Polyphenol Composition and Antioxidant Activity of Japonica Rice Cultivars and Intake Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Color Determination
2.3. Determination of Total Phenolic
2.4. Determination of Flavonoid Content
2.5. Determination of Phenolic Acid Content
2.6. Determination of Antioxidant Activity
2.6.1. Determination of DPPH Radical Scavenging Activity
2.6.2. Determination of Hydroxyl Radical-Scavenging Activity
2.6.3. ABTS Free-Radical-Scavenging Activity
2.6.4. Ferric-Reducing Antioxidant Power Assay (FRAP)
2.7. Estimation of Phenolic Acids Dietary Intake
2.8. Statistical Analyses
3. Results
3.1. Color Parameter Analysis
3.2. The Phenolic Content of Japonica Rice Varieties
3.3. Flavonoid Content of Japonica Rice Varieties
3.4. Phenolic Acid Content of Japonica Rice Varieties
3.5. Differences in Antioxidant Activity of Nine Japonica Rice Varieties
3.6. Correlation between Polyphenol Composition and Antioxidant Activity
3.7. Canonical Correspondence Analysis and Networks
3.8. Intake from Brown and White Rice of Phenolic Acids
4. Discussion
4.1. Differences in Free and Bound Form Components in Different Japonica Rice Varieties
4.2. Antioxidant Activities of Different Japonica Rice Varieties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devraj, L.; Panoth, A.; Kashampur, K.; Kumar, A.; Natarajan, V. Study on physicochemical, phytochemical, and antioxidant properties of selected traditional and white rice varieties. J. Food Process Eng. 2019, 43, e13330. [Google Scholar] [CrossRef]
- Alves, G.H.; Ferreira, C.D.; Vivian, P.G.; Fernandes Monks, J.L.; Elias, M.C.; Vanier, N.L.; De Oliveira, M. The revisited levels of free and bound phenolics in rice: Effects of the extraction procedure. Food Chem. 2016, 208, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guo, J.; Zhang, R.; Wei, Z.; Deng, Y.; Guo, J.; Zhang, M. Effect of degree of milling on phenolic profiles and cellular antioxidant activity of whole brown rice. Food Chem. 2015, 185, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Verardo, V.; Gmez-Caravaca, A.; Marconi, E.; Segura-Carretero, A.; Garrido-Frenich, A.; Fernmndez-Gutirrez, A. Determination of lipophilic and hydrophilic bioactive compounds in raw and parboiled rice bran. RSC Adv. 2016, 6, 50786–50796. [Google Scholar] [CrossRef]
- Shen, Y.; Jin, L.; Xiao, P.; Lu, Y.; Bao, J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J. Cereal Sci. 2009, 49, 106–111. [Google Scholar] [CrossRef]
- Pang, Y.; Ahmed, S.; Xu, Y.; Beta, T.; Zhu, Z.; Shao, Y.; Bao, J. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chem. 2018, 240, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Podio, N.S.; López-Froilán, R.; Ramirez-Moreno, E.; Bertrand, L.; Baroni, M.V.; Pérez-Rodríguez, M.L.; Wunderlin, D.A. Matching in Vitro Bioaccessibility of Polyphenols and Antioxidant Capacity of Soluble Coffee by Boosted Regression Trees. J. Agric. Food Chem. 2015, 63, 9572–9582. [Google Scholar] [CrossRef] [Green Version]
- Ti, H.; Li, Q.; Zhang, R.; Zhang, M.; Deng, Y.; Wei, Z.; Zhang, Y. Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China. Food Chem. 2014, 159, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Gu, L.; Mcclung, A.M.; Bergman, C.J.; Chen, M.H. Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (Oryza sativa L.) of different bran colours. Food Chem. 2012, 133, 715–722. [Google Scholar] [CrossRef]
