Gelatin-Based Film as a Color Indicator in Food-Spoilage Observation: A Review
Abstract
:1. Introduction
2. Food Spoilage
2.1. Type of Food Spoilage
2.2. Factors Affecting Food Spoilage
2.2.1. Extrinsic Factor
2.2.2. Intrinsic Factor
2.3. Characteristics of Spoiled Food
3. Color Indicator for Food Spoilage
3.1. Introduction to Color Indicators in Food
3.2. Type of Color Indicator
3.2.1. Synthetic Sources
3.2.2. Natural Sources
4. Food Packaging
4.1. Active Packaging
4.2. Smart Packaging
5. Gelatin-Based Film
5.1. Sources of Gelatin
5.2. Properties of Gelatin-Based Film
6. Characterization of Gelatin-Based Film towards Color Indicator in Food Packaging
6.1. Color Stability
6.2. Color Response towards Various pH
6.3. Fourier Transform Infrared (FTIR) Spectrum
6.4. Water-Vapor Permeability
6.5. Antioxidant and Antimicrobial Properties
7. Research Gap between Gelatin-Based Film and Paper as A Color Indicator
8. Future Trends
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bekhit, A.E.-D.A.; Holman, B.W.; Giteru, S.G.; Hopkins, D.L. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci. Technol. 2021, 109, 280–302. [Google Scholar] [CrossRef]
- Rawat, S. Food Spoilage: Microorganisms and their prevention. J. Plant Sci. Res. 2015, 5, 47–56. [Google Scholar]
- Husin, N.; Rahim, M.Z.A.; Noor, M.A.M.; Rashedi, M.I.F.; Hassan, N. Real-time monitoring of food freshness using delphinidin- based visual indicator. Malays. J. Anal. Sci. 2020, 24, 558–569. [Google Scholar]
- Kuswandi, B.; Damayanti, F.; Jayus, J.; Abdullah, A.; Heng, L.Y. Simple and Low-Cost On-Package Sticker Sensor based on Litmus Paper for Real-Time Monitoring of Beef Freshness. J. Math. Fundam. Sci. 2015, 47, 236–251. [Google Scholar] [CrossRef]
- Kuswandi, B.; Jayus; Restyana, A.; Abdullah, A.; Heng, L.Y.; Ahmad, M. A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control. 2012, 25, 184–189. [Google Scholar] [CrossRef]
- Prietto, L.; Mirapalhete, T.C.; Pinto, V.Z.; Hoffmann, J.F.; Vanier, N.L.; Lim, L.-T.; Dias, A.R.G.; Zavareze, E.D.R. pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT 2017, 80, 492–500. [Google Scholar] [CrossRef]
- Pourjavaher, S.; Almasi, H.; Meshkini, S.; Pirsa, S.; Parandi, E. Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydr. Polym. 2017, 156, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Chayavanich, K.; Thiraphibundet, P.; Imyim, A. Biocompatible film sensors containing red radish extract for meat spoilage observation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 226, 117601. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.; Pereira-Júnior, V.A.; Silva-Pereira, M.C.; Stefani, R. Chitosan/corn starch blend films with extract from Brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. LWT-Food Sci. Technol. 2015, 61, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Xia, P.; Wang, S.; Liang, J.; Sun, Y.; Yue, P. Packaging films formulated with gelatin and anthocyanins nanocomplexes: Physical properties, antioxidant activity and its application for olive oil protection. Food Hydrocoll. 2019, 96, 617–624. [Google Scholar] [CrossRef]
- Said, N.; Howell, N.K.; Sarbon, N.M. A review on potential use of gelatin-based film as active and smart biodegradable films for food packaging application. Food Rev. Int. 2021, 1–23. [Google Scholar] [CrossRef]
- Bhargava, N.; Sharanagat, V.S.; Mor, R.S.; Kumar, K. Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends Food Sci. Technol. 2020, 105, 385–401. [Google Scholar] [CrossRef]
- Musso, Y.S.; Salgado, P.R.; Mauri, A.N. Gelatin based films capable of modifying its color against environmental pH changes. Food Hydrocoll. 2016, 61, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Hossen, A.; Zeng, Y.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Gelatin-based composite films and their application in food packaging: A review. J. Food Eng. 2021, 313, 110762. [Google Scholar] [CrossRef]
- Pulla-Huillca, P.V.; Gomes, A.; Bittante, A.M.Q.B.; Lourenço, R.V.; Sobral, P.J.D.A. Wettability of gelatin-based films: The effects of hydrophilic or hydrophobic plasticizers and nanoparticle loads. J. Food Eng. 2021, 297, 110480. [Google Scholar] [CrossRef]
- Suderman, N.; Isa, M.; Sarbon, N. The effect of plasticizers on the functional properties of biodegradable gelatin-based film: A review. Food Biosci. 2018, 24, 111–119. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Y.; Zhang, X.; Yuan, L.; Liu, J. Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. Int. J. Biol. Macromol. 2019, 134, 993–1001. [Google Scholar] [CrossRef]
- Etxabide, A.; Maté, J.I.; Kilmartin, P.A. Effect of curcumin, betanin and anthocyanin containing colourants addition on gelatin films properties for intelligent films development. Food Hydrocoll. 2021, 115, 106593. [Google Scholar] [CrossRef]
- Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial food packaging: Potential and pitfalls. Front. Microbiol. 2015, 6, 611. [Google Scholar] [CrossRef] [Green Version]
- Abdelhedi, O.; Salem, A.; Nasri, R.; Nasri, M.; Jridi, M. Food applications of bioactive marine gelatin films. Curr. Opin. Food Sci. 2022, 43, 206–215. [Google Scholar] [CrossRef]
- Ramos, M.; Valdés, A.; Beltrán, A.; Garrigós, M.D.C. Gelatin-Based Films and Coatings for Food Packaging Applications. Coatings 2016, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Future Market Insight. Gelatin Film Market: Global Industry Analysis 2013–2017. 2022. Available online: https://www.futuremarketinsights.com/reports/gelatin-films-market (accessed on 8 November 2022).
