Adsorption Behavior of the L-Theanine onto Cation Exchange Resin ZGSPC106Na and D001SD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Plant Materials
2.2. Pretreatment of the Adsorbents
2.3. Screening of the Adsorbents for L-theanine Separation
2.4. Optimization of Separation Parameters for L-theanine Preparation
2.4.1. Different Adsorption Acidity Tests
2.4.2. Different Adsorption Time Tests
2.4.3. Different Adsorption Temperature Tests
2.4.4. Different Eluent Tests
2.5. Simultaneous Preparation of Different Tea Components
2.5.1. Preparation of Green Tea Extract
2.5.2. Simultaneous Preparation of Active Compounds through Column Separation
2.6. Analysis of the Target Compounds
2.6.1. Detection of Catechins and Caffeine
2.6.2. Detection of L-theanine
2.6.3. Analysis of TPs
2.7. Statistics
3. Results
3.1. Adsorbent Suitable for Separation of Different Tea Components
3.2. Adsorption and Elution of L-theanine
3.2.1. Effect of pH Value
3.2.2. Adsorption Kinetics
3.2.3. Adsorption Isotherm
3.2.4. Elution Efficiency of the Different Eluents
3.3. Simultaneous Preparation of Tea Components
4. Discussion
4.1. Adsorbent Properties Determine the Adsorption Behavior
4.2. Ionization Influences the Adsorption and Elution
4.3. Comprehensive Preparation Technology for Multiple Targets
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vuong, Q.V.; Bowyer, M.C.; Roach, P.D. L-Theanine: Properties, synthesis and isolation from tea. J. Sci. Food Agric. 2011, 91, 1931–1939. [Google Scholar] [CrossRef]
- Deng, W.W.; Ogita, S.; Ashihara, H. Distribution and biosynthesis of theanine in Theaceae plants. Plant Physiol. Biochem. 2010, 48, 70–72. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, T.; Sadzuka, Y. Enhancing effects of green tea components on the antitumor activity of adriamycin against M5076 ovarian sarcoma. Cancer Lett. 1998, 133, 19–26. [Google Scholar] [CrossRef]
- Kaneko, S.; Kumazawa, K.; Masuda, H.; Henze, A.; Hofmann, T. Molecular and sensory studies on the umami taste of Japanese green tea. J. Agric. Food Chem. 2006, 54, 2688–2694. [Google Scholar] [CrossRef] [PubMed]
- Juneja, L.R.; Chu, D.C.; Okubo, T.; Nagato, Y.; Yokogoshi, H. L-theanine—A unique amino acid of green tea and its relaxation effect in humans. Trends Food Sci. Technol. 1999, 10, 199–204. [Google Scholar] [CrossRef]
- Türközü, D.; Şanlier, N. L-theanine, unique amino acid of tea, and its metabolism, health effects, and safety. Crit. Rev. Food Sci. Nutr. 2015, 57, 1681–1687. [Google Scholar] [CrossRef]
- Liao, Y.Y.; Zhou, X.C.; Zeng, L.T. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 3751–3767. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, Z.F.; Han, Y.; Wang, J.; Wang, Y.Y.; Chen, X.Q.; Shao, Y.D.; Cheng, Y.; Zhou, W.L.; Lu, X.L.; et al. A review on anti-cancer effect of green tea catechins. J. Funct. Foods 2020, 74, 104172. [Google Scholar] [CrossRef]
