Characterization of Films Produced with Cross-Linked Cassava Starch and Emulsions of Watermelon Seed Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Watermelon Seed Oil (WSO) Extraction
2.3. Film Production
2.4. Characterization of Films
2.4.1. Scanning Electron Microscopy (SEM)
2.4.2. Atomic Force Microscopy
2.4.3. Contact Angle Variation Kinetics ()
2.4.4. Moisture Content
2.4.5. Water Vapor Permeability (WVP)
2.4.6. Mechanical Properties
2.4.7. Thermal Properties
2.4.8. X-ray Diffraction
2.4.9. Color Parameters
2.4.10. Total Phenolic Content
2.4.11. Antioxidant Activity (AA)
2.5. Statistical Analysis
3. Results and Discussion
3.1. SEM
3.2. Atomic Force Microscopy
3.3. Contact Angle
3.4. WVP
3.5. Mechanical Properties
3.6. X-ray Diffraction
3.7. Thermal Properties of Films Made from Cross-Linked Cassava Starch and Watermelon Seed Oils
3.8. Color Parameters
3.9. Total Phenolics and Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BeMiller, J.; Whistler, R. Starch: Chemistry and Technology, 3rd ed.; Academic Press: London, UK, 2009; pp. 756–760. [Google Scholar]
- Colussi, R.; Pinto, V.Z.; El Halal, S.L.M.; Biduski, B.; Prietto, L.; Castilhos, D.D.; da Rosa Zavareze, E.; Dias, A.R.G. Acetylated Rice Starches Films with Different Levels of Amylose: Mechanical, Water Vapor Barrier, Thermal, and Biodegradability Properties. Food Chem. 2017, 221, 1614–1620. [Google Scholar] [CrossRef]
- Oluwasina, O.O.; Olaleye, F.K.; Olusegun, S.J.; Oluwasina, O.O.; Mohallem, N.D.S. Influence of Oxidized Starch on Physicomechanical, Thermal Properties, and Atomic Force Micrographs of Cassava Starch Bioplastic Film. Int. J. Biol. Macromol. 2019, 135, 282–293. [Google Scholar] [CrossRef]
- Hu, X.; Jia, X.; Zhi, C.; Jin, Z.; Miao, M. Improving Properties of Normal Maize Starch Films Using Dual-Modification: Combination Treatment of Debranching and Hydroxypropylation. Int. J. Biol. Macromol. 2019, 130, 197–202. [Google Scholar] [CrossRef]
- Colivet, J.; Carvalho, R.A. Hydrophilicity and Physicochemical Properties of Chemically Modified Cassava Starch Films. Ind. Crops Prod. 2017, 95, 599–607. [Google Scholar] [CrossRef]
- Shi, W.-J.; Tang, C.-H.; Yin, S.-W.; Yin, Y.; Yang, X.-Q.; Wu, L.-Y.; Zhao, Z. Development and Characterization of Novel Chitosan Emulsion Films via Pickering Emulsions Incorporation Approach. Food Hydrocoll. 2016, 52, 253–264. [Google Scholar] [CrossRef]
- Jiménez, A.; Fabra, M.J.; Talens, P.; Chiralt, A. Phase Transitions in Starch Based Films Containing Fatty Acids. Effect on Water Sorption and Mechanical Behaviour. Food Hydrocoll. 2013, 30, 408–418. [Google Scholar] [CrossRef]
- Ferreira, F.A.B.; Grossmann, M.V.E.; Mali, S.; Yamashita, F.; Cardoso, L.P. Effect of Relative Humidities on Microstructural, Barrier and Mechanical Properties of Yam Starch-Monoglyceride Films. Brazilian Arch. Biol. Technol. 2009, 52, 1505–1512. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gago, M.B.; Rhim, J.-W. Edible Coating and Film Materials. In Innovations in Food Packaging; Elsevier: Amsterdam, The Netherlands, 2014; pp. 325–350. [Google Scholar]
- Hromiš, N.; Lazić, V.; Popović, S.; Šuput, D.; Bulut, S.; Kravić, S.; Romanić, R. The Possible Application of Edible Pumpkin Oil Cake Film as Pouches for Flaxseed Oil Protection. Food Chem. 2022, 371, 131197. [Google Scholar] [CrossRef]
- Yuan, D.; Hao, X.; Liu, G.; Yue, Y.; Duan, J. A Novel Composite Edible Film Fabricated by Incorporating W/O/W Emulsion into a Chitosan Film to Improve the Protection of Fresh Fish Meat. Food Chem. 2022, 385, 132647. [Google Scholar] [CrossRef]