- Nychas, G.E.; Panagou, E.Z. 1–Microbiological spoilage of foods and beverages. In Food and Beverage Stability and Shelf Life; Woodhead Publishing: Sawston, UK, 2011. [Google Scholar]
- Dave, D.; Ghaly, A.E. Meat Spoilage Mechanisms and Preservation Techniques: A Critical Review. Am. J. Agric. Biol. Sci. 2011, 6, 486–510. [Google Scholar] [CrossRef]
- Mellor, G.E.; Bentley, J.A.; Dykes, G.A. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat. Food Microbiol. 2011, 28, 1101–1104. [Google Scholar] [CrossRef]
- Wang, G.Y.; Wang, H.H.; Han, Y.W.; Xing, T.; Ye, K.P.; Xu, X.L.; Zhou, G.H. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiol. 2017, 63, 139–146. [Google Scholar] [CrossRef]
- Mills, J.; Donnison, A.; Brightwell, G. Factors affecting microbial spoilage and shelf-life of chilled vacuum-packed lamb transported to distant markets: A review. Meat Sci. 2014, 98, 71–80. [Google Scholar] [CrossRef]
- Sade, E.; Penttinen, K.; Björkroth, J.; Hultman, J. Exploring lot-to-lot variation in spoilage bacterial communities on commercial modified atmosphere packaged beef. Food Microbiol. 2017, 62, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellissery, A.J.; Vinayamohan, P.G.; Amalaradjou, M.A.R.; Venkitanarayanan, K. Spoilage bacteria and meat quality. In Meat Quality Analysis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 307–334. [Google Scholar] [CrossRef]
- Kalschne, D.L.; Womer, R.; Mattana, A.; Sarmento, C.M.P.; Colla, L.M.; Colla, E. Characterization of the spoilage lactic acid bacteria in “sliced vacuum-packed cooked ham”. Braz. J. Microbiol. 2015, 46, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Katiyo, W.; Kock, H.L.D.; Coorey, R.; Buys, E.M. Sensory implications of chicken meat spoilage in relation to microbial and physicochemical characteristics during refrigerated storage. LWT-Food Sci. Technol. 2020, 128, 109468. [Google Scholar] [CrossRef]
- Cavill, L.; Renteria-Monterrubio, A.L.; Helps, C.R.; Corry, J.E. Detection of cold-tolerant clostridia other than Clostridium estertheticum in raw vacuum-packed chill-stored meat. Food Microbiol. 2011, 28, 957–963. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, Y.; Zhou, K.; Zhou, H.; Li, X.; Li, C.; Wang, Z.; Xu, B. Effects of different thermal temperatures on the shelf life and microbial diversity of Dezhou-braised chicken. Food Res. Int. 2020, 136, 109471. [Google Scholar] [CrossRef]
- Li, H.; Sun, X.; Liao, X.; Gänzle, M. Control of pathogenic and spoilage bacteria in meat and meat products by high pressure: Challenges and future perspectives. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3476–3500. [Google Scholar] [CrossRef]
- Wunderlichová, L.; Buňková, L.; Koutný, M.; Valenta, T.; Buňka, F. Novel touchdown-PCR method for the detection of putrescine producing Gram-negative bacteria in food products. Food Microbiol. 2013, 34, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Nychas, G.J.E.; Skandamis, P.N.; Tassou, C.C.; Kautsoumanis, K.P. Meat spoilage during distribution. Meat Sci. 2008, 78, 77–89. [Google Scholar] [CrossRef]
- Erkmen, O.; Bozoglu, T.F. Enzymatic and nonenzymatic food spoilage. In Food Microbiology Principles into Practice, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 401–406. [Google Scholar] [CrossRef]
- Iulietto, M.F.; Sechi, P.; Borgogni, E.; Cenci-Goga, B.T. Meat Spoilage: A Critical Review of a Neglected Alteration Due to Ropy Slime Producing Bacteria. Ital. J. Anim. Sci. 2015, 14, 4011. [Google Scholar] [CrossRef]
- Li, J.; Zhou, G.; Xue, P.; Dong, X.; Xia, Y.; Regenstein, J.; Du, M.; Sun, L. Spoilage microbes’ effect on freshness and IMP degradation in sturgeon fillets during chilled storage. Food Biosci. 2021, 41, 101008. [Google Scholar] [CrossRef]
- Comi, G. Spoilage of Meat and Fish. In The Microbiological Quality of Food Foodborne Spoilers; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Alegbeleye, O.O.; Strateva, M.; Stratev, D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr. Rev. Food Sci. Food Saf. 2020, 19, 311–331. [Google Scholar] [CrossRef] [Green Version]
- Casaburi, A.; Piombino, P.; Nychas, G.-J.; Villani, F.; Ercolini, D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol. 2015, 45, 83–102. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Liu, L.; Yu, J.; Lin, Y.; Gao, H.; Chen, H.; Sun, P. An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends Food Sci. Technol. 2021, 118, 285–296. [Google Scholar] [CrossRef]
- Ezati, P.; Tajik, H.; Moradi, M.; Molaei, R. Intelligent pH-sensitive indicator based on starch-cellulose and alizarin dye to track freshness of rainbow trout fillet. Int. J. Biol. Macromol. 2019, 132, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Rukchon, C.; Nopwinyuwong, A.; Trevanich, S.; Jinkarn, T.; Suppakul, P. Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta 2014, 130, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, J.; Cheng, Y.; Wang, C.; Liu, H.; Bian, H.; Pan, Y.; Sun, J.; Han, W. Application of Protein-Based Films and Coatings for Food Packaging: A Review. Polymers 2019, 11, 2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, S.H.; Sarbon, N.M. Chicken gelatin films: Rheological properties of film forming solutions and film characterisation as influenced by starch incorporation. Int. Food Res. J. 2020, 27, 1094–1104. [Google Scholar]
