha−1 KCl (60% K) and K2—100 kg ha−1 K2SO4 (52% K, S 17%). The OJIP (O stands for “origin” (minimal fluorescence), P for “peak” (maximum fluorescence), and J and I for inflection points between the O and P levels) data were recorded and used for ChlF transients and individual ChlF parameters during vegetation. At harvest, the stem morphology parameters and yield (plant height, stem weight and diameter, and stem and seed yield), tensile strength, and the modulus of elasticity were determined. The results show the sensitivity of minimal (F0) and maximal fluorescence (Fm), electron transport from QA to intersystem electron acceptors (ET0/(TR0 − ET0)), and electron transport flux until PSI acceptors (RE0/RC) to K fertilization. The parameters that described electron transport (ET0/RC, ψE0, and φE0), performance index on absorption basis (PIABS, TR0/DI0, and φP0), dissipation (DI0/RC), and electron transport to photosystem I (φR0 and δR0/(1 − δR0)) had a reaction only at the growth stage, indicating a change in their activity during the aging of the Cannabis sativa plants. The average stem height was 67.5 cm, and the stem diameter was 0.41 cm. The different K sources did not significantly influence the stem height and diameter, nor the dry stem (on average 12.2 t ha−1) and seed yield (on average 1.85 t ha−1). The tensile strength of individual hemp stems was the highest with K2SO4 (53.32 MPa) and the lowest with KCl (49.25 MPa). The stem stiffness by modulus of elasticity was about 5 GPa on average for all the treatments. In general, the photosynthetic parameters in this study varied more between the growth stages than between the different K fertilizer formulations. Moreover, based on the results of this study, it can be recommended to use both fertilizers, KCl and K2SO4, in dual-purpose industrial hemp production since no significant effect was found for the stem morphometric and biomechanical parameters as well as for the agronomic parameters. Full article
Show Figures

Figure 1

20 pages, 1601 KiB  
Article
Nutritional Profile and Antioxidant Properties of Hemp (Cannabis sativa L.) Seed from Romania
by Doris Floareș Oarga, Adina Berbecea, Diana Obiștioiu, Anca Hulea, Ionela Hotea, Ciprian Buzna, Luana Alexandra Sabo, Anca Ofelia Panda and Isidora Radulov
Appl. Sci. 2025, 15(4), 2178; https://doi.org/10.3390/app15042178 - 18 Feb 2025
Viewed by 459
Abstract
This study evaluates the nutritional and phytochemical properties of six industrial hemp varieties from Romania. The proximate composition (proteins, lipids, ash, moisture, fiber, and carbohydrates), total polyphenol content (TPC), total flavonoid content (TFC), antioxidant activity (DPPH), and macro/microelements were analyzed. Two extraction methods [...] Read more.
This study evaluates the nutritional and phytochemical properties of six industrial hemp varieties from Romania. The proximate composition (proteins, lipids, ash, moisture, fiber, and carbohydrates), total polyphenol content (TPC), total flavonoid content (TFC), antioxidant activity (DPPH), and macro/microelements were analyzed. Two extraction methods were used: conventional and ultrasound-assisted extraction. The results showed a protein content of 20.92–25.39 g/100 g, lipid content 24.92–28.43 g/100 g, fiber 25.92–31.21 g/100 g, ash 4.71–6.38 g/100 g, moisture content 4.84–5.96 g/100 g, carbohydrates between 35.05 and 43.58 g/100 g, and energy value between 483.25 and 502.40 kcal/100 g. The TPC content varied between 732.36 and 1457.60 mgGAE/kg for conventional extraction methods and from 1003.48 to 1519.87 mg GAE/kg for ultrasound-assisted methods. The TFC content was 343.91–1013.40 mg QE/kg for conventional extraction methods and 511.92 to 1222.14 mg QE/kg for ultrasound-assisted methods. The results showed that the extraction method influenced the phytochemical compounds. Macroelements were dominated by potassium (5533.23 μg/g), magnesium (2616.34 μg/g), and calcium (1853.51 μg/g). Microelements showed the highest levels of iron (189.49 μg/g), followed by manganese (138.26 μg/g), zinc (75.25 μg/g), and copper (13.08 μg/g). Nickel and cadmium were found in trace amounts. Multivariate analysis (PCA) was used to correlate the data. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