- Schmidt, V.C.R.; Porto, L.M.; Laurindo, J.B.; Menegalli, F.C. Water Vapor Barrier and Mechanical Properties of Starch Films Containing Stearic Acid. Ind. Crops Prod. 2013, 41, 227–234. [Google Scholar] [CrossRef]
- Muscat, D.; Adhikari, R.; McKnight, S.; Guo, Q.; Adhikari, B. The Physicochemical Characteristics and Hydrophobicity of High Amylose Starch–Glycerol Films in the Presence of Three Natural Waxes. J. Food Eng. 2013, 119, 205–219. [Google Scholar] [CrossRef]
- Rodríguez, M.; Osés, J.; Ziani, K.; Maté, J.I. Combined Effect of Plasticizers and Surfactants on the Physical Properties of Starch Based Edible Films. Food Res. Int. 2006, 39, 840–846. [Google Scholar] [CrossRef]
- Xiao, J.; Li, Y.; Huang, Q. Recent Advances on Food-Grade Particles Stabilized Pickering Emulsions: Fabrication, Characterization and Research Trends. Trends Food Sci. Technol. 2016, 55, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Saelices, C.; Trongsatitkul, T.; Lourdin, D.; Capron, I. Chitin Pickering Emulsion for Oil Inclusion in Composite Films. Carbohydr. Polym. 2020, 242, 116366. [Google Scholar] [CrossRef]
- Farajpour, R.; Emam Djomeh, Z.; Moeini, S.; Tavahkolipour, H.; Safayan, S. Structural and Physico-Mechanical Properties of Potato Starch-Olive Oil Edible Films Reinforced with Zein Nanoparticles. Int. J. Biol. Macromol. 2020, 149, 941–950. [Google Scholar] [CrossRef]
- Xu, Y.; Chu, Y.; Feng, X.; Gao, C.; Wu, D.; Cheng, W.; Meng, L.; Zhang, Y.; Tang, X. Effects of Zein Stabilized Clove Essential Oil Pickering Emulsion on the Structure and Properties of Chitosan-Based Edible Films. Int. J. Biol. Macromol. 2020, 156, 111–119. [Google Scholar] [CrossRef]
- Souza, A.G.; Ferreira, R.R.; Paula, L.C.; Mitra, S.K.; Rosa, D.S. Starch-Based Films Enriched with Nanocellulose-Stabilized Pickering Emulsions Containing Different Essential Oils for Possible Applications in Food Packaging. Food Packag. Shelf Life 2021, 27, 100615. [Google Scholar] [CrossRef]
- Yi, F.; Wu, K.; Yu, G.; Su, C. Preparation of Pickering Emulsion Based on Soy Protein Isolate-Gallic Acid with Outstanding Antioxidation and Antimicrobial. Colloids Surf. B Biointerfaces 2021, 206, 111954. [Google Scholar] [CrossRef]
- Górnaś, P.; Soliven, A.; Segliņa, D. Seed Oils Recovered from Industrial Fruit By-Products Are a Rich Source of Tocopherols and Tocotrienols: Rapid Separation of α/β/γ/δ Homologues by RP-HPLC/FLD. Eur. J. Lipid Sci. Technol. 2015, 117, 773–777. [Google Scholar] [CrossRef]
- Rezig, L.; Chouaibi, M.; Msaada, K.; Hamdi, S. Cold Pressed Citrullus Lanatus Seed Oil. In Cold Pressed Oils; Elsevier: Amsterdam, The Netherlands, 2020; pp. 625–636. [Google Scholar]
- Acar, R.; Özcan, M.; Kanbur, G.; Dursun, N. Some Physico-Chemical Properties of Edible and Forage Watermelon Seeds. Iran. J. Chem. Chem. Eng. 2012, 31, 41–47. [Google Scholar]
- Colivet, J.; Oliveira, A.L.; Carvalho, R.A. Influence of the Bed Height on the Kinetics of Watermelon Seed Oil Extraction with Pressurized Ethanol. Sep. Purif. Technol. 2016, 169, 187–195. [Google Scholar] [CrossRef]
- Dokić, L.; Krstonošić, V.; Nikolić, I. Physicochemical Characteristics and Stability of Oil-in-Water Emulsions Stabilized by OSA Starch. Food Hydrocoll. 2012, 29, 185–192. [Google Scholar] [CrossRef]
- ASME. B46.1; Surface Texture: Surface Roughness, Waviness, and Lay. An American National Standard. The American Society of Mechanical Engineers: New York, NY, USA, 2009; pp. 1–108.
