Effects of Cyclocarya paliurus (Batal.) Extracts on Oxidative Stability and Sensory Quality in Meat Products (Frankfurters)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. DPPH Scavenging Activity of the Extract
2.3. Preparation of Cooked Meat Products (Frankfurters)
2.4. Determination of Malondialdehyde (MDA) Content
2.5. Microbial Experiment
2.6. pH
2.7. Color
2.8. Texture
2.9. Sensory Evaluation
2.10. Statistical Analysis
3. Results and Discussion
3.1. DPPH Scavenging Activity of Extracts
3.2. Color Analysis
3.3. pH Analysis
3.4. Textural Analysis
3.5. MDA Analysis
3.6. Microbial Examination
3.7. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morrissey, P.A.; Buckleyh, D.J. Lipid stability in meat and meat products. Meat Sci. 1998, 49, S73–S86. [Google Scholar] [CrossRef]
- Stobnicka, A.; Gniewosz, M. Antimicrobial protection of minced pork meat with the use of Swamp Cranberry (Vaccinium oxycoccos L.) fruit and pomace extracts. J. Food Sci. Technol. 2018, 55, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J. Oxidative Processes in Meat and Meat Products: Quality Implications. Meat Sci. 1994, 36, 169–189. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Shyu, Y.S.; Wang, Y.T.; Hsu, C.K. Antioxidative properties of protein hydrolysate from defatted peanut kernels treated with esperase. LWT-Food Sci. Technol. 2010, 43, 285–290. [Google Scholar] [CrossRef]
- Agregán, R.; Barba, F.J.; Gavahian, M.; Franco, D.; Khaneghah, A.M.; Carballo, J.; Ferreira, I.C.; Silva Barretto, A.C.; Lorenzo, J.M. Fucus vesiculosus extracts as natural antioxidants for improvement of physicochemical properties and shelf life of pork patties formulated with oleogels. J. Sci. Food Agric. 2019, 99, 4561–4570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deda, M.S.; Bloukas, J.G.; Fista, G.A. Effect of tomato paste and nitrite level on processing and quality characteristics of frankfurters. Meat Sci. 2007, 76, 501–508. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Santos, M.J.M.C.; Silva, L.K.R.; Pereira, L.C.L.; Santos, I.A.; da Silva Lannes, S.C.; da Silva, M.V. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef]
- Ahn, J.; Grun, I.U.; Mustapha, A. Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiol. 2007, 24, 7–14. [Google Scholar] [CrossRef]
- Jurcaga, L.; Bobko, M.; Kolesarova, A.; Bobkova, A.; Demianova, A.; Hascik, P.; Belej, L.; Mendelova, A.; Bucko, O.; Krocko, M.; et al. Blackcurrant (Ribes nigrum L.) and Kamchatka Honeysuckle (Lonicera caerulea var. Kamtschatica) Extract Effects on Technological Properties, Sensory Quality, and Lipid Oxidation of Raw-Cooked Meat Product (Frankfurters). Foods 2021, 10, 2957. [Google Scholar] [CrossRef]
- Burri, S.C.M.; Ekholm, A.; Bleive, U.; Püssa, T.; Jensen, M.; Hellström, J.; Mäkinen, S.; Korpinen, R.; Mattila, P.H.; Radenkovs, V.; et al. Lipid oxidation inhibition capacity of plant extracts and powders in a processed meat model system. Meat Sci. 2020, 162, 108033. [Google Scholar] [CrossRef]
- Estévez, M.; Ventanas, S.; Cava, R. Protein Oxidation in Frankfurters with Increasing Levels of Added Rosemary Essential Oil: Effect on Color and Texture Deterioration. J. Food Sci. 2005, 70, c427–c432. [Google Scholar] [CrossRef]
- Tran, T.T.T.; Ton, N.M.N.; Nguyen, T.T.; Le, V.V.M.; Sajeev, D.; Schilling, M.W.; Dinh, T.T.N. Application of natural antioxidant extract from guava leaves (Psidium guajava L.) in fresh pork sausage. Meat Sci. 2020, 165, 108106. [Google Scholar] [CrossRef] [PubMed]