17 pages, 1737 KiB  
Article
Characterization of New Flavored Oils Obtained Through the Co-Milling of Olives and Vegetable Food Products
by Celeste Lazzarini, Matilde Tura, Mara Mandrioli, Marco Setti, Noureddine Mokhtari, Abdelaziz Ait Elkassia, Sara Barbieri, Enrico Valli, Alessandra Bendini and Tullia Gallina Toschi
Foods 2025, 14(4), 687; https://doi.org/10.3390/foods14040687 - 17 Feb 2025
Viewed by 354
Abstract
Consumers are increasingly attracted to innovative, gourmand, and sustainable food products. This has led to a growing interest in flavored olive oils through co-milling processing. This study explores the production and characterization of flavored olive oils obtained by co-milling olives with orange pomace, [...] Read more.
Consumers are increasingly attracted to innovative, gourmand, and sustainable food products. This has led to a growing interest in flavored olive oils through co-milling processing. This study explores the production and characterization of flavored olive oils obtained by co-milling olives with orange pomace, black pepper, and hemp seeds, aiming to enhance their sensory and compositional properties while promoting sustainability through the valorization of agri-food by-products. The flavored olive oils and their control samples were analyzed for free acidity, tocopherols, phenolic compounds, volatiles, and sensory profiles. The flavored oils exhibited an acceptable hydrolytic state and peculiar sensory notes, depending on the ingredients used, as well as enhanced compositional qualities. This research highlights the potential of using oranges and hemp by-products in flavored oil production, offering an innovative approach to reducing food waste, with the possibility of future industrial applications. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

23 pages, 3549 KiB  
Article
Characterization of Key Odorants in Hemp Seed Oil Extracted from the Hemp Seeds Roasted Under Various Conditions
by Yuchen Bai, Ningke You, Hongyu Tian and Xuebing Zhao
Processes 2025, 13(2), 530; https://doi.org/10.3390/pr13020530 - 13 Feb 2025
Viewed by 491
Abstract
Hemp seed oil is nutritious. Besides cannabinoids, it has a higher Omega-3 fatty acid content, making it an ideal and healthy edible oil. Roasting is a key factor affecting the flavor of hemp seed oil. In this study, solvent-assisted flavor evaporation (SAFE) combined [...] Read more.
Hemp seed oil is nutritious. Besides cannabinoids, it has a higher Omega-3 fatty acid content, making it an ideal and healthy edible oil. Roasting is a key factor affecting the flavor of hemp seed oil. In this study, solvent-assisted flavor evaporation (SAFE) combined with gas chromatography–mass spectrometry (GC-O-MS) was used to analyze the volatile compounds of hemp seed oil after the hemp seeds were roasted at different temperatures (120 °C, 140 °C, 160 °C, 180 °C). α-pinene, (1S)-(1)-β-pinene, myrcene, and (E)-β-ocimene, which are typical odorants for herbs and fresh flavors, had an active odor value (OAV) ≥ 1. The sweet, nutty, and toasty flavors became more pronounced as the temperature increased. 2-pentylfuran provided the caramel flavor, and 2,5-dimethylpyrazine, 2-ethyl-6-methylpyrazine, and 2-ethyl-5-methylpyrazine provided the toasty flavor. The combination of sensory evaluation and data analysis was effective in differentiating the odors of hemp seed oil extracted at different temperatures. Reconstitution and deletion experiments showed that these odorants could mimic the overall aroma profile. This article provides a theoretical basis for the effect of over-roasting on the flavor of hemp seed oil. Full article
(This article belongs to the Special Issue Advanced Technologies for Vegetable Oil Extraction)
Show Figures