- Karbowiak, T.; Debeaufort, F.; Voilley, A. Importance of Surface Tension Characterization for Food, Pharmaceutical and Packaging Products: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46, 391–407. [Google Scholar] [CrossRef]
- Kurek, M.; Guinault, A.; Voilley, A.; Galić, K.; Debeaufort, F. Effect of Relative Humidity on Carvacrol Release and Permeation Properties of Chitosan Based Films and Coatings. Food Chem. 2014, 144, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Farris, S.; Introzzi, L.; Biagioni, P.; Holz, T.; Schiraldi, A.; Piergiovanni, L. Wetting of Biopolymer Coatings: Contact Angle Kinetics and Image Analysis Investigation. Langmuir 2011, 27, 7563–7574. [Google Scholar] [CrossRef]
- Fabra, M.J.; Talens, P.; Gavara, R.; Chiralt, A. Barrier Properties of Sodium Caseinate Films as Affected by Lipid Composition and Moisture Content. J. Food Eng. 2012, 109, 372–379. [Google Scholar] [CrossRef]
- ASTM. E96M-13; Standard Test Methods for Water Vapor Transmission of Materials. Annual Book of ASTM Standards. American Society for Testing and Materials: Philadelphia, PA, USA, 2013; Volume 4, pp. 1–12.
- Poling, B.E.; Thomson, G.H.; Friend, D.G.; Rowley, R.L.; Wilding, W.V. Physical and Chemical Data. In Perry’s Chemical Engineers’ Handbook; Green, D.W., Perry, R.H., Eds.; McGraw-Hill: New York, NY, USA, 2008; pp. 2-1, 2-517. [Google Scholar]
- ASTM. D882-02; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Annual Book of ASTM Standards. American Society for Testing and Materials: Philadelphia, PA, USA, 2010; Volume 14, pp. 1–10.
- Sobral, P.J.a.; Habitante, A.M.Q.B. Phase Transitions of Pigskin Gelatin. Food Hydrocoll. 2001, 15, 377–382. [Google Scholar] [CrossRef]
- Gennadios, A.; Weller, C.L.; Hanna, M.A.; Froning, G.W. Mechanical and Barrier Properties of Egg Albumen Films. J. Food Sci. 1996, 61, 585–589. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methodos Enzymol. 1999, 299, 152–178. [Google Scholar]
- Kowalczyk, D.; Biendl, M. Physicochemical and Antioxidant Properties of Biopolymer/Candelilla Wax Emulsion Films Containing Hop Extract—A Comparative Study. Food Hydrocoll. 2016, 60, 384–392. [Google Scholar] [CrossRef]
- Liu, Z.; Shen, R.; Yang, X.; Lin, D. Characterization of a Novel Konjac Glucomannan Film Incorporated with Pickering Emulsions: Effect of the Emulsion Particle Sizes. Int. J. Biol. Macromol. 2021, 179, 377–387. [Google Scholar] [CrossRef]
- Wiącek, A.E. Effect of Surface Modification on Starch Biopolymer Wettability. Food Hydrocoll. 2015, 48, 228–237. [Google Scholar] [CrossRef]
- Wiacek, A.E.; Dul, K. Effect of Surface Modification on Starch/Phospholipid Wettability. Colloids Surf. A Physicochem. Eng. Asp. 2015, 480, 351–359. [Google Scholar] [CrossRef]