- Akhter, R.; Masoodi, F.A.; Wani, T.A.; Rather, S.A. Impact of microencapsulated natural antioxidants on the lipid profile and cholesterol oxidation of γ-irradiated meat emulsions. LWT-Food Sci. Technol. 2022, 159, 113155. [Google Scholar] [CrossRef]
- Armenteros, M.; Morcuende, D.; Ventanas, S.; Estévez, M. Application of Natural Antioxidants from Strawberry Tree (Arbutus unedo L.) and Dog Rose (Rosa canina L.) to Frankfurters Subjected to Refrigerated Storage. J. Integr. Agric. 2013, 12, 1972–1981. [Google Scholar] [CrossRef]
- Wu, T.; Shen, M.Y.; Yu, Q.; Chen, Y.; Chen, X.X.; Yang, J.; Huang, L.X.; Guo, X.M.; Xie, J.H. Cyclocarya paliurus polysaccharide improves metabolic function of gut microbiota by regulating short-chain fatty acids and gut microbiota composition. Food Res. Int. 2021, 141, 110119. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y.N.; Fang, S.Z.; Wang, T.L.; Yin, Z.Q.; Shang, X.L.; Yang, W.X.; Fu, X.X. Antidiabetic Effect of Cyclocarya paliurus Leaves Depends on the Contents of Antihyperglycemic Flavonoids and Antihyperlipidemic Triterpenoids. Molecules 2018, 23, 1042. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.Y.; Li, L.; Nie, S.P.; Wang, X.R.; Lee, F.S.C. Determination of speciation of elements related to blood sugar in bioactive extracts from Cyclocarya paliurus leaves by FIA-ICP-MS. Eur. Food Res. Technol. 2006, 223, 202–209. [Google Scholar] [CrossRef]
- Liang, L.; Liu, Y.; Liu, Y.; Gan, S.; Mao, X.; Wang, Y. Untargeted metabolomics analysis based on HS-SPME-GC-MS and UPLC-Q-TOF/MS reveals the contribution of stem to the flavor of Cyclocarya paliurus herbal extract. LWT-Food Sci. Technol. 2022, 167, 113819. [Google Scholar] [CrossRef]
- Xie, J.H.; Dong, C.J.; Nie, S.P.; Li, F.; Wang, Z.J.; Shen, M.Y.; Xie, M.Y. Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chem. 2015, 186, 97–105. [Google Scholar] [CrossRef]
- Lei, X.; Hu, W.B.; Yang, Z.W.; Hui, C.; Wang, N.; Liu, X.; Wang, W.J. Enzymolysis-ultrasonic assisted extraction of flavanoid from Cyclocarya paliurus (Batal) Iljinskaja:HPLC profile, antimicrobial and antioxidant activity. Ind. Crops Prod. 2019, 130, 615–626. [Google Scholar]
- Staszowska-Karkut, M.; Materska, M. Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Estevez, M.; Ventanas, S.; Cava, R. Oxidation of lipids and proteins in frankfurters with different fatty acid compositions and tocopherol and phenolic contents. Food Chem. 2007, 100, 55–63. [Google Scholar] [CrossRef]
- Wagh, R.V.; Chatli, M.K.; Ruusunen, M.; Puolanne, E.; Ertbjerg, P. Effect of Various Phyto-extracts on Physico-chemical, Colour, and Oxidative Stability of Pork Frankfurters. Asian Austral. J. Anim. 2015, 28, 1178–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pil-Nam, S.; Park, K.-M.; Kang, G.-H.; Cho, S.-H.; Park, B.-Y.; Van-Ba, H. The impact of addition of shiitake on quality characteristics of frankfurter during refrigerated storage. LWT-Food Sci. Technol 2015, 62, 62–68. [Google Scholar] [CrossRef]
- GB4789.2-2016; National Food Safety Standard Food Microbiological Examination for Determination of Aerobic Plate Count. Chinese Standards Press: Beijing, China, 2016.
- GB4789.3-2016; National Food Safety Standard-Food Microbiological Examination—Enumeration of Coliforms. Chinese Standards Press: Beijing, China, 2016.