- Chen, X.Q.; Hu, T.; Han, Y.; Huang, W.; Yuan, H.B.; Zhang, Y.T.; Du, Y.; Jiang, Y.W. Preventive Effects of Catechins on cardiovascular disease. Molecules 2016, 21, 1759. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.M.; Zhong, Y.Z.; Duan, Y.H.; Chen, Q.H.; Li, F.N. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020, 6, 115–123. [Google Scholar] [CrossRef]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuong, Q.V.; Golding, J.B.; Nguyen, M.H.; Roach, P.D. Preparation of decaffeinated and high caffeine powders from green tea. Powder Technol. 2013, 233, 169–175. [Google Scholar] [CrossRef]
- Bahar, B.; Pelvan, E.; Hasbay, İ.; Alasalvar, C. Decaffeinated black tea: Process optimization and phenolic profiles. J. Supercrit. Fluids 2013, 82, 116–121. [Google Scholar] [CrossRef]
- Charlton, A.J.; Baxter, N.J.; Khan, M.L.; Moir, A.J.G.; Haslam, E.; Davies, A.P.; Williamson, M.P. Polyphenol/Peptide Binding and Precipitation. J. Agric. Food Chem. 2002, 50, 1593–1601. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Yuan, H.Y.; He, N. From tea leaves to factories: A review of research progress in L -theanine biosynthesis and production. J. Agric. Food Chem. 2021, 69, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.J.; Gill, M.S.; Hsu, W.H.; Armstrong, D.W. Pharmacokinetics of theanine enantiomers in rats. Chirality 2010, 17, 154–162. [Google Scholar] [CrossRef]
- Liu, S.H.; Li, J.; Huang, J.A.; Liu, Z.H.; Xiong, L.G. New advances in genetic engineering for L-theanine biosynthesis. Trends Food Sci. Technol. 2021, 114, 540–551. [Google Scholar] [CrossRef]
- Lachová, M.; Lehotay, J.; Skaáni, I.; imárik, J. Isolation of theanine from China green tea by using a molecularly imprinted polymer as a SPE sorbent. Farm. Obz. 2007, 76, 147–151. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Huang, Z.Q.; Shi, Z.P. Preparative isolation and purification of L-theanine by HPLC. J. Liq. Chromatogr. Relat. Technol. 2004, 27, 875–884. [Google Scholar] [CrossRef]
- Sun, T.; Pan, B.L.; Huo, Y.; Guan, S.M.; He, Y. Isolation and Bioactivities of Main Functional Components in Tea. Asian J. Chem. 2014, 26, 2191–2198. [Google Scholar] [CrossRef]
- Ye, J.H.; Jin, J.; Luo, Y.W.; Luo, X.Y.; Zheng, X.Q.; Liang, H.L.; Lu, J.L.; Liang, Y.R. Isolation of L-theanine from tea solution by cation exchange resin in batch and fixed bed column. Biotechnol. Bioprocess Eng. 2011, 16, 256–263. [Google Scholar] [CrossRef]
- Wang, L.; Gong, L.H.; Chen, C.J.; Han, H.B.; Li, H.H. Column-chromatographic extraction and separation of polyphenols, caffeine and theanine from green tea. Food Chem. 2012, 131, 1539–1545. [Google Scholar] [CrossRef]
- Dong, Z.B.; Liang, Y.R.; Fan, F.Y.; Ye, J.H.; Zheng, X.Q.; Lu, J.L. Adsorption behavior of the catechins and caffeine onto polyvinylpolypyrrolidone. J. Agric. Food Chem. 2011, 59, 4238–4247. [Google Scholar] [CrossRef]
- Ye, J.H.; Wang, L.X.; Chen, H.; Dong, J.J.; Lu, J.L.; Zheng, X.Q.; Wu, M.Y.; Liang, Y.R. Preparation of tea catechins using polyamide. J. Biosci. Bioeng. 2011, 111, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.L.; Wu, M.Y.; Yang, X.L.; Dong, Z.B.; Ye, J.H.; Borthakur, D.; Sun, Q.L.; Liang, Y.R. Decaffeination of tea extracts by using poly(acrylamide-co-ethylene glycol dimethylacrylate) as adsorbent. J. Food Eng. 2010, 97, 555–562. [Google Scholar] [CrossRef]