- Ge, X.; Jing, L.; Zhao, K.; Su, C.; Zhang, B.; Zhang, Q.; Han, L.; Yu, X.; Li, W. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chem. 2021, 335, 127655. [Google Scholar] [CrossRef]
- Tourino, S.; Perez-Jimenez, J.; Mateos-Martín, M.L.; Fuguet, E.; Vinardell, M.P.; Cascante, M.; Torres, J.L. Metabolites in contact with the rat digestive tract after ingestion of a phenolic-rich dietary fiber matrix. J. Agric. Food Chem. 2011, 59, 5955–5963. [Google Scholar] [CrossRef]
- Gong, E.S.; Luo, S.J.; Li, T.; Liu, C.M.; Zhang, G.W.; Chen, J.; Liu, R.H. Phytochemical profiles and antioxidant activity of brown rice varieties. Food Chem. 2017, 227, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Ragaee, S.; Seetharaman, K.; Abdel-Aal, E.S. The impact of milling and thermal processing on phenolic compounds in cereal grains. Crit. Rev. Food Sci. Nutr. 2014, 54, 837–849. [Google Scholar] [CrossRef]
- Podio, N.S.; Baroni, M.V.; Wunderlin, D.A. Relation between polyphenol profile and antioxidant capacity of different Argentinean wheat varieties. A Boosted Regression Trees study. Food Chem. 2017, 232, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Desta, K.T.; Hur, O.S.; Lee, S.; Yoon, H.; Shin, M.J.; Yi, J.; Choi, Y.M. Origin and seed coat color differently affect the concentrations of metabolites and antioxidant activities in soybean (Glycine max (L.) Merrill) seeds. Food Chem. 2022, 381, 132249. [Google Scholar] [CrossRef]
- Ghose, B.; Kpoghomou, M.A.; Shamsitdinov, H.; Mondal, A.K.; Sarker, S. Nutraceutical potential of rice and wheat antioxidants and their impacts on health. Oxid. Antioxid. Med. Sci. 2013, 2, 245–249. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Q.; Beta, T. Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. Food Chem. 2010, 121, 140–147. [Google Scholar] [CrossRef]
- Zhang, H.; Shao, Y.; Bao, J.; Beta, T. Phenolic compounds and antioxidant properties of breeding lines between the white and black rice. Food Chem. 2015, 172, 630–639. [Google Scholar] [CrossRef]
- Butsat, S.; Siriamornpun, S. Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chem. 2010, 119, 606–613. [Google Scholar] [CrossRef]
- Yu, L.; Li, G.; Li, M.; Xu, F.; Beta, T.; Bao, J. Genotypic variation in phenolic acids, vitamin E and fatty acids in whole grain rice. Food Chem. 2016, 197, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wen, L.; Chen, Z.; Zhang, Z.; Pang, X.; Deng, Z.; Guo, Y. Study on metabolic variation in whole grains of four proso millet varieties reveals metabolites important for antioxidant properties and quality traits. Food Chem. 2021, 357, 129791. [Google Scholar] [CrossRef]
- Zhang, D.; Duan, X.; Wang, Y.; Shang, B.; Liu, H.; Sun, H.; Wang, Y. Correction to: A comparative investigation on physicochemical properties, chemical composition, and in vitro antioxidant activities of rice bran oils from different japonica rice (Oryza sativa L.) varieties. J. Food Meas. Charact. 2021, 15, 2613–2614. [Google Scholar] [CrossRef]
- Bordiga, M.; Gomez-Alonso, S.; Locatelli, M.; Travaglia, F.; Coïsson, J.D.; Hermosin-Gutierrez, I.; Arlorio, M. Phenolics characterization and antioxidant activity of six different pigmented Oryza sativa L. cultivars grown in Piedmont (Italy). Food Res. Int. 2014, 65, 282–290. [Google Scholar] [CrossRef]
