Nanoparticles Containing Tamarind Isolate Protein Potentiate the Satiety without Promoting the Anti-Inflammatory Effect in a Preclinical Model of Diet-Induced Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of the Trypsin Inhibitor from Tamarind Seed (TTI)
2.2. Synthesis and Physicochemical Characterization of Nanoencapsulated Trypsin Inhibitor from Tamarind Seeds (ECW)
2.3. Evaluation of Encapsulation Efficiency (%)
2.4. Effect of Different pH and Temperature Conditions
2.4.1. pH
2.4.2. Temperature
2.5. Experimental Model In Vivo
2.5.1. Diet and Treatments
- Untreated obesity (n = 5): HGLI diet + 1 mL of water by gavage. The group that did not receive treatment was considered.
- Obesity treatment 1 (n = 5): nutritionally adequate diet (NA diet) (Labina® feed) + 1 mL of water per gavage. The group that received conventional treatment was considered.
- Obesity treatment 2 (n = 5): nutritionally adequate diet (NA diet) (Labina® feed) + 1 mL of ECW (12.5 mg/kg) by gavage.
- Obesity treatment 3 (n = 5): HGLI diet + 1 mL ECW (12.5 mg/kg) by gavage.
- Obesity treatment 4 (n = 5): HGLI diet + 1 mL of TTI (25 mg/kg) by gavage.
2.5.2. Satiety and Zoometric Parameters
2.5.3. Evaluation of Biochemical Parameters
2.5.4. Assessment of Insulin Resistance and Pancreas Activity
2.5.5. Inflammatory Markers and Leptin
2.6. Statistical Analysis
3. Results
3.1. Isolation of the Trypsin Inhibitor from Tamarind Seeds (TTI)
3.2. Synthesis and Physicochemical Characterization of the ECW
3.3. ECW Assessment under Different pH and Temperature Conditions
3.4. Influence of pH
3.5. Effect of Physiological Temperature
3.6. Storage Temperature Effect
3.7. Variation in Dietary Intake, Caloric Intake, Caloric Efficiency, Body Weight, and Nutritional Status
3.8. Evaluation of Biochemical Parameters
3.9. Evaluation of Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Available online: www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 19 June 2022).
- Chen, W.; Hira, T.; Nakajima, S.; Tomozawa, H.; Tsubata, M.; Yamaguchi, K.; Hara, H. Suppressive effect on food intake of a potato extract (Potein®) involving cholecystokinin release in rats. Biosci. Biotechnol. Biochem. 2012, 76, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Lima, V.C.O.; Luz, A.B.S.; Amarante, M.S.M.; Lima, M.C.J.S.; Carvalho, F.M.C.; Figueredo, J.B.S.; Santos, P.P.A.; Camillo, C.S.; Ladd, F.V.L.; Maciel, B.L.L.; et al. Tamarind Multifunctional Protein: Safety and Anti-Inflammatory Potential in Intestinal Mucosa and Adipose Tissue in a Preclinical Model of Diet-Induced Obesity. Obes. Facts 2021, 14, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, A.F.; de Souza, B.B.P.; Coutinho, L.P.; Murad, A.M.; dos Santos, P.I.M.; de Monteiro, N.K.V.; dos Santos, E.A.; Maciel, B.L.L.; de Araújo Morais, A.H. Structural Insights and Molecular Dynamics into the Inhibitory Mechanism of a Kunitz-Type Trypsin Inhibitor from Tamarindus indica L. J. Enzym. Inhib. Med. Chem. 2021, 36, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.; Serquiz, A.; Silva, P.; Barbosa, P.; Sampaio, T.; Araujo Junior, R.; Oliveira, A.; Machado, R.; Maciel, B.; Uchoa, A.; et al. Trypsin Inhibitor from Tamarindus indica L. Seeds Reduces Weight Gain and Food Consumption and Increases Plasmatic Cholecystokinin Levels. Clinics 2015, 70, 136–143. [Google Scholar] [CrossRef]