- Altmann, B.A.; Gertheiss, J.; Tomasevic, I.; Engelkes, C.; Glaesener, T.; Meyer, J.; Schäfer, A.; Wiesen, R.; Mörlein, D. Human perception of color differences using computer vision system measurements of raw pork loin. Meat Sci. 2022, 188, 108766. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Deng, S.; Zhou, C.; Zhuang, X.; Zhou, G. Effect of Fermented Blueberry Juice on Oxidative Stability and Quality Characteristics of Frankfurters. Food Sci. 2019, 40, 69–76. [Google Scholar]
- Jin, S.K.; Choi, J.S.; Jeong, J.Y.; Kim, G.D. The effect of clove bud powder at a spice level on antioxidant and quality properties of emulsified pork sausage during cold storage. J. Sci. Food Agric. 2016, 96, 4089–4097. [Google Scholar] [CrossRef] [PubMed]
- Djekic, I.; Lorenzo, J.M.; Munekata, P.E.S.; Gagaoua, M.; Tomasevic, I. Review on characteristics of trained sensory panels in food science. J. Texture Stud. 2021, 52, 501–509. [Google Scholar] [CrossRef]
- Martinez-Morales, F.; Alonso-Castro, A.J.; Zapata-Morales, J.R.; Carranza-Álvarez, C.; Aragon-Martinez, O.H. Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. Chem. Pap. 2020, 74, 3325–3334. [Google Scholar] [CrossRef]
- Yang, S.X.; Liu, B.; Tang, M.; Yang, J.; Kuang, Y.; Zhang, M.-Z.; Zhang, C.-Y.; Wang, C.-Y.; Qin, J.-C.; Guo, L.P.; et al. Extraction of flavonoids from Cyclocarya paliurus (Juglandaceae) leaves using ethanol/salt aqueous two-phase system coupled with ultrasonic. J. Food Process. Pres. 2020, 44, e14469. [Google Scholar] [CrossRef]
- Shang, X.; Zhou, Z.; Jiang, S.; Guo, H.; Lu, Y. Interrelationship between myoglobin oxidation and lipid oxidation during the processing of Cantonese sausage with d-sodium erythorbate. J. Sci. Food Agric. 2020, 100, 1022–1029. [Google Scholar] [CrossRef]
- Tomasevic, I.; Djekic, I.; Furnol, M.; Terjung, N.; Lorenzo, J.M. Recent advances in meat color research. Curre. Opin. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- Xu, C.; Qu, Y.; Hopkins, D.L.; Liu, C.; Wang, B.; Gao, Y.; Luo, H. Dietary lycopene powder improves meat oxidative stability in Hu lambs. J. Sci. Food Agric. 2019, 99, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lin, Y.H.; Leng, X.J.; Huang, M.; Zhou, G.H. Effect of sage (Salvia officinalis) on the oxidative stability of Chinese-style sausage during refrigerated storage. Meat. Sci. 2013, 95, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, A.; Ahmad, S.; Yousuf, B. Effect of bioactive-rich mango peel extract on physicochemical, antioxidant and functional characteristics of chicken sausage. Appl. Food Res. 2022, 2, 100183. [Google Scholar] [CrossRef]
