A Bayesian Approach to Predict Food Fraud Type and Point of Adulteration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Food Adulteration Incidents Registry (FAIR) Database
2.2. BN Model
Items | Description |
---|---|
Types of fraud * | Addition (Incorporation of cheaper ingredients to boost food/drink volume); adulteration ^ (modification of food or drink products—please see notes below); artificial enhancement (addition of unapproved chemical additives and/or addition of substances); counterfeit (exact copy of branded foods); dilution (reducing or thinning genuine drink products with cheaper ingredients); diversion (food products re-directed outside of intended markets); intentional distribution of unacceptable food (deliberate sale of unsafe or unacceptable food); mislabelling (misrepresentation of food/drink product), smuggling (illegal trade of food or drinks across borders), substitution (replacing genuine food products); tampering (for economic purposes); theft and transshipment (shipment and distribution of food/drinks to avoid tariffs) |
Food categories | Baked products; beverages; breakfast cereals; cereal grains & pasta; dairy; eggs; fats & oils; finfish; fruits; herbs, spices & seasonings; legumes; meals, entrees & side dishes; meat & poultry; nut & seed products; other; shellfish; snacks; soups, sauces & gravies; sweets & confectionary; vegetables; wine |
Year | 1979–2018 |
Adulterants | Chemical (e.g., methanol, mineral oil, dye); ingredients (cheaper food ingredients); microbiological (e.g., Salmonella, E. coli; food subjected to temperature abuse); non-food (e.g., sewage water, animal feed, sand); other (e.g., mislabelling; smuggling; transshipment); physical (e.g., plastic crystals) |
Reporting country | Worldwide |
Point of adulteration | Catering; distribution (an intermediary between food producers and food operators such as retailers or restaurants and provides transportation of food); farm; fishing vessel; manufacturing; retailer (a place where consumers can buy food); store (warehouse); supplier; waste |
Point of detection | Complaints; illnesses; inspections; investigation; other; raid; sampling; whistleblowing; not reported |
2.3. Model Validation
3. Results
3.1. Validation of Food Fraud and Point of Adulteration Models
3.2. Application of BN Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manning, L.J.; Soon, J.M. Food fraud vulnerability assessment: Reliable data sources and effective assessment approaches. Trends Food Sci. Techol. 2019, 91, 159–168. [Google Scholar] [CrossRef]
- Spielman, S. Food Fraud Is Not Only an ECONOMIC drain but Also a Supply Chain Safety Concern. Food Engineering. Available online: https://www.foodengineeringmag.com/articles/98984-food-fraud-is-not-only-an-economic-drain-but-also-a-supply-chain-safety-concern (accessed on 15 June 2021).
- Bouzembrak, Y.; Steen, B.; Neslo, R.; Linge, J.; Mojtahed, V.; Marvin, H.J.P. Development of food fraud media monitoring system based on text mining. Food Control 2018, 93, 283–296. [Google Scholar] [CrossRef]
- Montgomery, H.; Haughey, S.A.; Elliott, C.T. Recent food safety and fraud issues within the dairy supply chain (2015–2019). Glob. Food Secur. 2020, 26, 100447. [Google Scholar] [CrossRef] [PubMed]
- Robson, K.; Dean, M.; Brooks, S.; Haughey, S.; Elliott, C. A 20-year analysis of reported food fraud in the global beef supply chain. Food Control 2020, 116, 107310. [Google Scholar] [CrossRef]
- Ulberth, F. Tools to combat food fraud—A gap analysis. Food Chem. 2020, 330, 127044. [Google Scholar] [CrossRef]
- Yan, J.; Erasmus, S.W.; Toro, M.A.; Huang, H.; van Ruth, S.M. Food fraud: Assessing fraud vulnerability in the extra virgin olive oil supply chain. Food Control 2020, 111, 107081. [Google Scholar] [CrossRef]
- Poonia, A.; Jha, A.; Sharma, R.; Singh, H.B.; Rai, A.K.; Sharma, N. Detection of adulteration in milk: A review. Int. J. Dairy Technol. 2017, 70, 23–42. [Google Scholar] [CrossRef]
- Yang, Y.; Huisman, W.; Hettinga, K.A.; Zhang, L.; van Ruth, S.M. The Chinese milk supply chain: A fraud perspective. Food Control 2020, 113, 107211. [Google Scholar] [CrossRef]
- Nascimento, C.F.; Santos, P.M.; Pereira-Filho, E.R.; Rocha, F.R.P. Recent advances on determination of milk adulterants. Food Chem. 2017, 221, 1232–1244. [Google Scholar] [CrossRef]
- Spink, J. Food counterfeiting: A growing concern. In Encyclopaedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 648–651. [Google Scholar]
- WTO. Trade-Related Aspects of Intellectual Property Rights. Available online: https://www.wto.org/english/docs_e/legal_e/27-trips_04_e.htm (accessed on 17 June 2021).