- Alshareef, S.A.; Alqadami, A.A.; Khan, M.A.; Alanazi, H.S.; Siddiqui, M.R.; Jeon, B.-H. Simultaneous co-hydrothermal carbonization and chemical activation of food wastes to develop hydrochar for aquatic environmental remediation. Bioresour. Technol. 2022, 347, 126363. [Google Scholar] [CrossRef]
- Khan, M.A.; Govindasamy, R.; Ahmad, A.; Siddiqui, M.R.; Alshareef, S.A.; Hakami, A.A.H.; Rafatullah, M. Carbon based polymeric nanocomposites for dye adsorption: Synthesis, characterization, and application. Polymers 2021, 13, 419. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Momina; Siddiqui, M.R.; Otero, M.; Alshareef, S.A.; Rafatullah, M. Removal of rhodamine b from water using a solvent impregnated polymeric Dowex 5WX8 resin: Statistical optimization and batch adsorption studies. Polymers 2020, 12, 500. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.X.; Xue, P.; Sun, X.Y.; Zhan, G. Determination of the volatile and polyphenol constituents and the antimicrobial, antioxidant, and tyrosinase inhibitory activities of the bioactive compounds from the by-product of Rosa rugosa Thunb. var. plena Regal tea. BMC Complement. Altern. Med. 2018, 18, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Liu, Y.; Zhao, Y.; Zheng, X.Q.; Lu, J.L.; Liang, Y.R. Simultaneous HPLC determination of amino acids in tea infusion coupled to pre-column derivatization with 2,4-dinitrofluorobenzene. Food Anal. Methods 2016, 9, 1307–1314. [Google Scholar] [CrossRef]
- Sun, S.W.; Lin, Y.C.; Weng, Y.M.; Chen, M.J. Efficiency improvements on ninhydrin method for amino acid quantification. J. Food Compos. Anal. 2006, 19, 112–117. [Google Scholar] [CrossRef]
- Sevillano, D.M.; Van der Wielen, L.A.M.; Hooshyar, N.; Ottens, M. Resin selection for the separation of caffeine from green tea catechins. Food Bioprod. Process 2014, 92, 192–198. [Google Scholar] [CrossRef]
- Li, C.; Zheng, Y.Y.; Wang, X.F.; Feng, S.L.; Di, D.L. Simultaneous separation and purification of flavonoids and oleuropein from Olea europaea L. (olive) leaves using macroporous resin. J. Sci. Food Agric. 2011, 91, 2826–2834. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, M.M.; Leckie, J.O. Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J. Colloid Interface Sci. 1981, 79, 209–221. [Google Scholar] [CrossRef]
- Maldonado, A.A.; Ribeiro, J.M.; Sillero, A. Isoelectric point, electric charge, and nomenclature of the acid-base residues of proteins. Biochem. Mol. Biol. Educ. 2010, 38, 230–237. [Google Scholar] [CrossRef]
- Silva, R.A.; Hawboldt, K.; Zhang, Y.H. Application of resins with functional groups in the separation of metal ions/species—A review. Miner. Process. Extr. Metall. Rev. 2018, 39, 395–413. [Google Scholar] [CrossRef]
- Pereira, J.F.B.; Magri, A.; Quental, M.V.; Gonzalez-Miquel, M.; Freire, M.G.; Coutinho, J.A.P. Alkaloids as alternative probes to characterize the relative hydrophobicity of aqueous biphasic systems. ACS Sustain. Chem. Eng. 2016, 4, 1512–1520. [Google Scholar] [CrossRef]
- Villanueva-Bermejo, D.; Reglero, G.; Fornari, T. Recent advances in the processing of green tea biomolecules using ethyl lactate. A review. Trends Food Sci. Technol. 2017, 62, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.L.; Liang, Y.R.; Dong, J.J.; Lu, J.J.; Xu, H.R.; Wang, H. Decaffeination of fresh green tea leaf (Camellia sinensis) by hot water treatment. Food Chem. 2007, 101, 1451–1456. [Google Scholar] [CrossRef]