- Nowak, A.; Czyzowska, A.; Efenberger, M.; Krala, L. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food Microbiol. 2016, 59, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Jaberi, R.; Kaban, G.; Kaya, M. The effect of barberry (Berberis vulgaris L.) extract on the physicochemical properties, sensory characteristics, and volatile compounds of chicken frankfurters. J. Food Process. Pres. 2020, 44, e14501. [Google Scholar] [CrossRef]
- Sayari, N.; Sila, A.; Balti, R.; Abid, E.; Hajlaoui, K.; Nasri, M.; Bougatef, A. Antioxidant and antibacterial properties of Citrus paradisi barks extracts during turkey sausage formulation and storage. Biocatal. Agric. Biotechnol. 2015, 4, 616–623. [Google Scholar] [CrossRef]
- Hayes, J.E.; Stepanyan, V.; Allen, P.; O’Grady, M.N.; Kerry, J.P. Evaluation of the effects of selected plant-derived nutraceuticals on the quality and shelf-life stability of raw and cooked pork sausages. LWT-Food Sci. Technol. 2011, 44, 164–172. [Google Scholar] [CrossRef]
- Jin, S.K.; Ha, S.R.; Choi, J.S. Effect of Caesalpinia sappan L. extract on physico-chemical properties of emulsion-type pork sausage during cold storage. Meat. Sci. 2015, 110, 245–252. [Google Scholar] [CrossRef]
- Jiang, D.L.; Gu, Y.B.; Pei, H.J.; Lian, L.J.; Ge, Q.F.; Hai, Y.; Wu, M.G.; Yin, Y.Q.; Wang, Z.J. Effects of cinnamon extract on lipid and protein oxidation and quality in Chinese-style sausage. Food Ferment. Ind. 2017, 43, 81–87. [Google Scholar]
Ingredient | C | VC | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|---|
Lean meat (g) | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 |
Fat meat (g) | 600 | 600 | 600 | 600 | 600 | 600 |
ice water (g) | 500 | 500 | 500 | 500 | 500 | 500 |
salt (g) | 26 | 26 | 26 | 26 | 26 | 26 |
White sugar (g) | 3.75 | 3.75 | 3.75 | 3.75 | 3.75 | 3.75 |
Sodium tripolyphosphate (g) | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 |
White pepper powder (g) | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 |
Nutmeg powder (g) | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 |
Sodium D-isoascorbate (g) | - | 0.65 | - | - | -- | - |
C. paliurus extract (g) | - | - | 1.56 | 3.12 | 4.68 | 6.24 |
VC | T1 | T2 | T3 | T4 | |
---|---|---|---|---|---|
DPPH scavenging rate (%) | 63.11 ± 0.49% c | 51.25 ± 0.82% d | 80.32 ± 1.95% b | 87.60 ± 1.37% a | 90.79 ± 0.34% a |