- Zhai, X.; Shi, J.; Zou, X.; Wang, S.; Jiang, C.; Zhang, J.; Huang, X.; Zhang, W.; Holmes, M. Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocoll. 2017, 69, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.W.; Said, N.S.; Sarbon, N.M. The effects of zinc oxide nanoparticles on the physical, mechanical and antimicrobial properties of chicken skin gelatin/tapioca starch composite films in food packaging. J. Food Sci. Technol. 2020, 58, 4294–4302. [Google Scholar] [CrossRef]
- Koshy, R.R.; Koshy, J.T.; Mary, S.K.; Sadanandan, S.; Jisha, S.; Pothan, L.A. Preparation of pH sensitive film based on starch/carbon nano dots incorporating anthocyanin for monitoring spoilage of pork. Food Control. 2021, 126, 108039. [Google Scholar] [CrossRef]
- Huang, J.; Liu, J.; Chen, M.; Qian, Y.; Hu, Y. Immobilization of roselle anthocyanins into polyvinyl alcohol/hydroxypropyl methylcellulose film matrix: Study on the interaction behavior and mechanism for better shrimp freshness monitoring. Int. J. Biol. Macromol. 2021, 184, 666–677. [Google Scholar] [CrossRef]
- Said, N.S.; Sarbon, N.M. A comparative study: Development and characterization of active biodegradable chicken skin and mammalian gelatin composite films incorporated with curcumin extracts. J. Food Process. Preserv. 2021, 45, e15771. [Google Scholar] [CrossRef]
- Sani, M.A.; Tavassoli, M.; Salim, S.A.; Hamishehkar, H.; McClements, D.J. Carbohydrate-based films containing pH-sensitive red barberry anthocyanins: Application as biodegradable smart food packaging materials. Carbohydr. Polym. 2020, 255, 117488. [Google Scholar] [CrossRef]
- LaGasse, M.K.; Rankin, J.M.; Askim, J.R.; Suslick, S. Colorimetric sensor arrays: Interplay of geometry, substrate and immobilization. Sens. Actuators B Chem. 2014, 197, 116–122. [Google Scholar] [CrossRef]
- Morsy, M.K.; Zór, K.; Kostesha, N.; Alstrøm, T.S.; Heiskanen, A.; El-Tanahi, H.; Sharoba, A.; Papkovsky, D.; Larsen, J.; Khalaf, H.; et al. Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food Control. 2016, 60, 346–352. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M.; Bhandari, B.; Yang, C. Development of a novel colorimetric food package label for monitoring lean pork freshness. LWT-Food Sci. Technol. 2019, 99, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, Y.; Zhu, L.; Tang, Y.; Gao, X.; Tang, L.; Li, X.; Li, J. Dual-mode smart packaging based on tetraphenylethylene-functionalized polyaniline sensing label for monitoring the freshness of fish. Sensors Actuators B Chem. 2020, 323, 128694. [Google Scholar] [CrossRef]
- Liu, X.; Chen, K.; Wang, J.; Wang, Y.; Tang, Y.; Gao, X.; Zhu, L.; Li, X.; Li, J. An on-package colorimetric sensing label based on a sol-gel matrix for fish freshness monitoring. Food Chem. 2019, 307, 125580. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh-Sani, M.; Mohammadian, E.; Rhim, J.-W.; Jafari, S.M. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci. Technol. 2020, 105, 93–144. [Google Scholar] [CrossRef]
- Mariusz, T.; Radomska, N.; Cierpiszewski, R. The Application of Natural Dyes in Food Freshness Indicators Designed for Intelligent Packaging. Studia Oeconomica Posnaniensia 2017, 5, 20–34. [Google Scholar] [CrossRef]
- Sganzerla, W.G.; Ribeiro, C.P.P.; Uliana, N.R.; Rodrigues, M.B.C.; Rosa, C.G.D.; Ferrareza, J.P.; Veeck, A.P.D.L.; Nunes, M.R. Bioactive and pH-sensitive films based on carboxymethyl cellulose and blackberry (Morus nigra L.) anthocyanin-rich extract: A perspective coating material to improve the shelf life of cherry tomato (Solanum lycopersicum L. var cerasiforme). Biocatal. Agrocultural Biotechnol. 2021, 33, 101989. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; El-Newehy, M.H.; Aldalbahi, A.; Salem, W.M.; Khattab, T.A. Immobilization of anthocyanin extract from red-cabbage into electrospun polyvinyl alcohol nanofibers for colorimetric selective detection of ferric ions. J. Environ. Chem. Eng. 2021, 9, 105072. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Faseha, A.; Benjakul, S.; Kaewprachu, P. Application of anthocyanin as a color indicator in gelatin films. Food Biosci. 2020, 36, 100603. [Google Scholar] [CrossRef]
- Degot, P.; Huber, V.; Touraud, D.; Kunz, W. Curcumin extracts from Curcuma Longa – Improvement of concentration, purity, and stability in food-approved and water-soluble surfactant-free microemulsions. Food Chem. 2020, 339, 128140. [Google Scholar] [CrossRef]
- Aliabbasi, N.; Fathi, M.; Emam-Djomeh, Z. Curcumin: A promising bioactive agent for application in food packaging systems. J. Environ. Chem. Eng. 2021, 9, 105520. [Google Scholar] [CrossRef]
- Choi, I.; Lee, J.Y.; Lacroix, M.; Han, J. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chem. 2017, 218, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2017, 17, 165–199. [Google Scholar] [CrossRef] [Green Version]