- Yoo, B.; Lee, S.H. Do counterfeits Promote Original Products? Hofstra University: Hempstead, NY, USA, 2005; pp. 1–45. [Google Scholar]
- Basanisi, M.G.; La Bella, G.; Nobili, G.; Coppola, R.; Damato, A.M.; Cafiero, M.A.; La Salandra, G. Application of the novel droplet digital PCR technology for identification of meat species. Int. J. Food Sci. Technol. 2019, 55, 14486. [Google Scholar] [CrossRef] [Green Version]
- Rubio Lozano, M.S.; Hernandez Chavez, J.F.; Ruiz Lopez, F.A.; Medina Medina, R.; Delgado Suarez, E.; Mendez Medina, R.D.; Ngapo, T.M. Horse meat sold as beef and consequent clenbuterol residues in the unregulated Mexican marketplace. Food Control 2020, 110, 107028. [Google Scholar] [CrossRef]
- Black, C.; Chevallier, O.P.; Cooper, K.M.; Haughey, S.A.; Balog, J.; Takats, Z.; Elliott, C.T.; Cavin, C. Rapid detection and specific identification of offals within minced beef samples utilising ambient mass spectrometry. Sci. Rep.-UK 2019, 9, 6295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzembrak, Y.; Marvin, H.J.P. Prediction of food fraud type using data from Rapid Alert System for Food and Feed (RASFF) and Bayesian network modelling. Food Control 2016, 61, 180–187. [Google Scholar] [CrossRef]
- Marvin, H.J.P.; Bouzembrak, Y.; Janssen, E.M.; van der Fels-Klerx, H.J.; Van Asselt, E.D.; Kleter, G.A. A holistic approach to food safety risks: Food fraud as an example. Food Res. Int. 2016, 89, 463–470. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, L.; Pei, J. Application of Bayesian modelling to assess food quality and safety status and identify risky food in China market. Food Control 2019, 100, 111–116. [Google Scholar] [CrossRef]
- Smid, J.H.; Verloo, D.; Barker, G.C.; Havelaar, A.H. Strengths and weaknesses of Monte Carlo simulation models and Bayesian belief networks in microbial risk assessment. Int. J. Food Microbiol. 2010, 139, S57–S63. [Google Scholar] [CrossRef]
- Soon, J.M. Application of bayesian network modelling to predict food fraud products from China. Food Control 2020, 114, 107232. [Google Scholar] [CrossRef]
- Smith, R.; Laing, A.; McElwee, G. The rise of illicit rural enterprise within the farming industry. Int. J. Agric. Manag. 2013, 2, 185–188. [Google Scholar] [CrossRef]
- Van Ruth, S.M.; van der Veeken, J.; Dekker, P.; Luning, P.A.; Huisman, W. Feeding fiction: Fraud vulnerability in the food service industry. Food Res. Int. 2020, 133, 109158. [Google Scholar] [CrossRef]
- Food Adulteration Incidents Registry. Available online: https://foodprotection.umn.edu/tools-services/food-adulteration-incidents-registry-fair (accessed on 20 July 2021).