- Huang, K.J.; Wu, J.J.; Chiu, Y.H.; Lai, C.Y.; Chang, C.M.J. Designed polar cosolvent-modified supercritical CO2 removing caffeine from and retaining catechins in green tea powder using response surface methodology. J. Agric. Food Chem. 2007, 55, 9014–9020. [Google Scholar] [CrossRef]
- Kim, W.J.; Kim, J.D.; Kim, J.; Oh, S.G.; Lee, Y.W. Selective caffeine removal from green tea using supercritical carbon dioxide extraction. J. Food Eng. 2008, 89, 303–309. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, H.J.; Shin, M.H.; Lee, K.W.; Lee, H.; Kim, Y.S.; Kim, K.O.; Kim, K.H. Effects of cosolvents on the decaffeination of green tea by supercritical carbon dioxide. Food Chem. 2007, 105, 1011–1017. [Google Scholar] [CrossRef]
- Park, H.S.; Choi, H.K.; Lee, S.J.; Park, K.W.; Choi, S.G.; Kim, K.H. Effect of mass transfer on the removal of caffeine from green tea by supercritical carbon dioxide. J. Supercrit. Fluids 2007, 42, 205–211. [Google Scholar] [CrossRef]
- Villanueva-Bermejo, D.; Ibáñez, E.; Reglero, G.; Fornari, T. Effect of cosolvents (ethyl lactate, ethyl acetate and ethanol) on the supercritical CO2 extraction of caffeine from green tea. J. Supercrit. Fluids 2006, 107, 507–512. [Google Scholar] [CrossRef]
- Villanueva-Bermejo, D.; Ibáñez, E.; Reglero, G.; Turner, C.; Fornari, T.; Rodriguez-Meizoso, I. High catechins/low caffeine powder from green tea leaves by pressurized liquid extraction and supercritical antisolvent precipitation. Sep. Purif. Technol. 2015, 148, 49–56. [Google Scholar] [CrossRef]
- Ye, J.H.; Jin, J.; Liang, H.L.; Lu, J.L.; Du, Y.Y.; Zheng, X.Q.; Liang, Y.R. Using tea stalk lignocellulose as an adsorbent for separating decaffeinated tea catechins. Bioresour. Technol. 2009, 100, 622–628. [Google Scholar] [CrossRef]
- Ye, J.H.; Dong, J.J.; Lu, J.L.; Zheng, X.Q.; Jin, J.; Chen, H.; Liang, Y.R. Effect of graft copolymerization of fir sawdust lignocellulose with N-vinylpyrrolidone on adsorption capacity to tea catechins. Carbohydr. Polym. 2010, 81, 441–447. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, S.C.; Jabbar, S.; Hu, B.; Sun, Y.; Zeng, X.X. Simultaneous separation and purification of tea bioactives from summer green tea by column chromatography. J. Chem. Soc. Pak. 2013, 35, 1258–1267. Available online: https://www.researchgate.net/publication/271589582 (accessed on 15 October 2018).
Resins | |||||
---|---|---|---|---|---|
ZGSPC106Na | 5.63 ± 0.32 a | 1.73 ± 0.06 c | 3.25 ± 0.18 b | - | - |
D001SD | 10.66 ± 1.50 a | 3.43 ± 0.53 b | 3.11 ± 0.44 b | - | - |
PVPP | - | - | 21.17 ± 0.67 b | 38.73 ± 0.85 a | 0.19 ± 0.02 c |
PA-6 | - | - | 5.39 ± 0.38 b | 27.65 ± 1.27 a | 1.46 ± 0.04 c |
HPD-400 | - | - | 0.18 ± 0.02 c | 22.54 ± 1.15 b | 42.82 ± 1.57 a |
Resins | pH 1.77 | pH 3.18 | pH 4.59 | pH 5.67 | pH 7.18 | pH 9.01 |
---|---|---|---|---|---|---|
ZGSPC106Na | 1.46 ± 0.07 d | 9.18 ± 0.42 c | 12.80 ± 0.65 a | 12.39 ± 0.92 ab | 13.71 ± 0.60 a | 11.10 ± 0.47 b |
D001SD | 1.75 ± 0.08 e | 12.68 ± 0.68 d | 14.18 ± 1.09 bcd | 16.85 ± 1.23 a | 15.99 ± 1.22 ab | 13.31 ± 0.90 cd |