- Carvalho, F.M.C.; Lima, V.C.O.; Costa, I.S.; Medeiros, A.F.; Serquiz, A.C.; Lima, M.C.J.S.; Serquiz, R.P.; Maciel, B.L.L.; Uchôa, A.F.; Santos, E.A.; et al. A Trypsin Inhibitor from Tamarind Reduces Food Intake and Improves Inflammatory Status in Rats with Metabolic Syndrome Regardless of Weight Loss. Nutrients 2016, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Costa, I.S.; Medeiros, A.F.; Piuvezam, G.; Medeiros, G.C.B.S.; Maciel, B.L.L.; Morais, A.H.A. Insulin-like Proteins in Plant Sources: A Systematic Review. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 3421–3431. [Google Scholar] [CrossRef]
- Medeiros, A.F.; Costa, I.S.; Carvalho, F.M.C.; Kiyota, S.; Souza, B.B.P.; Sifuentes, D.N.; Serquiz, R.P.; Maciel, B.L.L.; Uchôa, A.F.; Santos, E.A.; et al. Biochemical Characterisation of a Kunitz-Type Inhibitor from Tamarindus Indica L. Seeds and Its Efficacy in Reducing Plasma Leptin in an Experimental Model of Obesity. J. Enzym. Inhib. Med. Chem. 2018, 33, 334–348. [Google Scholar] [CrossRef] [Green Version]
- Costa, I.; Lima, M.; Medeiros, A.; Bezerra, L.; Santos, P.; Serquiz, A.; Lima, M.; Oliveira, G.; Santos, E.; Maciel, B.; et al. An Insulin Receptor-Binding Multifunctional Protein from Tamarindus Indica L. Presents a Hypoglycemic Effect in a Diet-Induced Type 2 Diabetes-Preclinical Study. Foods 2022, 25, 2207. [Google Scholar] [CrossRef]
- Wickham, M.; Faulks, R.; Mills, C. In vitro digestion methods for assessing the effect of food structure on allergen breakdown. Mol. Nutr. Food Res. 2009, 53, 952–958. [Google Scholar] [CrossRef]
- Bøgh, K.L.; Madsen, C.B. Food Allergens: Is There a Correlation between Stability to Digestion and Allergenicity? Crit. Rev. Food Sci. Nutr. 2016, 56, 1545–1567. [Google Scholar] [CrossRef]
- McClements, D.J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv. Colloid Interface Sci. 2018, 253, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, J.L.C.; Costa, R.O.A.; Matias, L.L.R.; Medeiros, A.F.; Gomes, A.F.T.; Pais, T.D.S.; Passos, T.S.; Maciel, B.L.L.; Santos, E.A.; Morais, A.H.A. Chitosan-whey protein nanoparticles improve encapsulation efficiency and stability of a trypsin inhibitor isolated from Tamarindusindica L. Food Hydrocoll. 2018, 84, 247–256. [Google Scholar] [CrossRef]
- de Araújo Costa, R.O.; Matias, L.L.R.; Passos, T.S.; De Queiroz, J.L.C.; de Carvalho, F.M.C.; Maciel, B.L.L.; Uchôa, A.F.; Amado, I.R.; Gonçalves, C.; Pastrana, L.; et al. Safety and Potential Functionality of Nanoparticles Loaded with a Trypsin Inhibitor Isolated from Tamarind Seeds. Futur. Foods 2020, 1–2, 100001. [Google Scholar] [CrossRef]
- Matias, L.L.R.; Costa, R.O.A.; Passos, T.S.; Queiroz, J.L.C.; Serquiz, A.C.; Maciel, B.L.L.; Santos, P.P.A.; Camillo, C.S.; Gonçalves, C.; Amado, I.R.; et al. Tamarind Trypsin Inhibitor in Chitosan-Whey Protein Nanoparticles Reduces Fasting Blood Glucose Levels without Compromising Insulinemia: A Preclinical Study. Nutrients 2019, 11, 2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguiar, A.J.F.C.; De Queiroz, J.L.C.; Santos, P.P.A.; Camillo, C.S.; Serquiz, A.C.; Costa, I.S.; Oliveira, G.S.; Gomes, A.F.T.; Matias, L.L.R.; Costa, R.O.A.; et al. Beneficial Effects of Tamarind Trypsin Inhibitor in Chitosan–Whey Protein Nanoparticles on Hepatic Injury Induced High Glycemic Index Diet: A Preclinical Study. Int. J. Mol. Sci. 2021, 22, 9968. [Google Scholar] [CrossRef]
- Kakade, M.; Simons, N.; Liener, I. An Evaluation of Natural vs. Synthetic Substrates for Measuring the Antitryptic Activity of Soybean Samples. Cereal Chem. 1969, 46, 518–526. [Google Scholar]