- Spink, J.; Moyer, D.C. Defining the public health threat of food fraud. J. Food Sci. 2011, 76, R157–R163. [Google Scholar] [CrossRef]
- Li, D.; Zang, M.; Li, X.; Zhang, K.; Zhang, Z.; Wang, S. A study on the food fraud of national food safety and sample inspection of China. Food Control 2020, 116, 107306. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, J. Economically motivated food fraud and adulteration in China: An analysis based on 1553 media reports. Food Control 2016, 67, 192–198. [Google Scholar] [CrossRef]
- Manning, L.; Soon, J.M. Food safety, food fraud, and food defense: A fast evolving literature. J. Food Sci. 2016, 81, R823–R834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soon, J.M.; Manning, L. Food smuggling and trafficking: The key factors of influence. Trends Food Sci. Tech. 2018, 81, 132–138. [Google Scholar] [CrossRef]
- Zarei, E.; Kahakzad, N.; Cozzani, V.; Reniers, G. Safety analysis of process systems using Fuzzy Bayesian Network (FBN). J. Loss Prev. Proc. 2019, 57, 7–16. [Google Scholar] [CrossRef]
- Joossens, L.; Raw, M. From cigarette smuggling to illicit tobacco trade. Tob. Control 2012, 21, 230–234. [Google Scholar] [CrossRef] [Green Version]
- Monahan, F.J.; Schmidt, O.; Moloney, A.P. Meat provenance: Authentication of geographical origin and dietary background of meat. Meat Sci. 2018, 144, 2–14. [Google Scholar] [CrossRef]
- Quintanilla-Casas, B.; Bertin, S.; Leik, K.; Bustamante, J.; Guardiola, F.; Valli, E.; Bendini, A.; Toschi, T.G.; Tres, A.; Vichi, S. Profiling versus fingerprinting analysis of sesquiterpene hydrocarbons for the geographical authentication of extra virgin olive oils. Food Chem. 2020, 307, 125556. [Google Scholar] [CrossRef] [Green Version]
- Horreo, J.L.; Machado-Schiaffino, G.; Garcia-Vazquez, E. Forensic assignment to geographic origin, a useful tool in seafood fraud control. Forensic. Sci. Int. 2017, 272, 37–40. [Google Scholar] [CrossRef]
- Aboah, J.; Lees, N. Consumers use of quality cues for meat purchase: Research trends and future pathways. Meat Sci. 2020, 166, 108142. [Google Scholar] [CrossRef]
- Chuah, L.-O.; He, X.B.; Effarizah, M.E.; Syahariza, Z.A.; Shamila-Syuhada, A.K.; Rusul, G. Mislabelling of beef and poultry products sold in Malaysia. Food Control 2016, 62, 157–164. [Google Scholar] [CrossRef]
- Soman, M.; Paul, R.J.; Antony, M.; Sasidharan, S.P. Detecting mislabelling in meat products using PCR-FINS. J. Food Sci. Tech. 2020, 57, 4286–4292. [Google Scholar] [CrossRef] [PubMed]
- Delpiani, G.; Delpiani, S.M.; Antoni, M.Y.D.; Ale, M.C.; Fischer, L.; Lucifora, L.O.; Diaz de Astarloa, J.M. Are we sure we wat what we buy? Fish mislabelling in Buenos Aires province, the largest sea food market in Argentina. Fish Res. 2020, 221, 105373. [Google Scholar] [CrossRef]
- Pardo, M.A.; Jimenez, E. DNA barcoding revealing seafood mislabelling in food services from Spain. J. Food Compos. Anal. 2020, 91, 103521. [Google Scholar] [CrossRef]
- Lopez-Vizcón, C.; Ortega, F. Detection of mislabelling in the fresh potato retail market employing microsatellite markers. Food Control 2012, 26, 575–579. [Google Scholar] [CrossRef]
- Hong, E.; Lee, S.Y.; Jeong, J.Y.; Park, J.M.; Kim, B.H.; Kwon, K.; Chun, H.S. Modern analytical methods for the detection of food fraud and adulteration by food category. J. Sci. Food Agr. 2017, 97, 3877–3896. [Google Scholar] [CrossRef]
- Dhaulaniya, A.S.; Balan, B.; Sodhi, K.K.; Kelly, S.; Cannavan, A.; Singh, D.K. Qualitative and quantitative evaluation of corn syrup as a potential added sweetener in apple fruit juices using mid-infrared spectroscopy assisted chemometric modelling. LWT 2020, 131, 109749. [Google Scholar] [CrossRef]