- Carina, D.; Sharma, S.; Jaiswal, A.K.; Jaiswal, S. Seaweeds polysaccharides in active food packaging: A review of recent progress. Trends Food Sci. Technol. 2021, 110, 559–572. [Google Scholar] [CrossRef]
- Alias, A.R.; Khairul Wan, M.; Sarbon, N.M. Emerging materials and technologies of multi-layer film for food packaging application: A review. Food Control. 2022, 136, 108875. [Google Scholar] [CrossRef]
- Gomez-Estaca, J.; Lopez-de-Dicastillo, C.; Hernandez-Munoz, P.; Catala, R.; Gavara, R. Advances in antioxidant active food packaging. Trends Food Sci. Technol. 2014, 35, 42–51. [Google Scholar] [CrossRef]
- Dominguez, R.; Barba, F.J.; Gomez, B.; Putnik, P.; Kovacevik, D.B.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef]
- Zhang, N.; Bi, F.; Xu, F.; Yong, H.; Bao, Y.; Jin, C.; Liu, J. Structure and functional properties of active packaging films prepared by incorporating different flavonols into chitosan based matrix. Int. J. Biol. Macromol. 2020, 165, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lee, J.; Won, M.; Song, K.B. Antioxidant activities of distiller dried grains with solubles as protein films containing tea extracts and their application in the packaging of pork meat. Food Chem. 2016, 196, 174–179. [Google Scholar] [CrossRef]
- Han, Y.; Yu, M.; Wang, L. Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packag. Shelf Life 2018, 15, 35–42. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Amara, C.B.; Oulahal, N.; Gharsallaoui, A.; Joly, C.; Tongdeesoontorn, W.; Rawdkuen, S.; Degraeve, P. Gelatin films with nisin and catechin for minced pork preservation. Food Packag. Shelf Life 2018, 18, 173–183. [Google Scholar] [CrossRef]
- Lopes, J.; Gonçalves, I.; Nunes, C.; Teixeira, B.; Mendes, R.; Ferreira, P.; Coimbra, M.A. Potato peel phenolics as additives for developing active starch-based films with potential to pack smoked fish fillets. Food Packag. Shelf Life 2021, 28, 100644. [Google Scholar] [CrossRef]
- Chatkitanan, T.; Harnkarnsujarit, N. Development of nitrite compounded starch-based films to improve color and quality of vacuum-packaged pork. Food Packag. Shelf Life 2020, 25, 100521. [Google Scholar] [CrossRef]
- Choo, K.W.; Lin, M.; Mustapha, A. Chitosan/acetylated starch composite films incorporated with essential oils: Physiochemical and antimicrobial properties. Food Biosci. 2021, 43, 101287. [Google Scholar] [CrossRef]
- Muppalla, S.R.; Kanatt, S.R.; Chawla, S.P.; Sharma, A. Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packag. Shelf Life 2014, 2, 51–58. [Google Scholar] [CrossRef]
- Khezrian, A.; Shahbazi, Y. Application of nanocompostie chitosan and carboxymethyl cellulose films containing natural preservative compounds in minced camel’s meat. Int. J. Biol. Macromol. 2018, 106, 1146–1158. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Active packaging films and edible coatings based on polyphenol-rich propolis extract: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2106–2145. [Google Scholar] [CrossRef]
- Gomez-Estaca, J.; Gavara, R.; Catala, R.; Hernandez-Munoz, P. The Potential of Proteins for Producing Food Packaging Materials: A Review. Packag. Technol. Sci. 2016, 29, 203–224. [Google Scholar] [CrossRef]
- Byun, Y.; Bae, H.J.; Whiteside, S. Active warm-water fish gelatin film containing oxygen scavenging system. Food Hydrocoll. 2012, 27, 250–255. [Google Scholar] [CrossRef]
- Bolumar, T.; LaPeña, D.; Skibsted, L.H.; Orlien, V. Rosemary and oxygen scavenger in active packaging for prevention of high-pressure induced lipid oxidation in pork patties. Food Packag. Shelf Life 2016, 7, 26–33. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Aurrekoetxea, G.P.; Angulo, I.; Paseiro-Losada, P.; Cruz, J.M. Development of new active packaging films coated with natural phenolic compounds to improve the oxidative stability of beef. Meat Sci. 2014, 97, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Battisti, R.; Fronza, N.; Júnior, V.Á.; Silveira, S.M.D.; Damas, M.S.P.; Quadri, M.G.N. Gelatin-coated paper with antimicrobial and antioxidant effect for beef packaging. Food Packag. Shelf Life 2017, 11, 115–124. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Batlle, R.; Gómez, M. Extension of the shelf-life of foal meat with two antioxidant active packaging systems. LWT-Food Sci. Technol. 2014, 59, 181–188. [Google Scholar] [CrossRef]
- Wrona, M.; Nerín, C.; Alfonso, M.J.; Caballero, M. Antioxidant packaging with encapsulated green tea for fresh minced meat. Innov. Food Sci. Emerg. Technol. 2017, 41, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Contini, C.; Álvarez, R.; O’Sullivan, M.; Dowling, D.P.; Gargan, S.; Monahan, F.J. Effect of an active packaging with citrus extract on lipid oxidation and sensory quality of cooked turkey meat. Meat Sci. 2014, 96, 1171–1176. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Andrade, M.; de Melo, N.R.; Sanches-Silva, A. Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]
- Vanderroost, M.; Ragaert, P.; Devlieghere, F.; De Meulenaer, B. Intelligent food packaging: The next generation. Trends Food Sci. Technol. 2014, 39, 47–62. [Google Scholar] [CrossRef]