- Laemmli, U. © 2022 Nature Publishing Group. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Kumari, R.; Gupta, S.; Singh, A.R.; Ferosekhan, S.; Kothari, D.C.; Pal, A.K.; Jadhao, S.B. Chitosan nanoencapsulated exogenous trypsin biomimics zymogen-like enzyme in fish gastrointestinal tract. PLoS ONE 2013, 8, e74743. [Google Scholar] [CrossRef]
- Brodkorb, A. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- de Estado da Saúde, S.; de Vigilância Sanitária, C. Portaria CVS n°5 de 09 de abril de 2013: Aprova o Regulamento Técnico sobre boas práticas para estabelecimentos comerciais de alimentos e para serviços de alimentação, e o roteiro de inspeção, anexo. Diário Oficial do Estado de São Paulo 2013, 73, 32–35. [Google Scholar]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Luz, A.B.S.; dos Santos Figueredo, J.B.; Salviano, B.D.P.D.; Aguiar, A.J.F.C.; Pinheiro, L.G.S.D.; Krause, M.F.D.; Da Silva Camillo, C.; Ladd, F.V.L.; Bortolin, R.H.; Silbiger, V.N.; et al. Adipocytes and Intestinal Epithelium Dysfunctions Linking Obesity to Inflammation Induced by High Glycemic Index Pellet-Diet in Wistar Rats. Biosci. Rep. 2018, 38, BSR20180304. [Google Scholar] [CrossRef] [PubMed]
- De Sousa Rodrigues, M.E.; Bekhbat, M.; Houser, M.C.; Chang, J.; Walker, D.I.; Jones, D.P.; Oller do Nascimento, C.M.P.; Barnum, C.J.; Tansey, M.G. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain Behav Immun. 2017, 59, 158–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novelli, E.L.B.; Diniz, Y.S.; Galhardi, C.M.; Ebaid, G.M.X.; Rodrigues, H.G.; Mani, F. Anthropometrical parameters and markers of obesity in rats. Lab. Anim. 2007, 41, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and B-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Cochran, W.G. Sampling Techniques, 3rd ed.; Wiley: New York, NY, USA, 1977. [Google Scholar]
- McClements, D.J. Nanoparticle- and Microparticle-Based Delivery Systems: Encapsulation, Protection, and Release of Active Components; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Cornacchia, L.; de la Fortelle, C.F.; Venema, P. Heat-induced aggregation of whey proteins in aqueous solutions below their isoelectric point. J. Agric. Food Chem. 2014, 22, 733–741. [Google Scholar] [CrossRef]
- Ismail, R.; Csóka, I. Novel strategies in the oral delivery of antidiabetic peptide drugs-Insulin, GLP 1 and its analogs. Eur. J. Pharm. Biopharm. 2017, 115, 257–267. [Google Scholar] [CrossRef]
- Lima, V.C.O.; Piuvezam, G.; Maciel, B.L.L.; Morais, A.H.A. Trypsin inhibitors: Promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders? J. Enzyme. Inhib. Med. Chem. 2019, 34, 405–419. [Google Scholar]
- Serquiz, A.C.; Machado, R.J.; Serquiz, R.P.; Lima, V.C.; Carvalho, F.M.C.; Carneiro, M.A.; Maciel, B.L.; Uchôa, A.F.; Santos, E.A.; Morais, A.H.A. Supplementation with a new trypsin inhibitor from peanut is associated with reduced fasting glucose, weight control, and increased plasma CCK secretion in an animal model. J. Enzym. Inhib. Med. Chem. 2016, 29, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pizarroso, N.A.; Fuciños, P.; Gonçalves, C.; Pastrana, L.; Amado, I.R. A Review on the Role of Food-Derived Bioactive Molecules and the Microbiota–Gut–Brain Axis in Satiety Regulation. Nutrients 2021, 13, 632. [Google Scholar] [CrossRef]