- De Carvalho Martins, V.; de Oliveira Godoy, R.L.; Gouvea, A.C.M.S.; de Araujo Santiago, M.C.P.; Borguini, R.G.; de Oliveira Braga, E.C.; Pacheco, S.; Nascimento, L.S.M. Fraud investigation in commercial coffee by chromatography. Food Qual. Saf. 2018, 2, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Yang, Y.; Sun, D. Rapid detection of carmine in black tea with spectrophotometry coupled predictive modelling. Food Chem. 2020, 329, 127177. [Google Scholar] [CrossRef]
- Yang, Y.; Huisman, W.; Hettinga, K.A.; Liu, N.; Heck, J.; Schrijver, G.H.; Gaiardoni, L.; van Ruth, S.M. Fraud vulnerability in the Dutch milk supply chain: Assessments of farmers, processors and retailers. Food Control 2019, 95, 308–317. [Google Scholar] [CrossRef]
- Everstine, K.; Abt, E.; McColl, D.; Popping, B.; Morrison-Rowe, S.; Lane, R.W.; Scimeca, J.; Winter, C.; Ebert, A.; Moore, J.C.; et al. Development of a hazard classification scheme for substances used in the fraudulent adulteration of foods. J. Food Prot. 2018, 81, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Silvis, I.C.J.; van Ruth, S.M.; van der Fels-Klerx, H.J.; Luning, P.A. Assessment of food fraud vulnerability in the spices chain: An explorative study. Food Control 2017, 81, 80–87. [Google Scholar] [CrossRef]
- Everstine, K.; Spink, J.; Kennedy, S. Economically motivated adulteration (EMA) of food: Common characteristics of EMA incidents. J. Food Prot. 2013, 76, 723–735. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Klein, G.; Lopez, A.M. European and German food legislation facing uncommon foodstuffs. CRC Crit. Rev. Food Sci. 2013, 53, 787–800. [Google Scholar] [CrossRef]
- Food Standards Agency. Food Safety Inspections and Enforcement. Available online: https://www.food.gov.uk/business-guidance/food-safety-inspections-and-enforcement (accessed on 25 May 2021).
- Koubova, J.; Samkova, E.; Hasonova, L. Food fraud detection by Czech Agricultural and Food Inspection Authority in retail market. Br. Food J. 2017, 120, 930–938. [Google Scholar] [CrossRef]
- Tahkapaa, S.; Maijala, R.; Korkeala, H.; Nevas, M. Patterns of food frauds and adulterations reported in the EU rapid alert system for food and feed and in Finland. Food Control 2015, 47, 175–184. [Google Scholar] [CrossRef]
- Kowalska, A.; Soon, J.M.; Manning, L. A study on adulteration in cereals and bakery products from Poland including a review of definitions. Food Control 2018, 92, 348–356. [Google Scholar] [CrossRef]
- Moy, G.G. The role of whistleblowers in protecting the safety and integrity of the food supply. NPJ Sci Food 2018, 8, 7143. [Google Scholar] [CrossRef]
- National Food Crime Unit. National Food Crime Unit. Available online: https://www.food.gov.uk/about-us/national-food-crime-unit (accessed on 19 February 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soon, J.M.; Abdul Wahab, I.R. A Bayesian Approach to Predict Food Fraud Type and Point of Adulteration. Foods 2022, 11, 328. https://doi.org/10.3390/foods11030328
Soon JM, Abdul Wahab IR. A Bayesian Approach to Predict Food Fraud Type and Point of Adulteration. Foods. 2022; 11(3):328. https://doi.org/10.3390/foods11030328
Chicago/Turabian StyleSoon, Jan Mei, and Ikarastika Rahayu Abdul Wahab. 2022. "A Bayesian Approach to Predict Food Fraud Type and Point of Adulteration" Foods 11, no. 3: 328. https://doi.org/10.3390/foods11030328
APA StyleSoon, J. M., & Abdul Wahab, I. R. (2022). A Bayesian Approach to Predict Food Fraud Type and Point of Adulteration. Foods, 11(3), 328. https://doi.org/10.3390/foods11030328