- Cheung, W.M.; Leong, J.T.; Vichare, P. Incorporating lean thinking and life cycle assessment to reduce environmental impacts of plastic injection moulded products. J. Clean. Prod. 2017, 167, 759–777. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packag. Shelf Life 2020, 26, 100550. [Google Scholar] [CrossRef]
- Kuswandi, B. Freshness sensors for food packaging. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Abolghasemi, M.M.; Sobhi, M.; Piryaei, M. Preparation of a novel green optical pH sensor based on immobilization of red grape extract on bioorganic agarose membrane. Sensors Actuators B Chem. 2016, 224, 391–395. [Google Scholar] [CrossRef]
- Jiang, G.; Hou, X.; Zeng, X.; Zhang, C.; Wu, H.; Shen, G.; Li, S.; Luo, Q.; Li, M.; Liu, X.; et al. Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. Int. J. Biol. Macromol. 2019, 143, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ying, Y.; Zhou, Y.; Ge, Y.; Yuan, C.; Wu, C.; Hu, Y. A pH-indicating intelligent packaging composed of chitosan-purple potato extractions strength by surface-deacetylated chitin nanofibers. Int. J. Biol. Macromol. 2019, 127, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Li, Y.; Sun, J.; Lu, Y.; Tong, C.; Wang, L.; Yan, Z.; Pang, J. Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging. Food Hydrocoll. 2020, 98, 105245. [Google Scholar] [CrossRef]
- Musso, Y.S.; Salgado, P.R.; Mauri, A.N. Smart edible films based on gelatin and curcumin. Food Hydrocoll. 2017, 66, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Hu, H.; Qin, Y.; Liu, J. Development of antioxidant, antimicrobial and ammonia-sensitive films based on quaternary ammonium chitosan, polyvinyl alcohol and betalains-rich cactus pears (Opuntia ficus-indica) extract. Food Hydrocoll. 2020, 106, 105896. [Google Scholar] [CrossRef]
- Uddin, S.M.K.; Hossain, M.A.M.; Sagadevan, S.; Amin, A.; Johan, M.R. Halal and Kosher gelatin: Applications as well as detection approaches with challenges and prospects. Food Biosci. 2021, 44, 101422. [Google Scholar] [CrossRef]
- Alipal, J.; Mohd Pu’ad, N.A.S.; Lee, T.C.; Nayan, N.H.M.; Sahari, N.; Basri, H.; Idris, M.I.; Abdullah, H.Z. A review of gelatin: Properties, sources, process, applications, and commercialisation. Mater. Today Proc. 2021, 42, 240–250. [Google Scholar] [CrossRef]
- Aramwit, P.; Jaichawa, N.; Ratanavaraporn, J.; Srichana, T. A comparative study of type A and type B gelatin nanoparticles as the controlled release carriers for different model compounds. Mater. Express 2015, 5, 241–248. [Google Scholar] [CrossRef]
- Jannat, B.; Ghorbani, K.; Kouchaki, S.; Sadeghi, N.; Eslamifarsani, E.; Rabbani, F.; Beyramysoltan, S. Distinguishing tissue origin of bovine gelatin in processed products using LC/MS technique in combination with chemometrics tools. Food Chem. 2020, 319, 126302. [Google Scholar] [CrossRef]
- Nur Hanani, Z.A.; Roos, Y.H.; Kerry, J.P. Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of their composition and mechanical properties. Food Hydrocoll. 2012, 29, 144–151. [Google Scholar] [CrossRef]
- Tyuftin, A.A.; Kerry, J.P. Gelatin films: Study review of barrier properties and implications for future studies employing biopolymer films. Food Packag. Shelf Life 2021, 29, 100688. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Hong, P.; Zhou, P.; Zhou, C. Di-aldehyde starch crystal: A novel bio-crosslinker for strengthening the structure and physio-chemical properties of gelatin-based films. Food Biosci. 2021, 43, 101308. [Google Scholar] [CrossRef]
- Zhao, C.; Yu, Y.; Chen, Z.; Wen, G.; Wei, F.; Zheng, Q.; Wang, C.; Xiao, X. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem. 2017, 214, 119–128. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M.; Bhandari, B.; Yang, C. Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocoll. 2019, 100, 105438. [Google Scholar] [CrossRef]
- Yang, J.; Fan, Y.; Cui, J.; Yang, L.; Su, H.; Yang, P.; Pan, J. Colorimetric films based on pectin/sodium alginate/xanthan gum incorporated with raspberry pomace extract for monitoring protein-rich food freshness. Int. J. Biol. Macromol. 2021, 185, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Hashim, S.B.H.; Tahir, H.E.; Liu, L.; Zhang, J.; Zhao, X.; Mahdi, A.A.; Awad, F.N.; Hasan, M.M.; Xiaobao, Z.; Jiyong, S. Intelligent colorimetric pH censoring packaging films based on sugar cane wax/agar integrated with butterfly pea extract for optical tracking of shrimp freshness. Food Chem. 2020, 373, 131514. [Google Scholar] [CrossRef]
- Taherkhani, E.; Moradi, M.; Tajik, H.; Molaei, R.; Ezati, P. Preparation of on-package halochromic freshness/spoilage nanocellulose label for the visual shelf life estimation of meat. Int. J. Biol. Macromol. 2020, 164, 2632–2640. [Google Scholar] [CrossRef] [PubMed]