ZGSPC106Na | D001SD | |||
---|---|---|---|---|
Theanine | Caffeine | Theanine | Caffeine | |
Qe.exp (mg g−1) | 376.1475 | 63.5902 | 332.1596 | 33.2479 |
Pseudo-first-order model | ||||
Qe.cal (mg g−1) | 26.0421 | 0.7375 | 139.8328 | 10.8186 |
h1 (mg g−1 min−1) | 5.8685 | 0.2246 | 9.1735 | 0.4322 |
k1 (min−1) | 0.2253 | 0.3045 | 0.0656 | 0.0399 |
Relative error (%) | 93.0766 | 98.8402 | 57.9019 | 67.4608 |
R | 0.8358 | 0.9807 | 0.9681 | 0.8238 |
Pseudo-second-order model | ||||
Qe.cal (mg g−1) | 376.7253 | 63.0695 | 342.4335 | 34.1917 |
h2 (mg g−1 min−1) | 3850.8837 | 261.7727 | 150.5541 | 22.4027 |
k2 (g mg−1 min−1) | 0.0271 | 0.0658 | 0.0013 | 0.0192 |
Relative error (%) | 0.1536 | 0.8188 | 3.0931 | 2.8387 |
R | 0.9999 | 0.9999 | 0.9999 | 0.9997 |
Resins | Temperature (K) | Langmuir Isotherm | Freundlich Isotherm | ||||||
---|---|---|---|---|---|---|---|---|---|
Model | kL (mL mg−1) | Qm (mg g−1) | R | Model | 1/n | kF (mg(n−1)/n g−1 mL 1/n) | R | ||
ZGSPC106Na | 293 | 1/Qe = 0.0011/Ce + 0.0016 | 1.49 | 609.59 | 0.9960 | lnQe = 5.69 + 0.25 lnCe | 0.25 | 296.39 | 0.9850 |
313 | 1/Qe = 0.0010/Ce + 0.0020 | 1.89 | 508.09 | 0.9966 | lnQe = 5.60 + 0.21 lnCe | 0.21 | 270.73 | 0.9802 | |
333 | 1/Qe = 0.0010/Ce + 0.0024 | 2.47 | 420.33 | 0.9968 | lnQe = 5.51 + 0.17 lnCe | 0.17 | 246.24 | 0.9745 | |
D001SD | 293 | 1/Qe = 0.0016/Ce + 0.0021 | 1.28 | 481.61 | 0.9906 | lnQe = 5.45 + 0.23 lnCe | 0.24 | 232.50 | 0.9949 |
313 | 1/Qe = 0.0014/Ce + 0.0024 | 1.75 | 414.90 | 0.9944 | lnQe = 5.44 + 0.18 lnCe | 0.18 | 231.33 | 0.9849 | |
333 | 1/Qe = 0.0014/Ce + 0.0030 | 2.03 | 345.10 | 0.9882 | lnQe = 5.33 + 0.15 lnCe | 0.15 | 207.21 | 0.9908 |
Resins | Adsorption Amount (mg g−1) | Elution Rate (%) | ||||
---|---|---|---|---|---|---|
1 mol L−1 NaCl | 0.133 mol L−1 Na2HPO4 | 1 mol L−1 Na2CO3 | 0.5 mol L−1 NH3·H2O | 1 mol L−1 NH3·H2O | ||
ZGSPC106Na | 366.72 ± 3.41 | 72.07 ± 0.67 c | 92.67 ± 0.86 a | 70.45 ± 0.66 c | 34.68 ± 0.16 d | 79.46 ± 1.16 b |
D001SD | 329.88 ± 3.60 | 80.54 ± 0.88 c | 98.58 ± 1.08 a | 78.71 ± 0.86 c | 47.09 ± 0.30 d | 93.63 ± 2.39 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Dong, Z.; Wang, Y.; Xiao, F.; Yang, J.; Zhao, D.; Ye, J.; Zheng, X.; Liang, Y.; Lu, J. Adsorption Behavior of the L-Theanine onto Cation Exchange Resin ZGSPC106Na and D001SD. Foods 2022, 11, 3625. https://doi.org/10.3390/foods11223625
Yang Y, Dong Z, Wang Y, Xiao F, Yang J, Zhao D, Ye J, Zheng X, Liang Y, Lu J. Adsorption Behavior of the L-Theanine onto Cation Exchange Resin ZGSPC106Na and D001SD. Foods. 2022; 11(22):3625. https://doi.org/10.3390/foods11223625
Chicago/Turabian StyleYang, Yusi, Zhanbo Dong, Yongkang Wang, Fengyi Xiao, Jinliang Yang, Dong Zhao, Jianhui Ye, Xinqiang Zheng, Yuerong Liang, and Jianliang Lu. 2022. "Adsorption Behavior of the L-Theanine onto Cation Exchange Resin ZGSPC106Na and D001SD" Foods 11, no. 22: 3625. https://doi.org/10.3390/foods11223625
APA StyleYang, Y., Dong, Z., Wang, Y., Xiao, F., Yang, J., Zhao, D., Ye, J., Zheng, X., Liang, Y., & Lu, J. (2022). Adsorption Behavior of the L-Theanine onto Cation Exchange Resin ZGSPC106Na and D001SD. Foods, 11(22), 3625. https://doi.org/10.3390/foods11223625