Group | Day 1 | Day 7 | Day 14 | Day 21 | |
---|---|---|---|---|---|
L* | C | 73.01 ± 0.32 b | 74.05 ± 0.61 b | 71.96 ± 0.22 b | 71.96 ± 0.06 b |
lightness | VC | 72.90 ± 0.16 bc | 73.13 ± 0.05 c | 71.25 ± 0.21 c | 71.71 ± 0.21 b |
T1 | 74.88 ± 0.32 a | 75.01 ± 0.03 a | 72.88 ± 0.45 a | 73.53 ± 0.14 a | |
T2 | 72.20 ± 0.62 cd | 71.75 ± 0.12 e | 70.51 ± 0.13 d | 70.99 ± 0.17 c | |
T3 | 72.16 ± 0.53 cd | 72.28 ± 0.32 d | 70.45 ± 0.29 d | 71.05 ± 0.19 c | |
T4 | 71.78 ± 0.42 d | 72.85 ± 0.22 c | 70.74 ± 0.24 d | 70.86 ± 0.78 c | |
a* | C | 4.78 ± 0.06 bc | 5.16 ± 0.12 c | 5.41 ± 0.27 b | 5.95 ± 0.26 b |
redness | VC | 5.57 ± 0.08 a | 6.35 ± 0.15 a | 6.40 ± 0.11 a | 6.79 ± 0.05 a |
T1 | 4.33 ± 0.13 d | 4.60 ± 0.20 e | 4.84 ± 0.42 c | 4.85 ± 0.17 c | |
T2 | 5.52 ± 0.09 a | 5.55 ± 0.05 b | 5.73 ± 0.44 b | 5.82 ± 0.35 b | |
T3 | 4.88 ± 0.07 b | 4.90 ± 0.03 d | 4.69 ± 0.04 c | 4.46 ± 0.07 d | |
T4 | 4.62 ± 0.13 c | 4.60 ± 0.10 e | 4.49 ± 0.08 c | 4.35 ± 0.11 d | |
b* | C | 8.59 ± 0.01 b | 8.58 ± 0.04 b | 9.51 ± 0.07 d | 8.92 ± 0.19 c |
yellowness | VC | 7.73 ± 0.18 c | 8.14 ± 0.16 c | 8.82 ± 0.11 e | 8.35 ± 0.23 d |
T1 | 7.75 ± 0.09 c | 8.50 ± 0.17 b | 9.39 ± 0.21 d | 9.15 ± 0.08 c | |
T2 | 8.64 ± 0.12 b | 9.24 ± 0.12 a | 9.89 ± 0.19 c | 9.35 ± 0.34 bc | |
T3 | 9.05 ± 0.07 a | 9.31 ± 0.13 a | 10.47 ± 0.05 a | 9.81 ± 0.32 a | |
T4 | 8.99 ± 0.07 a | 9.15 ± 0.08 a | 10.15 ± 0.06 b | 9.76 ± 0.17 ab | |
ΔE | C | - | 1.11 ± 0.81 a | 1.57 ± 0.40 b | 1.61 ± 0.44 a |
VC | - | 0.95 ± 0.26 a | 2.16 ± 0.31 ab | 1.85 ± 0.26 a | |
T1 | - | 0.88 ± 0.22 a | 2.71 ± 0.47 a | 2.02 ± 0.02 a | |
T2 | - | 0.93 ± 0.32 a | 2.15 ± 0.34 ab | 1.53 ± 0.39 a | |
T3 | - | 0.55 ± 0.27 a | 2.24 ± 0.35 ab | 1.42 ± 0.45 a | |
T4 | - | 1.12 ± 0.36 a | 1.57 ± 0.21 b | 1.40 ± 0.88 a |
Group | Day 1 | Day 7 | Day 14 | Day 21 |
---|---|---|---|---|
C | 6.28 ± 0.03 c | 6.24 ± 0.01 d | 6.26 ± 0.02 c | 6.27 ± 0.01 c |
VC | 6.37 ± 0.01 a | 6.34 ± 0.01 a | 6.35 ± 0.02 a | 6.38 ± 0.01 a |
T1 | 6.28 ± 0.02 c | 6.24 ± 0.01 d | 6.25 ± 0.01 c | 6.27 ± 0.00 c |
T2 | 6.33 ± 0.00 b | 6.30 ± 0.01 b | 6.30 ± 0.01 b | 6.34 ± 0.00 b |
T3 | 6.33 ± 0.01 b | 6.30 ± 0.01 b | 6.31 ± 0.01 b | 6.34 ± 0.00 b |
T4 | 6.27 ± 0.01 c | 6.27 ± 0.01 c | 6.24 ± 0.00 c | 6.34 ± 0.01 b |
Group | Day 1 | Day 7 | Day 14 | Day 21 | |
---|---|---|---|---|---|
Firmness | C | 3086.81 ± 752.42 a | 3171.03 ± 364.37 a | 3068.52 ± 210.17 a | 3615.85 ± 273.00 a |