- Sinela, A.; Rawat, N.; Mertz, C.; Achir, N.; Fulcrand, H.; Dornier, M. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products. Food Chem. 2017, 214, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Peralta, J.; Bitencourt-Cervi, C.M.; Maciel, V.; Yoshida, C.M.; Carvalho, R.A. Aqueous hibiscus extract as a potential natural pH indicator incorporated in natural polymeric films. Food Packag. Shelf Life 2018, 19, 47–55. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, T.-S.; Yan, H.; Hu, X.; Ren, T. Novel pH-sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration. Int. J. Biol. Macromol. 2019, 145, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, Y.; Liu, Y.; Zhang, J.; Hossen, M.A.; Sameen, D.E.; Dai, J.; Li, S.; Qin, W. Fabrication and characterization of pH-responsive intelligent films based on carboxymethyl cellulose and gelatin/curcumin/chitosan hybrid microcapsules for pork quality monitoring. Food Hydrocoll. 2021, 124, 107224. [Google Scholar] [CrossRef]
- Zeng, P.; Chen, X.; Qin, Y.-R.; Zhang, Y.-H.; Wang, X.-P.; Wang, J.-Y.; Ning, Z.-X.; Ruan, Q.-J.; Zhang, Y.-S. Preparation and characterization of a novel colorimetric indicator film based on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts for monitoring fish freshness. Food Res. Int. 2019, 126, 108604. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Kong, Q.; Jin, Z.; Mou, H. Developing a unidirectionally permeable edible film based on ĸ-carrageenan and gelatin for visually detecting the freshness of grass carp fillets. Carbohydr. Polym. 2020, 241, 116336. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, X.; Zou, X.; Shi, J.; Zhai, X.; Liu, L.; Li, Z.; Holmes, M.; Gong, Y.; Povey, M.; et al. A visual indicator based on curcumin with high stability for monitoring the freshness of freshwater shrimp, Macrobrachium rosenbergii. J. Food Eng. 2020, 292, 110290. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, X.; Xie, F.; Fan, Y.; Xu, X.; Qi, J.; Xiong, G.; Gao, X.; Zhang, F. pH-responsive double-layer indicator films based on konjac glucomannan/camellia oil and carrageenan/anthocyanin/curcumin for monitoring meat freshness. Food Hydrocoll. 2021, 118, 106695. [Google Scholar] [CrossRef]
- Yildiz, E.; Sumnu, G.; Kahyaoglu, L.N. Monitoring freshness of chicken breast by using natural halochromic curcumin loaded chitosan/PEO nanofibers as an intelligent package. Int. J. Biol. Macromol. 2020, 170, 437–446. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J.; Qin, Y.; Bai, R.; Zhang, X.; Liu, J. Antioxidant and pH-sensitive films developed by incorporating purple and black rice extracts into chitosan matrix. Int. J. Biol. Macromol. 2019, 137, 307–316. [Google Scholar] [CrossRef]
- Liu, J.; Yong, H.; Liu, Y.; Qin, Y.; Kan, J.; Liu, J. Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (Lonicera caerulea L.) extract. Food Packag. Shelf Life 2019, 22, 100417. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, Y.; Yuan, L.; Yong, H.; Liu, J. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll. 2019, 96, 102–111. [Google Scholar] [CrossRef]
- Othman, S.H.; Edwal, S.A.M.; Risyon, N.P.; Basha, R.K.; Talib, R.A. Water sorption and water permeability properties of edible film made from potato peel waste. Food Sci. Technol. 2017, 37, 63–70. [Google Scholar] [CrossRef]
- Radev, R.; Dimitrov, G. Water vapor permeability of edible films with different composition. Sci. Work. Univ. Food Technol. 2019, 64, 96–100. [Google Scholar]
- Wang, X.; Yong, H.; Gao, L.; Li, L.; Jin, M.; Liu, J. Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocoll. 2018, 89, 56–66. [Google Scholar] [CrossRef]
- Kim, H.; Roy, S.; Rhim, J. Gelatin/agar-based color-indicator film integrated with Clitoria ternatea flower anthocyanin and zinc oxide nanoparticles for monitoring freshness of shrimp. Food Hydrocoll. 2021, 124, 107294. [Google Scholar] [CrossRef]
- Musso, Y.S.; Salgado, P.R.; Mauri, A.N. Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent. Food Hydrocoll. 2018, 89, 674–681. [Google Scholar] [CrossRef]
- Sani, M.A.; Tavassoli, M.; Salim, S.A.; Azizi-Lalabadi, M.; McClements, D.J. Development of green halochromic smart and active packaging materials: TiO2 nanoparticle- and anthocyanin-loaded gelatin/κ-carrageenan films. Food Hydrocoll. 2021, 124, 107324. [Google Scholar] [CrossRef]
- Wrona, M.; Bentayeb, K.; Nerín, C. A novel active packaging for extending the shelf-life of fresh mushrooms (Agaricus bisporus). Food Control 2015, 54, 200–207. [Google Scholar] [CrossRef]
- Njoya, E.M. Medicinal plants, antioxidant potential, and cancer. In Cancer (Second. Ed.) Oxidative Stress and Dietary Antioxidants, 2nd ed.; Academic Press: Cambridge, Massachusetts, 2021; pp. 349–357. [Google Scholar] [CrossRef]
- Zhong, Y.; Shahidi, F. Methods for the assessment of antioxidant activity in foods. In Handbook of Antioxidants for Food Preservation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 287–333. [Google Scholar] [CrossRef]
- Jamróz, E.; Kulawik, P.; Krzyściak, P.; Talaga-Ćwiertnia, K.; Juszczak, L. Intelligent and active furcellaran-gelatin films containing green or pu-erh tea extracts: Characterization, antioxidant and antimicrobial potential. Int. J. Biol. Macromol. 2018, 122, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Sani, M.A.; Azizi-Lalabadi, M.; Tavassoli, M.; Mohammadi, K.; McClements, D.J. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. Nanomaterials 2021, 11, 1331. [Google Scholar] [CrossRef]