- Fechner, P.M.; Wartewig, S.; Kiesow, A.; Heilmann, A.; Kleinebudde, P.; Neubert, R.H.H. Influence of Water on Molecular and Morphological Structure of Various Starches and Starch Derivatives. Starch/Staerke 2005, 57, 605–615. [Google Scholar] [CrossRef]
- Pulla-Huillca, P.V.; Gomes, A.; Quinta Barbosa Bittante, A.M.; Lourenço, R.V.; Sobral, P.J. Wettability of Gelatin-Based Films: The Effects of Hydrophilic or Hydrophobic Plasticizers and Nanoparticle Loads. J. Food Eng. 2021, 297, 110480. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Gelatin/Agar-Based Functional Film Integrated with Pickering Emulsion of Clove Essential Oil Stabilized with Nanocellulose for Active Packaging Applications. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 627, 127220. [Google Scholar] [CrossRef]
- Mendes, J.F.; Norcino, L.B.; Martins, H.H.A.; Manrich, A.; Otoni, C.G.; Carvalho, E.E.N.; Piccoli, R.H.; Oliveira, J.E.; Pinheiro, A.C.M.; Mattoso, L.H.C. Correlating Emulsion Characteristics with the Properties of Active Starch Films Loaded with Lemongrass Essential Oil. Food Hydrocoll. 2020, 100, 105428. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Oromiehi, A.R. Studies on Glass Transition Temperature of Mono and Bilayer Protein Films Plasticized by Glycerol and Olive Oil. J. Appl. Polym. Sci. 2008, 109, 2848–2854. [Google Scholar] [CrossRef]
- Liu, D.; Dang, S.; Zhang, L.; Munsop, K.; Li, X. Corn Starch/Polyvinyl Alcohol Based Films Incorporated with Curcumin-Loaded Pickering Emulsion for Application in Intelligent Packaging. Int. J. Biol. Macromol. 2021, 188, 974–982. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Kim, S.M.; Rhim, J.W. Carboxymethyl Cellulose-Based Multifunctional Film Combined with Zinc Oxide Nanoparticles and Grape Seed Extract for the Preservation of High-Fat Meat Products. Sustain. Mater. Technol. 2021, 29, e00325. [Google Scholar] [CrossRef]
- Roy, S.; Priyadarshi, R.; Rhim, J.W. Gelatin/Agar-Based Multifunctional Film Integrated with Copper-Doped Zinc Oxide Nanoparticles and Clove Essential Oil Pickering Emulsion for Enhancing the Shelf Life of Pork Meat. Food Res. Int. 2022, 160, 111690. [Google Scholar] [CrossRef]
CWSOE | ||
---|---|---|
0 | 242 ± 33 ab | 305 ± 43 ab |
0.1 | 196 ± 19 a | 242 ± 23 a |
0.2 | 321 ± 47 c | 409 ± 63 c |
0.3 | 301 ± 79 bc | 371 ± 89 bc |
0.4 | 261 ± 21 b | 324 ± 28 b |
0.5 | 327 ± 32 c | 415 ± 43 c |
CWSOE | (°) | (°s−1) | R2 | |
---|---|---|---|---|
0 | 88.50 | 1.17 | 1.0 × 10−3 | 0.92 |
0.1 | 61.24 | 1.09 | 1.8 × 10−3 | 0.96 |
0.2 | 62.37 | 0.79 | 8.3 × 10−3 | 0.97 |
0.3 | 60.28 | 1.21 | 1.1 × 10−3 | 0.97 |
0.4 | 62.06 | 1.48 | 6.5 × 10−5 | 0.97 |
0.5 | 47.17 | 1.62 | 7.4 × 10−5 | 0.84 |
CWSOE | MC (g of H2O/100 g of Film) | TS (MPa) | E (%) | EM (MPa) | WVP (g mm/h m2 kPa) |
---|---|---|---|---|---|
0 | 8.7 ± 0.3 a | 9.5 ± 0.5 d | 19.8 ± 2.2 ab | 589.5 ± 66 d | 0.18 ± 0.01 a |