- Shen, D.; Gao, F.J.; Xia, J.; Wang, X.; Zhou, Y.; Chen, L.; Xu, L.; Guo, X. Liposome-encapsulated peptide PDBSN ameliorates high-fat-diet-induced obesity and improves metabolism homeostasis. Biochem. Biophys. Res. Commun. 2020, 533, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Tilkin, R.G.; Colle, X.; Finol, A.A.; Régibeau, N.; Mahy, J.G.; Grandfils, C.; Lambert, S.D. Protein encapsulation in functionalized sol-gel silica: Effect of the encapsulation method on the release kinetics and the activity. Micropor. Mesopor. Mater. 2020, 308, 1387–1811. [Google Scholar] [CrossRef]
Samples | Exposed to Oral pH (7.0) Mean (SD) (%) | Exposed to Gastric pH (3.0) Mean (SD) (%) | Exposed to Intestinal pH (7.0) Mean (SD) (%) |
---|---|---|---|
TTI | 100 (1.27) A,a | 100 (0.83) A,a | 100 (1.07) A,a |
ECW | 0.00 (0.00) B,a | 44.07 (1.03) B,b | 20.10 (2.85) B,c |
Samples | Exposed to 37 °C (2 h) Mean (SD) (%) | Exposed to 37 °C (4 h) Mean (SD) (%) | Exposed to 7 °C (12 h) Mean (SD) (%) | Exposed to 7 °C (3 Days) Mean (SD) (%) | Exposed to 7 °C (7 Days) Mean (SD) (%) | Exposed to −18 °C (12 h) Mean (SD) (%) | Exposed to −18 °C (15 Days) Mean (SD) (%) | Exposed to −18 °C (30 Days) Mean (SD) (%) |
---|---|---|---|---|---|---|---|---|
TTI | 92.00 (0.39) A,a | 94.00 (1.50) A,a | 90.90 (4.47) A,a | 95.50 (1.14) A,a | 95.70 (4.02) A,a | 91.45 (1.18) A,a | 95.80 (0.42) A,a | 100 (2.22) A,a |
ECW | 38.62 (0.14) B,a | 94.42 (1.52) A,b | 68.70 (4.38) B,a | 91.20 (8.03) A,b | 100 (0.97) A,b | 52.90 (3.67) B,a | 46.40 (4.10) B,a | 83.60 (2.90) B,b |
Evaluated Groups | Δ Body Weight Mean (SD) | Weight Loss (g) | Weight Gain (g) |
---|---|---|---|
Untreated obesity | 1.40 (9.61) A | −8.00 | 7.70 |
Obesity treatment 1 | −19.00 (8.52) B | −19.00 | - |
Obesity treatment 2 | −10.20 (5.89) A,B | −13.00 | - |
Obesity treatment 3 | −13.60 (2.97) B | −13.60 | - |
Obesity treatment 4 | −3.33 (9.19) A | - | 3.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, R.O.A.; Medeiros, I.; De Queiroz, J.L.C.; Matias, L.L.R.; Lima, M.S.R.; Oliveira, G.S.D.; Aguiar, A.J.F.C.; Costa, I.S.; Silva, E.M.d.S.; Dos Santos, N.C.S.; et al. Nanoparticles Containing Tamarind Isolate Protein Potentiate the Satiety without Promoting the Anti-Inflammatory Effect in a Preclinical Model of Diet-Induced Obesity. Foods 2022, 11, 3526. https://doi.org/10.3390/foods11213526
Costa ROA, Medeiros I, De Queiroz JLC, Matias LLR, Lima MSR, Oliveira GSD, Aguiar AJFC, Costa IS, Silva EMdS, Dos Santos NCS, et al. Nanoparticles Containing Tamarind Isolate Protein Potentiate the Satiety without Promoting the Anti-Inflammatory Effect in a Preclinical Model of Diet-Induced Obesity. Foods. 2022; 11(21):3526. https://doi.org/10.3390/foods11213526
Chicago/Turabian StyleCosta, Rafael O. A., Isaiane Medeiros, Jaluza L. C. De Queiroz, Lídia L. R. Matias, Mayara S. R. Lima, Gerciane S. De Oliveira, Ana Júlia F. C. Aguiar, Izael S. Costa, Eloyse Mikaelly de S. Silva, Nicolle Caroline S. Dos Santos, and et al. 2022. "Nanoparticles Containing Tamarind Isolate Protein Potentiate the Satiety without Promoting the Anti-Inflammatory Effect in a Preclinical Model of Diet-Induced Obesity" Foods 11, no. 21: 3526. https://doi.org/10.3390/foods11213526
APA StyleCosta, R. O. A., Medeiros, I., De Queiroz, J. L. C., Matias, L. L. R., Lima, M. S. R., Oliveira, G. S. D., Aguiar, A. J. F. C., Costa, I. S., Silva, E. M. d. S., Dos Santos, N. C. S., Passos, T. S., & De A. Morais, A. H. (2022). Nanoparticles Containing Tamarind Isolate Protein Potentiate the Satiety without Promoting the Anti-Inflammatory Effect in a Preclinical Model of Diet-Induced Obesity. Foods, 11(21), 3526. https://doi.org/10.3390/foods11213526