- Soo, P.Y.; Sarbon, N.M. Preparation and characterization of edible chicken skin gelatin film incorporated with rice flour. Food Packag. Shelf Life 2018, 15, 1–8. [Google Scholar] [CrossRef]
- Hidayat, S.H.; Dirpan, A.; Adiansyah; Djalal, M.; Rahman, A.N.F.; Ainani, A.F. Sensitivity determination of indicator paper as smart packaging elements in monitoring meat freshness in cold temperature. IOP Conf. Series Earth Environ. Sci. 2019, 343, 012076. [Google Scholar] [CrossRef]
Bioactive Compound | Source | Concentration (w/v%) | Treatment | Color Difference | Reference | ||
---|---|---|---|---|---|---|---|
Days | Temperature (°C) | Condition | |||||
Anthocyanin | Black bean | 2 | 28 | 25 | Light | Change | [6] |
Red cabbage | 2 | 28 | 25 | Light | Stable | ||
Anthocyanin | Red radish | 2 | 14 | 25 | Light | Change | [8] |
2 | 14 | 4 | Light | Stable | |||
Anthocyanin (ATH); curcumin (CR) | Purple sweet potato; turmeric | (ATH) 8:2 (CR) | 180 | 25 | Light | Change (high) | [109] |
(ATH) 2:8 (CR) | 180 | 25 | Light | Change (low) | |||
Anthocyanin | Mulberry | 2 | 24 | 25 | Light | More stable | [110] |
2 | 24 | 25 | Ultraviolet | Less stable | |||
Anthocyanin | Butterfly pea | 0.2 | 16 | 25 | Light | Change (high) | [111] |
0.2 | 16 | 4 | Light | Change (low) | |||
Anthocyanin | Grape | 1.5 | 60 | 20 | Dark | More stable | [112] |
1.5 | 60 | 20 | Light | Less Stable | |||
1.5 | 60 | 4 | Dark | More stable | |||
1.5 | 60 | 4 | Light | Less Stable | |||
Anthocyanin | Roselle | 3 | 14 | 25 | Light | Less stable | [48] |
3 | 14 | 4 | Light | More stable |
Sample | Bioactive Compound | Source | pH Range | Color | Treatment | Color Changes | Reference | |
---|---|---|---|---|---|---|---|---|
Storage Period | Temperature (°C) | |||||||
Fish | Anthocyanin | Purple/sweet potato | <5.0 | Red | 48 h | 20 | Red to blue | [96] |
5.0–6.0 | Pink | |||||||
7.0 | Purple | |||||||
8.0 | Blue | |||||||
9.0–10.0 | Green | |||||||
11.0–12.0 | Yellow | |||||||
Roselle | 2.0–3.0 | Red | 165 h | 4 | Red to blue | [48] | ||
4.0–6.0 | Pink | |||||||
7.0 | Colorless | |||||||
8.0–9.0 | Blue | |||||||
10.0–12.0 | Yellow green | |||||||
Mulberry | 2.0–3.0 | Bright Red | 36 h | 35 | Bright red to dark green | [117] | ||
4.0–6.0 | Purple | |||||||
7.0–8.0 | Pale purple | |||||||
9.0–11.0 | Dark green | |||||||
Curcumin | Turmeric | 6.0 | Yellow | 8 days | 4 | Yellow to dark red | [118] | |
>6.0 | Red | |||||||
Shrimp | Anthocyanin | Purple potato | <5.0 | Red | 48 h | 25 | Red to blue | [97] |
5.0–6.0 | Pink | |||||||
7.0 | Purple | |||||||
8.0 | Blue | |||||||
9.0–10.0 | Green | |||||||
11.0–12.0 | Yellow | |||||||
Purple sweet potato | <5.0 | Red | 18 h | 25 | Red to blue | [115] | ||
5.0–6.0 | Pink | |||||||
7.0 | Purple | |||||||
8.0 | Blue | |||||||
9.0–10.0 | Green | |||||||
11.0–12.0 | Yellow | |||||||
Red radish | 2.0 | Orange | 48 h | 30 | Red to purple | [8] | ||
3.0–4.0 | Pink | |||||||
5.0–7.0 | Pink purple | |||||||
8.0–9.0 | Purple | |||||||
10.0 | Blue | |||||||
11.0–12.0 | Yellow | |||||||
Curcumin | Turmeric | 6.0 | Yellow | 36 h | 4 | Yellow to orange red | [119] | |
>6.0 | Red | |||||||
Chicken | Anthocyanin | Bilberry | 2.0–4.0 | Red | 4 days | 25 | Red to blue | [120] |
5.0–6.0 | Purple | |||||||
7.0–9.0 | Blue | |||||||
10.0–11.0 | Green | |||||||
12.0 | Yellow | |||||||
Curcumin | Turmeric | 6.0 | Yellow | 8 days | 4 | Yellow to orange | [121] | |
>6.0 | Red | |||||||
Ground beef | Anthocyanin | Purple and black rice | 3.0 | Red | 2 days | 25 | Red to blue | [122] |
4.0–7.0 | Pink | |||||||
8.0–9.0 | Blue | |||||||
>9.0 | Purple | |||||||
Pork | Anthocyanin | Clitoria ternatea | 1.0–3.0 | Red | 48 h | 25 | Pink/purple to green | [50] |
4.0–5.0 | Purple | |||||||
6.0–7.0 | Blue | |||||||
8.0–9.0 | Green | |||||||
10.0–11.0 | Colorless | |||||||
12.0 | Yellow | |||||||
Raspberry pomace | 1.0–3.0 | Red | 12 h | 25 | Bright red to blue | [110] | ||
4.0–6.0 | Pink | |||||||
7.0 10.0 | Blue purple | |||||||
11.0–13.0 | Green |
Bioactive Compound | Source | Concentration (%w/v) | Fourier Transform Infrared (FTIR) Absorption Peak (cm−1) | Reference | ||||
---|---|---|---|---|---|---|---|---|
-OH | -CH | C-O | C=O | C=C | ||||
Anthocyanin | Mulberry pomace extract | 0 | 3329 | 2930 | 1034 | 1724 | 1609 | [119] |
10 (free) | 3327 | 2928 | 1034 | 1724 | 1606 | |||
20 (free) | 3331 | 2930 | 1034 | 1724 | 1608 | |||
10 (microencapsulated) | 3318 | 2932 | 1033 | 1724 | 1608 | |||
20 (microencapsulated) | 3320 | 2924 | 1033 | 1720 | 1608 | |||
Anthocyanin | Purple rice | 0 | 3248 | 2924 | 1151 | 1634 | 1543 | [112] |
1 | 3250 | 2925 | 1151 | 1634 | 1541 | |||
3 | 3249 | 2926 | 1151 | 1634 | 1543 | |||
5 | 3255 | 2924 | 1151 | 1633 | 1546 | |||
Black rice | 0 | 3248 | 2924 | 1151 | 1634 | 1543 | ||
1 | 3255 | 2922 | 1152 | 1633 | 1547 | |||
3 | 3248 | 2923 | 1152 | 1633 | 1546 | |||
5 | 3249 | 2923 | 1152 | 1633 | 1546 | |||
Anthocyanin | Purple corn | 0 | 3256 | 2924 | 1152 | 1633 | 1547 | [124] |
2 | 3262 | 2929 | 1152 | 1635 | 1545 | |||
2 + silver nanoparticle | 3253 | 2925 | 1152 | 1634 | 1544 | |||
Anthocyanin | Haskap berries | 0 | 3284 | 2934 | 1109 | 1634 | 1534 | [123] |