- Adom, K.K.; Sorrells, M.E.; Liu, R. Phytochemicals and Antioxidant Activity of Milled Fractions of Different Wheat Varieties. J Agric. Food Chem. 2005, 53, 2297–2306. [Google Scholar] [CrossRef]
- Yu, X.; Yang, J.; Qi, Q.; Du, Y.; Shi, J.; Liu, X.; Liu, Y.; Zhang, H.; Zhang, Z.; Yan, N. Comparison of the contents of phenolic compounds including flavonoids and antioxidant activity of rice (Oryza sativa) and Chinese wild rice (Zizania latifolia). Food Chem 2021, 344, 128600. [Google Scholar] [CrossRef]
- Rasera, G.B.; Hilkner, M.H.; de Castro, R.J.S. Free and insoluble-bound phenolics: How does the variation of these compounds affect the antioxidant properties of mustard grains during germination? Food Res. Int. 2020, 133, 109115. [Google Scholar] [CrossRef]
- de Araujo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef] [PubMed]
- Pinent, M.; Cedó, L.; Montagut, M.; Blay, M.; Ardévol, A. Procyanidins Improve some Disrupted Glucose Homoeostatic Situations: An Analysis of Doses and Treatments According to Different Animal Models. Crit. Rev. Food Sci. Nutr. 2012, 52, 569–584. [Google Scholar] [CrossRef] [PubMed]
- Arun, K.B.; Dhanya, R.; Chandran, J.; Abraham, B.; Satyan, S.; Nisha, P. A comparative study to elucidate the biological activities of crude extracts from rice bran and wheat bran in cell line models. J. Food Sci. Technol. 2020, 57, 3221–3231. [Google Scholar] [CrossRef]
- Xi, M.; Wu, M.; Xu, Y.; Zhou, Y.; Chen, G.; Ji, Y.; Sun, X. iTRAQ-based quantitative proteomic analysis reveals the metabolic pathways of grain chalkiness in response to nitrogen topdressing in rice. Plant Physiol. Biochem. 2020, 154, 622–635. [Google Scholar] [CrossRef] [PubMed]
- Sumczynski, D.; Kotaskova, E.; Orsavova, J.; Valasek, P. Contribution of individual phenolics to antioxidant activity and in vitro digestibility of wild rices (Zizania aquatica L.). Food Chem. 2017, 218, 107–115. [Google Scholar] [CrossRef] [PubMed]
Sample | Name | Brown Rice Rate (%) | White Rice Rate (%) | Whole White Rice Rate (%) | Growth Period (Days) |
---|---|---|---|---|---|
PZ6 | Salt japonica 218 | 81.7 | 72.9 | 69.1 | 161 |
PZ8 | Liaoning japonica 1305 | 83.6 | 75.9 | 74.8 | 158 |
PZ9 | ShenNong 265 | 82.4 | 75.1 | 63.3 | 155 |
PZ10 | Salt japonica 456 | 83.8 | 74.5 | 70.6 | 163 |
PZ12 | Liaoning japonica 419 | 81.5 | 71.9 | 66.8 | 159 |
PZ13 | Liao star 1 | 82.1 | 74.3 | 65.6 | 157 |
PZ15 | 1804 | 81.8 | 73.6 | 70.1 | 154 |
PZ19 | ShenNong 9816 | 80.9 | 72.1 | 69.4 | 157 |
PZ21 | Yanfeng 47 | 83.4 | 75.1 | 73.6 | 143 |
Variety | L | a* | b* | YI | WI | |
---|---|---|---|---|---|---|
Brownrice | PZ6 | 62.71 ± 2.06 a | 2.92 ± 0.48 ab | 21.89 ± 0.55 a | 49.80 ± 1.19 a | 56.66 ± 1.55 a |
PZ8 | 66.39 ± 2.26 a | 3.04 ± 0.52 ab | 22.49 ± 1.46 a | 48.32 ± 3.24 a | 59.45 ± 1.86 b | |
PZ9 | 62.90 ± 0.57 a | 3.48 ± 0.18 b | 22.43 ± 0.51 a | 50.89 ± 0.84 ab | 56.50 ± 0.31 a | |
PZ10 | 63.75 ± 2.33 a | 2.11 ± 0.88 a | 22.38 ± 0.65 a | 50.09 ± 2.03 ab | 57.35 ± 1.95 a | |
PZ12 | 64.09 ± 2.20 a | 3.20 ± 0.29 ab | 22.84 ± 1.15 a | 50.85 ± 0.87 ab | 57.32 ± 1.24 a | |
PZ13 | 61.92 ± 3.67 a | 2.47 ± 1.11 ab | 22.46 ± 0.32 a | 51.76 ± 3.68 b | 55.72 ± 3.21 a | |
PZ15 | 66.34 ± 1.52 a | 3.27 ± 0.52 ab | 22.84 ± 0.49 a | 49.12 ± 2.11 a | 59.19 ± 1.54 b | |
PZ19 | 63.69 ± 3.27 a | 3.58 ± 0.31 b | 22.28 ± 1.93 a | 49.91 ± 3.76 a | 57.25 ± 2.43 a | |
PZ21 | 65.16 ± 2.11 a | 2.40 ± 0.61 ab | 22.93 ± 0.52 a | 50.22 ± 2.58 ab | 58.22 ± 1.96 ab | |