0.1 | 12.9 ± 0.1 a | 6.7 ± 1.2 c | 25.9 ± 6.9 b | 414.9 ± 58 c | 0.20 ± 0.01 b |
0.2 | 12.3 ± 0.4 b | 6.4 ± 1.0 bc | 13.4 ± 8.1 a | 375.2 ± 59 c | 0.21 ± 0.02 b |
0.3 | 12.6 ± 0.1 bc | 6.7 ± 1.0 c | 13.3 ± 3.2 a | 373.7 ± 97 c | 0.19 ± 0.01 ab |
0.4 | 12.5 ± 0.2 bc | 4.2 ± 1.0 a | 48.5 ± 13.8 d | 192.4 ± 82 a | 0.18 ± 0.01 a |
0.5 | 12.5 ± 0.1 bc | 5.6 ± 1.5 b | 39.1 ± 15.8 c | 291.4 ± 125 b | 0.18 ± 0.01 a |
First Scan | Second Scan | |||
---|---|---|---|---|
CWSOE | ||||
0 | −28.77 ± 0.14 c | 53.43 ± 5.04 a | 3.26 ± 0.26 b | −28.17 ± 1.38 a |
0.1 | −30.26 ± 0.92 bc | 49.59 ± 1.73 a | 1.38 ± 0.18 a | −21.19 ± 8.34 b |
0.2 | −31.89 ± 2.08 ab | 49.15 ± 2.95 a | 2.02 ± 0.92 a | −31.71 ± 1.47 a |
0.3 | −31.44 ± 0.60 ab | 50.00 ± 5.11 a | 1.54 ± 0.09 a | −31.79 ± 0.71 a |
0.4 | −31.75 ± 0.54 ab | 49.09 ± 0.65 a | 2.34 ± 0.89 ab | −32.54 ± 0.87 a |
0.5 | −32.04 ± 0.16 a | 53.08 ± 6.75 a | 2.42 ± 0.89 ab | −32.40 ± 0.46 a |
CWSOE | L* | a* | b* | CTF | |
---|---|---|---|---|---|
0 | 91.14 ± 0.22 de | −1.42 ± 0.01 a | 0.17 ± 0.05 a | 0 ± 0.0 a | 0.01 ± 0.001 a |
0.1 | 90.02 ± 0.31 c | −0.29 ± 0.19 b | 7.19 ± 1.02 b | 7.20 ± 1.04 b | 0.19 ± 0.10 b |
0.2 | 89.56 ± 0.55 bc | 0.66 ± 0.49 c | 12.08 ± 2.14 c | 12.20 ± 2.21 c | 1.14 ± 0.20 b |
0.3 | 88.42 ± 1.75 a | 1.19 ± 0.49 d | 14.60 ± 2.55 d | 14.97 ± 2.66 d | 3.04 ± 0.59 c |
0.4 | 88.92 ± 0.58 ab | 1.29 ± 0.50 d | 14.84 ± 1.77 d | 15.12 ± 1.71 d | 4.51 ± 0.94 d |
0.5 | 87.99 ± 0.6 a | 2.25 ± 0.0 e | 18.08 ± 1.85 e | 18.55 ± 2.02 e | 5.68 ± 0.97 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colivet, J.; Garcia, V.A.d.S.; Lourenço, R.V.; Yoshida, C.M.P.; Oliveira, A.L.d.; Vanin, F.M.; Carvalho, R.A.d. Characterization of Films Produced with Cross-Linked Cassava Starch and Emulsions of Watermelon Seed Oils. Foods 2022, 11, 3803. https://doi.org/10.3390/foods11233803
Colivet J, Garcia VAdS, Lourenço RV, Yoshida CMP, Oliveira ALd, Vanin FM, Carvalho RAd. Characterization of Films Produced with Cross-Linked Cassava Starch and Emulsions of Watermelon Seed Oils. Foods. 2022; 11(23):3803. https://doi.org/10.3390/foods11233803
Chicago/Turabian StyleColivet, Julio, Vitor Augusto dos Santos Garcia, Rodrigo Vinicius Lourenço, Cristiana Maria Pedroso Yoshida, Alessandra Lopes de Oliveira, Fernanda Maria Vanin, and Rosemary Aparecida de Carvalho. 2022. "Characterization of Films Produced with Cross-Linked Cassava Starch and Emulsions of Watermelon Seed Oils" Foods 11, no. 23: 3803. https://doi.org/10.3390/foods11233803
APA StyleColivet, J., Garcia, V. A. d. S., Lourenço, R. V., Yoshida, C. M. P., Oliveira, A. L. d., Vanin, F. M., & Carvalho, R. A. d. (2022). Characterization of Films Produced with Cross-Linked Cassava Starch and Emulsions of Watermelon Seed Oils. Foods, 11(23), 3803. https://doi.org/10.3390/foods11233803