Figure 1

20 pages, 782 KiB  
Article
Effect of Hemp Seed Oil on Milk Performance, Blood Parameters, Milk Fatty Acid Profile, and Rumen Microbial Population in Milk-Producing Buffalo: Preliminary Study
by Qichao Gu, Bo Lin, Dan Wan, Zhiwei Kong, Qinfeng Tang, Qi Yan, Xinghua Cai, Hao Ding, Guangsheng Qin and Caixia Zou
Animals 2025, 15(4), 514; https://doi.org/10.3390/ani15040514 - 11 Feb 2025
Viewed by 567
Abstract
Vegetable oils rich in unsaturated fatty acids have been shown to improve animal health and enrich milk with functional fatty acids in various studies. This study investigates the effects of dietary supplementation with hemp seed oil (HSO), a native vegetable oil from the [...] Read more.
Vegetable oils rich in unsaturated fatty acids have been shown to improve animal health and enrich milk with functional fatty acids in various studies. This study investigates the effects of dietary supplementation with hemp seed oil (HSO), a native vegetable oil from the “longevity village” of Bama (Guangxi, China), on the milk performance, milk fatty acid composition, blood indicators, and rumen bacterial community of milk-producing buffalo. Seventeen healthy, four-year-old, crossbred, milk-producing buffaloes with the same parity (three), as well as similar body weights (BW = 580 ± 25 kg), number of days producing milk (DIM, 153 ± 10 d), and milk yields (8.56 ± 0.89 kg/d) were divided into three groups (n = 6, 5, and 6) and assigned to the following diets: (1) no HSO supplement (H0, n = 6), (2) a supplement of 100 g/d of HSO (H1, n = 5), and (3) a supplement of 200 g/d of HSO (H2, n = 6). The total experimental period was 42 days (including a 14-day adaptation period and a 28-day treatment period). The data were statistically analyzed by repeated measures analysis of variance. The results showed that compared to that of no HSO supplement group, the dry matter intake (DMI) showed a decreasing tendency (p = 0.06), while feed efficiency and rumen fermentation remained similar across all the groups (p > 0.05) with dietary HSO supplementation. Moreover, with dietary HSO supplementation, the total antioxidant capacity (T-AOC) (p = 0.05) and catalase (CAT) (p < 0.01) and glutathione peroxidase (GSH-Px) (p = 0.02) contents in the serum were greatly increased, with the highest levels observed in the H2 group (increased by 1.16 U/mL, 1.15 U/mL, and 134.51 U/mL, respectively). In contrast, the malondialdehyde (MDA) content was significantly decreased with dietary HSO supplementation (p = 0.02) and was the lowest in the H1 group (decreased by 0.72 nmol/mL). The high-density lipoprotein cholesterol (HDL-C) content in the blood showed an increasing tendency with dietary HSO supplementation (p = 0.09). Moreover, with dietary HSO supplementation, the proportions of C18:0 (p = 0.02), C18:1n9t (p = 0.02), C18:2n6c (p = 0.02), C18:3n3 (p < 0.01), C18:2n9c (p = 0.04), omega-3 (p = 0.02), and omega-6 (p = 0.02) were significantly increased, with the highest levels observed in the H2 group (increased by 5.29 g/100 g FA, 1.81 g/100 g FA, 0.55 g/100 g FA, 0.14 g/100 g FA, 0.75 g/100 g FA, 0.17 g/100 g FA, and 0.56 g/100 g FA, respectively). Additionally, rumen Acetobacter abundance was significantly affected by HSO addition (p = 0.03), with rumen Acetobacter abundance decreasing in the H1 group (by 0.55%) and increasing in the H2 group (by 0.73%). These results suggest that adding HSO to milk-producing buffalo diets does not affect feed efficiency or rumen fermentation, although it decreases the DMI. Meanwhile, it can improve the nutritional quality of milk, enhance the antioxidant status, and regulate blood lipid metabolism in milk-producing buffaloes. Full article
Show Figures

Figure 1

21 pages, 6100 KiB  
Article
Harnessing Hemp (Cannabis sativa L.) Seed Cake Proteins: From Concentrate Production to Enhanced Choux Pastry Quality
by Tatiana Capcanari, Eugenia Covaliov and Cătălina Negoița
Foods 2025, 14(4), 567; https://doi.org/10.3390/foods14040567 - 8 Feb 2025
Viewed by 834
Abstract
This study explores the production and valorization of hemp seed cake protein concentrate (HPC) as a functional ingredient to enhance the nutritional quality and sensory attributes of choux pastry products, specifically éclairs. By integrating varied concentrations of HPC (0%, 1%, 5%, 10%, 15%, [...] Read more.
This study explores the production and valorization of hemp seed cake protein concentrate (HPC) as a functional ingredient to enhance the nutritional quality and sensory attributes of choux pastry products, specifically éclairs. By integrating varied concentrations of HPC (0%, 1%, 5%, 10%, 15%, and 20%) into traditional formulations, the physicochemical properties, proximate composition, amino acid profile, and sensory characteristics of the resulting pastries were assessed. Sensory attributes were assessed using the check-all-that-apply (CATA) method, where a trained panel selected applicable descriptors from a predefined list. Results indicated that the incorporation of HPC significantly increased protein content from 8.23% in the control sample (HPC0%) to 11.32% in the HPC20% formulation and improved moisture retention, leading to greater exterior and interior éclairs volume, increasing from 42.15 cm3 to 51.5 cm3 and from 18.34 cm3 to 38.47 cm3, respectively. Furthermore, sensory evaluation revealed pronounced differences in attributes such as flavor, appearance, and mouthfeel, with optimal sensory profiles noted at 10% HPC inclusion. The amino acid analysis demonstrated a balanced composition, particularly of essential amino acids, emphasizing HPC’s potential as a valuable protein source, with significant contributions from leucine (8.17 g/100 g protein), isoleucine (5.56 g/100 g protein), and phenylalanine (6.31 g/100 g protein), as well as notable levels of immunoactive amino acids such as arginine (10.92 g/100 g protein) and glutamic acid (20.16 g/100 g protein). These findings highlight the significant nutritional benefits of HPC enrichment, supporting the development of healthier bakery products and contributing to sustainable food practices within the industry. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

Back to TopTop