(g) | VC | 2733.77 ± 291.16 a | 2245.53 ± 759.71 b | 2188.06 ± 837.95 c | 3046.26 ± 133.80 bc |
T1 | 2955.75 ± 396.19 a | 2847.49 ± 304.29 b | 2767.90 ± 176.49 ab | 3148.80 ± 306.33 b | |
T2 | 2724.59 ± 325.10 a | 2653.89 ± 317.15 b | 2953.38 ± 202.19 ab | 2753.21 ± 266.29 cd | |
T3 | 2666.20 ± 252.41 a | 2507.66 ± 250.34 ab | 2268.10 ± 233.90 c | 2662.89 ± 332.35 d | |
T4 | 2855.44 ± 416.03 a | 3112.30 ± 480.21 a | 2497.07 ± 260.61 bc | 3034.64 ± 307.55 bc | |
Springiness | C | 0.88 ± 0.01 a | 0.89 ± 0.03 a | 0.88 ± 0.01 a | 0.91 ± 0.01 a |
VC | 0.89 ± 0.03 a | 0.83 ± 0.22 a | 0.79 ± 0.26 a | 0.89 ± 0.03 ab | |
T1 | 0.86 ± 0.03 a | 0.90 ± 0.01 a | 0.89 ± 0.03 a | 0.92 ± 0.01 a | |
T2 | 0.86 ± 0.03 a | 0.87 ± 0.02 a | 0.88 ± 0.04 a | 0.88 ± 0.04 ab | |
T3 | 0.84 ± 0.05 a | 0.88 ± 0.01 a | 0.86 ± 0.05 a | 0.85 ± 0.05 b | |
T4 | 0.85 ± 0.05 a | 0.87 ± 0.03 a | 0.86 ± 0.04 a | 0.87 ± 0.02 ab | |
Chewiness | C | 2130.12 ± 499.71 a | 2232.20 ± 278.93 a | 2134.01 ± 154.73 a | 2602.14 ± 142.18 a |
VC | 1939.95 ± 195.54 a | 1637.58 ± 691.84 a | 1561.43 ± 714.85 c | 2186.00 ± 72.06 bc | |
T1 | 2031.69 ± 411.11 a | 2048.52 ± 230.96 abc | 1969.25 ± 118.72 abc | 2291.84 ± 234.07 b | |
T2 | 1832.71 ± 241.25 a | 1825.69 ± 209.69 abc | 2038.95 ± 214.90 ab | 1927.50 ± 245.28 cd | |
T3 | 1754.68 ± 245.52 a | 1723.23 ± 178.87 bc | 1573.09 ± 176.98 c | 1777.64 ± 330.80 d | |
T4 | 1903.15 ± 319.74 a | 2153.83 ± 398.91 ab | 1695.26 ± 238.97 bc | 2041.23 ± 240.69 bcd |
Group | Day 1 | Day 7 | Day 14 | Day 21 |
---|---|---|---|---|
C | 0 | 2.87 ± 0.09 a | 3.21 ± 0.08 a | 4.19 ± 0.10 a |
Vc | 0 | 0 | 0 | 2.71 ± 0.15 d |
T1 | 0 | 2.11 ± 0.26 d | 2.14 ± 0.15 d | 2.96 ± 0.06 c |
T2 | 0 | 2.39 ± 0.04 c | 2.67 ± 0.22 b | 2.98 ± 0.02 c |
T3 | 2.71 ± 0.12 a | 2.65 ± 0.14 ab | 2.86 ± 0.09 b | 3.14 ± 0.04 b |
T4 | 2.56 ± 0.09 b | 2.62 ± 0.06 bc | 2.80 ± 0.07 b | 2.88 ± 0.06 c |
Group | Day 1 | Day 7 | Day 14 | Day 21 | |
---|---|---|---|---|---|
Color | C | 7.3 ± 0.5 a | 7.4 ± 0.4 a | 7.5 ± 1.4 b | 7.1 ± 1.1 b |
VC | 7.3 ± 0.5 a | 7.4 ± 0.5 a | 8.1 ± 0.9 a | 7.8 ± 0.5 a | |
T1 | 7.1 ± 0.3 b | 7.5 ± 0.5 a | 8.1 ± 1.3 a | 7.6 ± 0.7 a | |
T2 | 7.2 ± 0.4 a | 7.5 ± 0.9 a | 8.3 ± 0.8 a | 7.5 ± 0.9 ab | |
T3 | 7.3 ± 0.9 a | 7.3 ± 0.7 a | 7.9 ± 1.3 ab | 7.0 ± 0.6 b | |
T4 | 7.3 ± 1.0 a | 7.4 ± 0.7 a | 7.6 ± 1.3 b | 7.0 ± 1.2 b | |
Flavor | C | 8.2 ± 0.4 a | 7.9 ± 0.7 a | 7.0 ± 1.2 b | 6.5 ± 1.5 c |
VC | 8.1 ± 0.6 ab | 8.2 ± 0.8 a | 7.4 ± 1.4 a | 7.3 ± 0.9 a | |