0.5 | 3284 | 2923 | 1109 | 1633 | 1534 | |||
1 | 3284 | 2923 | 1109 | 1633 | 1534 | |||
2 | 3284 | 2923 | 1109 | 1633 | 1534 | |||
3 | 3284 | 2923 | 1109 | 1632 | 1533 | |||
Betalains | Cactus pears | 0 | 3292 | 2922 | Not stated | 1650 | 1562 | [100] |
1 | 3295 | 2927 | 1651 | 1562 | ||||
2 | 3293 | 2933 | 1650 | 1562 | ||||
3 | 3294 | 2932 | 1650 | 1563 | ||||
Anthocyanin | Lycium ruthenicum | 0 | 3326 | 2928 | 1149 | 1641 | Not stated | [124] |
1 | 3327 | 2928 | 1149 | 1641 | ||||
2 | 3320 | 2928 | 1149 | 1642 | ||||
4 | 3319 | 2928 | 1149 | 1642 | ||||
Anthocyanin | Mulberry | 0 | 3349 | 2923 | 1159 | 1642 | Not stated | [16] |
1 | 3358 | 2937 | 1159 | 1643 | ||||
2 | 3347 | 2936 | 1159 | 1643 | ||||
4 | 3339 | 2936 | 1159 | 1643 |
Natural Extract | Source | Concentration (wt%) | Water Vapor Permeability (×10−u g m−1 s−1 Pa−1) | Effect on Film | Reference |
---|---|---|---|---|---|
Anthocyanin | Haskap berry extract | 0.5 | 7.14 ± 0.64 | Decreased gradually with increasing of the extract concentration. More complex network is formed. Decrease in amorphous region that leads to low transferable of water molecule. | [123] |
1.0 | 6.99 ± 0.33 | ||||
2.0 | 6.27 ± 0.53 | ||||
3.0 | 5.96 ± 0.21 | ||||
Anthocyanin | Mulberry pomace extract | 1.0 | 4.24 ± 0.24 | Decreased gradually with increasing of the extract concentration. Compact and dense network formed through intermolecular interactions between the extract and the film. | [17] |
2.0 | 4.08 ± 0.13 | ||||
4.0 | 3.86 ± 0.12 | ||||
Anthocyanin | Butterfly pea | 0 | 0.76 ± 0.08 | Decreased in the presence of the extract. | [128] |
Not stated | 0.73 ± 0.14 | ||||
Anthocyanin | Red cabbage | 0 | 6.80 ± 0.40 | Decreased in the presence of the extract. Lowered the cross-linking of the protein. | [129] |
Not stated | 6.50 ± 0.60 | ||||
Anthocyanin | Saffron petals | 0 | 2.46 ± 0.05 | Decreased in the presence of the extract. Reduced the pore size and enhanced tortuosity of the gelatin-based film Retarded the molecular diffusion of water molecules through the film. | [130] |
Not stated | 2.23 ± 0.08 | ||||
Red barberry | 0 | 2.46 ± 0.05 | |||
Not stated | 2.22 ± 0.05 | ||||
Curcumin | Turmeric | 0 | 6.50 ± 0.30 | Decreased in the presence of the extract. | [99] |
0.02 | 1.00 ± 0.01 | ||||
Curcumin | Turmeric | 0 | 4.12 ± 0.65 | Decreased in the presence of the extract. Increased the hydrophobic character of the gelatin-based film. | [118] |
Not stated | 3.65 ± 0.23 | ||||
Curcumin | Turmeric | 1.0 | 2.14 ± 0.07 | Decreased gradually with increasing of the extract concentration. Gelatin polymer contains polar molecules that can interact with water molecule that leads to the immobilization of water vapor to pass through the film. | [116] |
2.0 | 2.12 ± 0.08 | ||||
3.0 | 1.52 ± 0.02 | ||||
4.0 | 1.53 ± 0.02 |
Bioactive Compound | Source | Concentration (%) | Diameter of Inhibition (mm) | Antioxidant Properties (DPPH Radical Scavenging Activity) | Reference | |
---|---|---|---|---|---|---|
Gram (+ve) | Gram (−ve) | |||||
Catechin | Green tea extract | 0 | S. aureus 0 | E. coli 0 | Not stated | [134] |
5 | 14.5 | 0 | 42.53% | |||
0 | 18.5 | 16.0 | 49.21% | |||
20 | 22.5 | 16.0 | 43.92% | |||
Pu-erh tea extract | 0 | S. aureus 0 | E. coli 0 | The antioxidant properties increased with increasing extract concentration | ||
5 | 0 | 0 | ||||
10 | 0 | 0 | ||||
20 | 16.0 | 0 | ||||
Anthocyanin | Purple corn extract | 0 | S. aureus 1.69 ± 0.11 | E. coli 1.30 ± 0.01 | The antioxidant properties increased with increasing extract concentration | [124] |
2 | 6.57 ± 0.04 | 5.40 ± 0.31 | ||||
0 | L. monocytogenes 1.39 ± 0.01 | Salmonella 1.67 ± 0.18 | ||||
2 | 5.48 ± 0.25 | 5.92 ± 0.20 | ||||
Betalains | Cactus pear extract | 0 | L. monocytogenes 11.1 ± 0.3 | E. coli 10.4 ± 0.1 | The antioxidant properties increased with increasing extract concentration | [100] |
1 | 12.5 ± 0.1 | 10.4 ± 0.2 | ||||
2 | 13.1 ± 0.9 | 10.5 ± 0.1 | ||||
3 | 12.8 ± 0.4 | 10.3 ± 0.2 | ||||
Anthocyanin | Red barberry | 0 | S. aureus 0 | E. coli 0 | Not stated | [135] |
3 | 16.8 ± 2.2 | 18.3 ± 0.34 | 82.1% | |||
Anthocyanin | Saffron petal | 0 | S. aureus 0 | E. coli 0 | The antioxidant properties increased with increasing extract concentration | [114] |
3 | 22.8 ± 1.5 | 20.2 ± 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaik, M.I.; Azhari, M.F.; Sarbon, N.M. Gelatin-Based Film as a Color Indicator in Food-Spoilage Observation: A Review. Foods 2022, 11, 3797. https://doi.org/10.3390/foods11233797
Shaik MI, Azhari MF, Sarbon NM. Gelatin-Based Film as a Color Indicator in Food-Spoilage Observation: A Review. Foods. 2022; 11(23):3797. https://doi.org/10.3390/foods11233797
Chicago/Turabian StyleShaik, Mannur Ismail, Muhammad Farid Azhari, and Norizah Mhd Sarbon. 2022. "Gelatin-Based Film as a Color Indicator in Food-Spoilage Observation: A Review" Foods 11, no. 23: 3797. https://doi.org/10.3390/foods11233797
APA StyleShaik, M. I., Azhari, M. F., & Sarbon, N. M. (2022). Gelatin-Based Film as a Color Indicator in Food-Spoilage Observation: A Review. Foods, 11(23), 3797. https://doi.org/10.3390/foods11233797