L | a* | b* | YI | WI | ||
Whiterice | PZ6 | 66.99 ± 2.37 ab | −0.15 ± 0.50 a | 14.53 ± 1.85 a | 30.95 ± 2.23 a | 63.93 ± 2.31 b |
PZ8 | 68.91 ± 1.03 ab | 0.48 ± 0.11 b | 15.36 ± 1.00 a | 31.79 ± 1.71 a | 65.32 ± 0.63 bc | |
PZ9 | 66.55 ± 2.23 a | 1.37 ± 0.28 c | 17.51 ± 0.28 a | 37.55 ± 1.84 a | 62.21 ± 2.11 ab | |
PZ10 | 67.53 ± 2.91 ab | −0.41 ± 0.47 a | 15.25 ± 0.89 a | 32.23 ± 2.94 a | 64.12 ± 2.86 b | |
PZ12 | 65.90 ± 1.52 a | 1.06 ± 0.33 bc | 18.28 ± 0.44 a | 39.57 ± 1.57 a | 61.30 ± 1.45 a | |
PZ13 | 66.55 ± 0.73 a | 1.46 ± 0.12 c | 18.51 ± 1.10 a | 39.68 ± 2.12 a | 61.75 ± 0.50 ab | |
PZ15 | 68.63 ± 1.45 ab | 1.33 ± 0.52 c | 17.46 ± 1.98 a | 36.29 ± 4.11 a | 64.08 ± 1.49 b | |
PZ19 | 68.32 ± 3.21 ab | 0.96 ± 0.18 bc | 17.11 ± 0.45 a | 35.73 ± 1.82 a | 63.98 ± 2.78 b | |
PZ21 | 70.92 ± 2.39 b | −0.41 ± 0.06 a | 13.08 ± 0.47 a | 26.32 ± 1.74 a | 68.11 ± 2.35 c |
Standardized | R | 1/R | Weight | |
---|---|---|---|---|
Brown rice | DPPH | 0.689 | 1.452 | 21.01 |
OH | 0.621 | 1.611 | 23.32 | |
ABTS | 0.670 | 1.494 | 21.62 | |
FRAP | 0.425 | 2.353 | 34.05 | |
White rice | DPPH | 0.956 | 1.046 | 21.31 |
OH | 0.564 | 1.772 | 36.10 | |
ABTS | 0.934 | 1.071 | 21.82 | |
FRAP | 0.981 | 1.019 | 20.77 |
White Rice Intake (Approx. 5 Ounces) | Replace 3 Ounces White Rice with Brown Rice | ||||||||
---|---|---|---|---|---|---|---|---|---|
Samples | Total Phenolic | Total Flavonoids | Total Phenolic Acid | Total | Total Phenolic | Total Flavonoids | Total Phenolic Acid | Total | White/Brown |
PZ6 | 203.1269 | 257.4621 | 88.9137 | 549.5028 | 251.7561 | 230.1045 | 110.8959 | 592.7565 | 0.927030 |
PZ8 | 165.4938 | 141.6936 | 82.4603 | 389.6478 | 214.832 | 198.7454 | 89.9523 | 503.5297 | 0.773833 |
PZ9 | 162.3577 | 238.0754 | 93.1856 | 493.6188 | 232.8222 | 223.6743 | 100.9341 | 557.4306 | 0.885525 |
PZ10 | 188.8874 | 205.9949 | 73.6796 | 468.5619 | 249.8686 | 232.7914 | 115.6612 | 598.3212 | 0.783128 |
PZ12 | 216.3494 | 146.1740 | 96.9800 | 459.5034 | 205.4412 | 189.7433 | 135.5086 | 530.6930 | 0.865855 |
PZ13 | 256.2710 | 179.7998 | 70.9914 | 507.0624 | 225.6261 | 201.6156 | 166.6742 | 593.9159 | 0.853761 |
PZ15 | 262.3737 | 167.1542 | 76.8315 | 506.3595 | 218.1351 | 207.0071 | 139.2290 | 564.3713 | 0.897210 |
PZ19 | 239.8309 | 186.1073 | 68.4853 | 494.4235 | 215.1270 | 191.2810 | 97.2277 | 503.6357 | 0.981709 |
PZ21 | 242.8506 | 155.7384 | 86.4695 | 485.0586 | 251.9485 | 235.0021 | 108.4205 | 595.3711 | 0.814716 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Zhang, S.; Rong, L.; Wu, Z.; Sun, W. Polyphenol Composition and Antioxidant Activity of Japonica Rice Cultivars and Intake Status. Foods 2022, 11, 3788. https://doi.org/10.3390/foods11233788
Ma Y, Zhang S, Rong L, Wu Z, Sun W. Polyphenol Composition and Antioxidant Activity of Japonica Rice Cultivars and Intake Status. Foods. 2022; 11(23):3788. https://doi.org/10.3390/foods11233788
Chicago/Turabian StyleMa, Yichao, Shuang Zhang, Liyan Rong, Zhaoxia Wu, and Wentao Sun. 2022. "Polyphenol Composition and Antioxidant Activity of Japonica Rice Cultivars and Intake Status" Foods 11, no. 23: 3788. https://doi.org/10.3390/foods11233788
APA StyleMa, Y., Zhang, S., Rong, L., Wu, Z., & Sun, W. (2022). Polyphenol Composition and Antioxidant Activity of Japonica Rice Cultivars and Intake Status. Foods, 11(23), 3788. https://doi.org/10.3390/foods11233788