T1 | 8.0 ± 0.5 b | 7.7 ± 1.2 a | 7.4 ± 1.6 a | 7.1 ± 1.0 ab | |
T2 | 8.3 ± 0.5 a | 7.5 ± 1.2 b | 7.2 ± 1.6 ab | 7.2 ± 1.2 a | |
T3 | 7.4 ± 1.0 d | 7.7 ± 1.2 ab | 6.8 ± 0.9 b | 6.9 ± 1.2 b | |
T4 | 7.6 ± 0.5 c | 7.4 ± 1.2 b | 6.6 ± 1.3 c | 7.0 ± 1.2 b | |
Juiciness | C | 7.5 ± 0.5 a | 6.8 ± 1.0 b | 6.1 ± 1.1 b | 6.0 ± 1.3 b |
VC | 7.6 ± 0.5 a | 7.3 ± 1.2 a | 6.7 ± 1.1 a | 6.4 ± 1.8 a | |
T1 | 7.6 ± 0.5 a | 7.2 ± 1.2 a | 6.8 ± 1.2 a | 6.0 ± 1.2 a | |
T2 | 7.5 ± 0.5 a | 7.1 ± 1.1 a | 6.9 ± 0.8 a | 6.3 ± 1.9 a | |
T3 | 7.3 ± 0.5 a | 7.0 ± 1.4 ab | 6.2 ± 1.1 b | 6.3 ± 1.1 a | |
T4 | 7.4 ± 0.7 a | 6.7 ± 2.0b a | 6.5 ± 1.5 ab | 6.2 ± 1.4 ab | |
Taste | C | 7.5 ± 1.0 b | 7.7 ± 1.5 a | 7.0 ± 1.1 b | 6.7 ± 1.3 b |
VC | 7.9 ± 1.3 a | 7.8 ± 1.4 a | 7.6 ± 0.7 a | 7.4 ± 0.9 a | |
T1 | 7.4 ± 1.1 b | 7.4 ± 1.4 b | 7.1 ± 0.9 b | 7.0 ± 0.7 a | |
T2 | 7.5 ± 1.0 b | 7.7 ± 1.3 a | 7.4 ± 0.5 ab | 7.2 ± 1.2 a | |
T3 | 7.3 ± 0.9 b | 7.5 ± 1.2 b | 7.1 ± 0.9 b | 7.0 ± 1.1 a | |
T4 | 7.3 ± 0.7 b | 7.3 ± 1.5 b | 7.1 ± 1.0 b | 6.8 ± 1.2 ab | |
Overall | C | 8.1 ± 0.7 a | 7.8 ± 0.8 ab | 7.2 ± 1.0 b | 6.9 ± 1.1 b |
acceptability | VC | 7.9 ± 0.6 a | 7.6 ± 0.5 b | 7.1 ± 0.5 b | 6.8 ± 1.0 b |
T1 | 7.8 ± 0.8 a | 7.7 ± 0.9 b | 7.2 ± 0.9 b | 6.9 ± 0.7 b | |
T2 | 7.9 ± 0.7 a | 8.0 ± 0.7 a | 7.4 ± 0.5 a | 7.3 ± 1.2 a | |
T3 | 7.5 ± 0.5 a | 7.7 ± 1.1 b | 7.1 ± 1.0 b | 7.1 ± 0.9 b | |
T4 | 7.2 ± 0.4 a | 7.6 ± 1.3 b | 7.2 ± 0.8 b | 6.7 ± 1.0 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Li, X.; Da, C.; Liang, P.; Jin, S.; Tang, C. Effects of Cyclocarya paliurus (Batal.) Extracts on Oxidative Stability and Sensory Quality in Meat Products (Frankfurters). Foods 2022, 11, 3721. https://doi.org/10.3390/foods11223721
Zhu Y, Li X, Da C, Liang P, Jin S, Tang C. Effects of Cyclocarya paliurus (Batal.) Extracts on Oxidative Stability and Sensory Quality in Meat Products (Frankfurters). Foods. 2022; 11(22):3721. https://doi.org/10.3390/foods11223721
Chicago/Turabian StyleZhu, Yingying, Xiaohan Li, Chunyan Da, Panyu Liang, Shuangshuang Jin, and Changbo Tang. 2022. "Effects of Cyclocarya paliurus (Batal.) Extracts on Oxidative Stability and Sensory Quality in Meat Products (Frankfurters)" Foods 11, no. 22: 3721. https://doi.org/10.3390/foods11223721
APA StyleZhu, Y., Li, X., Da, C., Liang, P., Jin, S., & Tang, C. (2022). Effects of Cyclocarya paliurus (Batal.) Extracts on Oxidative Stability and Sensory Quality in Meat Products (Frankfurters). Foods, 11(22), 3721. https://doi.org/10.3390/foods11223721